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"As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is 
considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive 
knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics 
industry veteran. Within the pages of the second edition you can find topics from beginning 
shader development to advanced topics such as the spherical harmonic lighting model and 
more." 

David Tommeraasen, CEO/Programmer, Plasma Software 

"This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost 
has done an excellent job at setting the stage for shader development, what the purpose is, 
how to do it, and how it all fits together. The book includes great examples and details, and 
good additional coverage of 2.0 changes!" 

Jeffery Galinovsky, Director of Emerging Market Platform Development, Intel Corporation 

"The coverage in this new edition of the book is pitched just right to help many new shader-
writers get started, but with enough deep information for the 'old hands.'" 

Marc Olano, Assistant Professor, University of Maryland 

"This is a really great book on GLSLwell written and organized, very accessible, and with good 
real-world examples and sample code. The topics flow naturally and easily, explanatory code 
fragments are inserted in very logical places to illustrate concepts, and all in all, this book 
makes an excellent tutorial as well as a reference." 

John Carey, Chief Technology Officer, C.O.R.E. Feature Animation 

OpenGL® Shading Language, Second Edition, extensively updated for OpenGL 2.0, is the 
experienced application programmer's guide to writing shaders. Part reference, part tutorial, 
this book thoroughly explains the shift from fixed-functionality graphics hardware to the new 
era of programmable graphics hardware and the additions to the OpenGL API that support this 
programmability. With OpenGL and shaders written in the OpenGL Shading Language, 
applications can perform better, achieving stunning graphics effects by using the capabilities 
of both the visual processing unit and the central processing unit. 

In this book, you will find a detailed introduction to the OpenGL Shading Language (GLSL) and 
the new OpenGL function calls that support it. The text begins by describing the syntax and 
semantics of this high-level programming language. Once this foundation has been 
established, the book explores the creation and manipulation of shaders using new OpenGL 
function calls. 

OpenGL® Shading Language, Second Edition, includes updated descriptions for the 
language and all the GLSL entry points added to OpenGL 2.0; new chapters that discuss 



 

lighting, shadows, and surface characteristics; and an under-the-hood look at the 
implementation of RealWorldz, the most ambitious GLSL application to date. The second 
edition also features 18 extensive new examples of shaders and their underlying algorithms, 
including 

Image-based lighting 

Lighting with spherical harmonics 

Ambient occlusion 

Shadow mapping 

Volume shadows using deferred lighting 

Ward's BRDF model 

The color plate section illustrates the power and sophistication of the OpenGL Shading 
Language. The API Function Reference at the end of the book is an excellent guide to the API 
entry points that support the OpenGL Shading Language. Also included is a convenient Quick 
Reference Card to GLSL. 
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Praise for OpenGL® Shading Language, 
Second Edition 
"As the 'Red Book' is known to be the gold standard for OpenGL, the 'Orange Book' is 
considered to be the gold standard for the OpenGL Shading Language. With Randi's extensive 
knowledge of OpenGL and GLSL, you can be assured you will be learning from a graphics 
industry veteran. Within the pages of the second edition you can find topics from beginning 
shader development to advanced topics such as the spherical harmonic lighting model and 
more." 

David Tommeraasen  
CEO/Programmer  
Plasma Software 

"This will be the definitive guide for OpenGL shaders; no other book goes into this detail. Rost 
has done an excellent job at setting the stage for shader development, what the purpose is, 
how to do it, and how it all fits together. The book includes great examples and details, and 
good additional coverage of 2.0 changes!" 

Jeffery Galinovsky  
Director of Emerging Market  
Platform Development  
Intel Corporation 

"The coverage in this new edition of the book is pitched just right to help many new shader-
writers get started, but with enough deep information for the 'old hands.'" 

Marc Olano  
Assistant Professor  
University of Maryland 

"This is a really great book on GLSLwell written and organized, very accessible, and with good 
real-world examples and sample code. The topics flow naturally and easily, explanatory code 
fragments are inserted in very logical places to illustrate concepts, and all in all, this book 
makes an excellent tutorial as well as a reference." 

John Carey  
Chief Technology Officer  
C.O.R.E. Feature Animation 



Praise for the First Edition of OpenGL® 
Shading Language 
"The author has done an excellent job at setting the stage for shader development, what the 
purpose is, how to do it, and how it all fits together. He then develops on the advanced topics 
covering a great breadth in the appropriate level of detail. Truly a necessary book to own for 
any graphics developer!" 

Jeffery Galinovsky  
Strategic Software Program  
Manager, Intel Corporation 

"OpenGL® Shading Language provides a timely, thorough, and entertaining introduction to the 
only OpenGL ARB-approved high-level shading language in existence. Whether an expert or a 
novice, there are gems to be discovered throughout the book, and the reference pages will be 
your constant companion as you dig into the depths of the shading APIs. From algorithms to 
APIs, this book has you covered." 

Bob Kuehne  
CEO, Blue Newt Software 

"Computer graphics and rendering technologies just took a giant leap forward with hardware 
vendors rapidly adopting the new OpenGL Shading Language. This book presents a detailed 
treatment of these exciting technologies in a way that is extremely helpful for visualization and 
game developers." 

Andy McGovern  
Founder  
Virtual Geographies, Inc. 

"The OpenGL Shading Language is at the epicenter of the programmable graphics revolution, 
and Randi Rost has been at the center of the development of this significant new industry 
standard. If you need the inside track on how to use the OpenGL Shading Language to unleash 
new visual effects and unlock the supercomputer hiding inside the new generation of graphics 
hardware, then this is the book for you." 

Neil Trevett  
Senior Vice President  
Market Development  
3Dlabs 

  



Foreword 
To me, graphics shaders are about the coolest things to ever happen in computer graphics. I 
grew up in graphics in the 1970s, watching the most amazing people do the most amazing 
things with the mathematics of graphics. I remember Jim Blinn's bump-mapping technique, for 
instance, and what effects it was able to create. The method was deceptively simple, but the 
visual impact was momentous. True, it took a substantial amount of time for a computer to 
work through the pixel-by-pixel software process to make that resulting image, but we only 
cared about that a little bit. It was the effect that mattered. 

My memory now fast-forwards to the 1980s. Speed became a major issue, with practitioners 
like Jim Clark working on placing graphics algorithms in silicon. This resulted in the blossoming 
of companies such as Evans & Sutherland and Silicon Graphics. They brought fast, interactive 
3D graphics to the masses, but the compromise was that they forced us into doing our work 
using standard APIs that could easily be hardware supported. Deep-down procedural techniques 
such as bump-mapping could not follow where the hardware was leading. 

But the amazing techniques survived in software. Rob Cook's classic paper on shade trees 
brought attention to the idea of using software "shaders" to perform the pixel-by-pixel 
computations that could deliver the great effects. This was embodied by the Photorealistic 
RenderMan rendering software. The book RenderMan Companion by Steve Upstill is still the first 
reference that I point my students to when they want to learn about the inner workings of 
shaders. The ability to achieve such fine-grained control over the graphics rendering process 
gave RenderMan users the ability to create the dazzling, realistic effects seen in Pixar animation 
shorts and TV commercials. The process was still miles away from real time, but the seed of the 
idea of giving an interactive application developer that type of control was planted. And it was 
such a powerful idea that it was only a matter of time until it grew. 

Now, fast-forward to the start of the new millennium. The major influence on graphics was no 
longer science and engineering applications. It had become games and other forms of 
entertainment. (Nowhere has this been more obvious than in the composition of the SIGGRAPH 
Exhibition.) Because games live and die by their ability to deliver realistic effects at interactive 
speeds, the shader seed planted a few years earlier was ready to flourish in this new domain. 
The capacity to place procedural graphics rendering algorithms into the graphics hardware was 
definitely an idea whose time had come. Interestingly, it brought the graphics community full 
circle. We searched old SIGGRAPH proceedings to see how pixel-by-pixel scene control was 
performed in software then, so we could "re-invent" it using interactive shader code. 

So, here we are in the present, reading Randi Rost's OpenGL® Shading Language. This is the 
next book I point my shader-intrigued students to, after Upstill's. It is also the one that I, and 
they, use most often day to day. By now, my first edition is pretty worn. 

But great newsI have an excuse to replace it! This second edition is a major enhancement over 
the first. This is more than just errata corrections. There is substantial new material in this 
book. New chapters on lighting, shadows, surface characteristics, and RealWorldz are essential 
for serious effects programmers. There are also 18 new shader examples. The ones I especially 
like are shadow mapping, vertex noise, image-based lighting, and environmental mapping with 
cube maps. But they are all really good, and you will find them all useful. 

The OpenGL Shading Language is now part of standard OpenGL. It will be used everywhere. 
There is no reason not to. Anybody interested in effects graphics programming will want to read 
this book cover to cover. There are many nuggets to uncover. But GLSL is useful even beyond 
those borders. For example, we use it in our visualization research here at OSU (dome 
transformation, line integral convolution, image compression, terrain data mapping, etc.). I 
know that GLSL will find considerable applications in many other non-game areas as well. 



 

I want to express my appreciation to Randi, who obviously started working on the first edition 
of this book even before the GLSL specification was fully decided upon. This must have made 
the book extra difficult to write, but it let the rest of us jump on the information as soon as it 
was stable. Thanks, too, for this second edition. It will make a significant contribution to the 
shader-programming community, and we appreciate it. 

Mike Bailey, Ph.D.  
Professor, Computer Science  
Oregon State University 

  



Foreword to the First Edition 
This book is an amazing measure of how far and how fast interactive shading has advanced. 
Not too many years ago, procedural shading was something done only in offline production 
rendering, creating some of the great results we all know from the movies, but were not 
anywhere close to interactive. Then a few research projects appeared, allowing a slightly 
modified but largely intact type of procedural shading to run in real time. Finally, in a rush, 
widely accessible commercial systems started to support shading. Today, we've come to the 
point where a real-time shading language developed by a cross-vendor group of OpenGL 
participants has achieved official designation as an OpenGL Architecture Review Board approved 
extension. This book, written by one of those most responsible for spearheading the 
development and acceptance of the OpenGL shading language, is your guide to that language 
and the extensions to OpenGL that let you use it. 

I came to my interest in procedural shading from a strange direction. In 1990, I started 
graduate school at the University of North Carolina in Chapel Hill because it seemed like a good 
place for someone whose primary interest was interactive 3D graphics. There, I started working 
on the Pixel-Planes project. This project had produced a new graphics machine with several 
interesting features beyond its performance at rendering large numbers of polygons per second. 
One feature in particular had an enormous impact on the research directions I've followed for 
the past 13 years. Pixel-Planes 5 had programmable pixel processorslots of them. Programming 
these processors was similar in many ways to the assembly-language fragment programs that 
have burst onto the graphics scene in the past few years. 

Programming them was exhilarating, yet also thoroughly exasperating. I was far from the only 
person to notice both the power and pain of writing low-level code to execute per-pixel. Another 
group within the Pixel-Planes team built an assembler for shading code to make it a little easier 
to write, although it was still both difficult to write a good shader and ever-so-rewarding once 
you had it working. The shaders produced will be familiar to anyone who has seen demos of any 
of the latest graphics products, and not surprisingly you'll find versions of many of them in this 
book: wood, clouds, brick, rock, reflective wavy water, and (of course) the Mandelbrot fractal 
set. 

The rewards and difficulties presented by Pixel-Planes 5 shaders guided many of the design 
decisions behind the next machine, PixelFlow. PixelFlow was designed and built by a 
university/industry partnership with industrial participation first by Division, then by Hewlett-
Packard. The result was the first interactive system capable of running procedural shaders 
compiled from a high-level shading language. PixelFlow was demonstrated at the SIGGRAPH 
conference in 1997. For a few years thereafter, if you were fortunate enough to be at UNC-
Chapel Hill, you could write procedural shaders and run them in real-time when no one else 
could. And, of course, the only way to see them in action was to go there. 

I left UNC for a shading project at SGI, with the hopes of providing a commercially supported 
shading language that could be used on more than just one machine at one site. Meanwhile, a 
shading language research project started up at Stanford, with some important results for 
shading on PC-level graphics hardware. PC graphics vendors across the board started to add 
low-level shading capabilities to their hardware. Soon, people everywhere could write shading 
code similar in many ways to that which had so inspired me on the Pixel Planes 5 machine. And, 
not surprisingly, soon people everywhere also knew that we were going to need a higher-level 
language for interactive shading. 

Research continues into the use, improvement, and abuse of these languages at my lab at 
University of Maryland, Baltimore County; and at many, many others. However, the mere 
existence of real-time high-level shading languages is no longer the subject of that research. 
Interactive shading languages have moved from the research phase to wide availability. There 



 

are a number of options for anyone wanting to develop an application using the shading 
capabilities of modern graphics hardware. The principal choices are Cg, HLSL, and the OpenGL 
Shading Language. The last of which has the distinction of being the only one that has been 
through a rigorous multivendor review process. I participated in that process, as did over two 
dozen representatives from a dozen companies and universities. 

This brings us back full circle to this book. If you are holding this book now, you are most likely 
interested in some of the same ideals that drove the creation of the OpenGL Shading Language, 
the desire for a cross-OS, cross-platform, robust and standardized shading language. You want 
to learn how to use all of that? Open up and start reading. Then get shading! 

Marc Olano  
University of Maryland  
Baltimore County, MD  
September 2003 

  



Preface 
For just about as long as there has been graphics hardware, there has been programmable 
graphics hardware. Over the years, building flexibility into graphics hardware designs has been 
a necessary way of life for hardware developers. Graphics APIs continue to evolve, and because 
a hardware design can take two years or more from start to finish, the only way to guarantee a 
hardware product that can support the then current graphics APIs at its release is to build in 
some degree of programmability from the very beginning. 

Until recently, the realm of programming graphics hardware belonged to just a few people, 
mainly researchers and graphics hardware driver developers. Research into programmable 
graphics hardware has been taking place for many years, but the point of this research has not 
been to produce viable hardware and software for application developers and end users. The 
graphics hardware driver developers have focused on the immediate task of providing support 
for the important graphics APIs of the time: PHIGS, PEX, Iris GL, OpenGL, Direct3D, and so on. 
Until recently, none of these APIs exposed the programmability of the underlying hardware, so 
application developers have been forced into using the fixed functionality provided by traditional 
graphics APIs. 

Hardware companies have not exposed the programmable underpinnings of their products 
because of the high cost of educating and supporting customers to use low-level, device-specific 
interfaces and because these interfaces typically change quite radically with each new 
generation of graphics hardware. Application developers who use such a device-specific 
interface to a piece of graphics hardware face the daunting task of updating their software for 
each new generation of hardware that comes along. And forget about supporting the application 
on hardware from multiple vendors! 

As we moved into the 21st century, some of these fundamental tenets about graphics hardware 
were challenged. Application developers pushed the envelope as never before and demanded a 
variety of new features in hardware in order to create more and more sophisticated onscreen 
effects. As a result, new graphics hardware designs became more programmable than ever 
before. Standard graphics APIs were challenged to keep up with the pace of hardware 
innovation. For OpenGL, the result was a spate of extensions to the core API as hardware 
vendors struggled to support a range of interesting new features that their customers were 
demanding. 

The creation of a standard, cross-platform, high-level shading language for commercially 
available graphics hardware was a watershed event for the graphics industry. A paradigm shift 
occurred, one that took us from the world of rigid, fixed functionality graphics hardware and 
graphics APIs to a brave new world where the visual processing unit, or VPU (i.e., graphics 
hardware), is as important as the central processing unit, or CPU. The VPU is optimized for 
processing dynamic media such as 3D graphics and video. Highly parallel processing of floating-
point data is the primary task for VPUs, and the flexibility of the VPU means that it can also be 
used to process data other than a stream of traditional graphics commands. Applications can 
take advantage of the capabilities of both the CPU and the VPU, using the strengths of each to 
optimally perform the task at hand. 

This book describes how graphics hardware programmability is exposed through a high-level 
language in the leading cross-platform 3D graphics API: OpenGL. This language, the OpenGL 
Shading Language, lets applications take total control over the most important stages of the 
graphics processing pipeline. No longer restricted to the graphics rendering algorithms and 
formulas chosen by hardware designers and frozen in silicon, software developers are beginning 
to use this programmability to create stunning effects in real time. 

  



Intended Audience 
The primary audience for this book is application programmers who want to write shaders. This 
book can be used as both a tutorial and a reference book by people interested in learning to 
write shaders with the OpenGL Shading Language. Some will use the book in one fashion, and 
some in the other. The organization is amenable to both uses and is based on the assumption 
that most people won't read the book in sequential order from back to front (but some intrepid 
readers of the first edition reported that they did just that!). 

Readers do not need previous knowledge of OpenGL to absorb the material in this book, but 
such knowledge is very helpful. A brief review of OpenGL is included, but this book does not 
attempt to be a tutorial or reference book for OpenGL. Anyone attempting to develop an 
OpenGL application that uses shaders should be armed with OpenGL programming 
documentation in addition to this book. 

Computer graphics has a mathematical basis, so some knowledge of algebra, trigonometry, and 
calculus will help readers understand and appreciate some of the details presented. With the 
advent of programmable graphics hardware, key parts of the graphics processing pipeline are 
once again under the control of software developers. To develop shaders successfully in this 
environment, developers must understand the mathematical basis of computer graphics. 



About This Book 
This book has three main parts. Chapters 1 through 8 teach the reader about the OpenGL 
Shading Language and how to use it. This part of the book covers details of the language and 
details of the OpenGL commands that create and manipulate shaders. To supply a basis for 
writing shaders, Chapters 9 through 20 contain a gallery of shader examples and some 
explanation of the underlying algorithms. This part of the book is both the baseline for a 
reader's shader development and a springboard for inspiring new ideas. Finally, Chapter 21 
compares other notable commercial shading languages, and Appendices A and B contain 
reference material for the language and the API entry points that support it. 

The chapters are arranged to suit the needs of the reader who is least familiar with OpenGL and 
shading languages. Certain chapters can be skipped by readers who are more familiar with both 
topics. This book has somewhat compartmentalized chapters in order to allow such usage. 

Chapter 1 reviews the fundamentals of the OpenGL API. Readers already familiar with 
OpenGL may skip to Chapter 2. 

Chapter 2 introduces the OpenGL Shading Language and the OpenGL entry points that 
have been added to support it. If you want to know what the OpenGL Shading Language 
is all about and you have time to read only two chapters of this book, this chapter and 
Chapter 3 are the ones to read. 

Chapter 3 thoroughly describes the OpenGL Shading Language. This material is organized 
to present the details of a programming language. This section serves as a useful 
reference section for readers who have developed a general understanding of the 
language. 

Chapter 4 discusses how the newly defined programmable parts of the rendering pipeline 
interact with each other and with OpenGL's fixed functionality. This discussion includes 
descriptions of the built-in variables defined in the OpenGL Shading Language. 

Chapter 5 describes the built-in functions that are part of the OpenGL Shading Language. 
This section is a useful reference section for readers with an understanding of the 
language. 

Chapter 6 presents and discusses a fairly simple shader example. People who learn best 
by diving in and studying a real example will benefit from the discussion in this chapter. 

Chapter 7 describes the entry points that have been added to OpenGL to support the 
creation and manipulation of shaders. Application programmers who want to use shaders 
in their application must understand this material. 

Chapter 8 presents some general advice on shader development and describes the shader 
development process. It also describes tools that are currently available to aid the shader 
development process. 

Chapter 9 begins a series of chapters that present and discuss shaders with a common 
characteristic. In this chapter, shaders that duplicate some of the fixed functionality of the 
OpenGL pipeline are presented. 

Chapter 10 presents a few shaders that are based on the capability to store data in and 
retrieve data from texture maps. 



 

Chapter 11 is devoted to shaders that are procedural in nature; that is, effects are 
computed algorithmically rather than being based on information stored in textures. 

Chapter 12 presents several alternative lighting models that can be implemented with 
OpenGL shaders. 

Chapter 13 discusses algorithms and shaders for producing shadows. 

Chapter 14 delves into the details of shaders that implement more realistic surface 
characteristics, including refraction, diffraction, and more realistic reflection. 

Chapter 15 describes noise and the effects that can be achieved with its proper use. 

Chapter 16 contains examples of how shaders can create rendering effects that vary over 
time. 

Chapter 17 contains a discussion of the aliasing problem and how shaders can be written 
to reduce the effects of aliasing. 

Chapter 18 illustrates shaders that achieve effects other than photorealism. Such effects 
include technical illustration, sketching or hatching effects, and other stylized rendering. 

Chapter 19 presents several shaders that modify images as they are being drawn with 
OpenGL. 

Chapter 20 describes some of the techniques and algorithms used in a complex OpenGL 
application that makes extensive use of the OpenGL Shading Language. 

Chapter 21 compares the OpenGL Shading Language with other notable commercial 
shading languages. 

Appendix A contains the language grammar that more clearly specifies the OpenGL 
Shading Language. 

Appendix B contains reference pages for the API entry points that are related to the 
OpenGL Shading Language. 

Finally, Glossary collects terms defined in the book, Further Reading gathers all the 
chapter references and adds more, and Index ends the book. 

  



About the Shader Examples 
The shaders contained in this book are primarily short programs that illustrate the capabilities 
of the OpenGL Shading Language. None of the example shaders should be presumed to 
illustrate the "best" way of achieving a particular effect. (Indeed, the "best" way to implement 
certain effects may have yet to be discovered through the power and flexibility of 
programmable graphics hardware.) Performance improvements for each shader are possible for 
any given hardware target. For most of the shaders, image quality may be improved if greater 
care is taken to reduce or eliminate causes of aliasing. 

The source code for these shaders is written in a way that I believe represents a reasonable 
trade-off between source code clarity, portability, and performance. Use them to learn the 
OpenGL Shading Language, and improve on them for use in your own projects. 

All the images produced for this book were done either on the first graphics accelerator to 
provide support for the OpenGL Shading Language, the 3Dlabs Wildcat VP, or its successor, the 
3Dlabs Wildcat Realizm. I have taken as much care as possible to present shaders that are 
done "the right way" for the OpenGL Shading Language rather than those with idiosyncrasies 
from their development on the very early implementations of the OpenGL Shading Language. 
Electronic versions of most of these shaders are available through a link at this book's Web site 
at http://3dshaders.com



Errata 
I know that this book contains some errors, but I've done my best to keep them to a minimum. 
If you find any errors, please report them to me (randi@3dshaders.com) and I will keep a 
running list on this book's Web site at http://3dshaders.com



Typographical Conventions 
This book contains a number of typographical conventions to enhance readability and 
understanding. 

SMALL CAPS are used for the first occurrence of defined terms. 

Italics are used for emphasis, document titles, and coordinate values such as x, y, and z. 

Bold serif is used for language keywords. 

Sans serif is used for macros and symbolic constants that appear in the text. 

Bold sans serif is used for function names. 

Italic sans serif is used for variables, parameter names, spatial dimensions, and matrix 
components. 

Fixed width is used for code examples. 
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Chapter 1. Review of OpenGL Basics 
This chapter briefly reviews the OpenGL application programming interface to lay the foundation 
for the material in subsequent chapters. It is not an exhaustive overview. If you are already 
extremely familiar with OpenGL, you can safely skip ahead to the next chapter. If you are 
familiar with another 3D graphics API, you can glean enough information here about OpenGL to 
begin using the OpenGL Shading Language for shader development. 

Unless otherwise noted, descriptions of OpenGL functionality are based on the OpenGL 2.0 
specification. 



1.1. OpenGL History 
OpenGL is an industry-standard, cross-platform APPLICATION PROGRAMMING INTERFACE (API). The 
specification for this API was finalized in 1992, and the first implementations appeared in 1993. 
It was largely compatible with a proprietary API called Iris GL (Graphics Library) that was 
designed and supported by Silicon Graphics, Inc. To establish an industry standard, Silicon 
Graphics collaborated with various other graphics hardware companies to create an open 
standard, which was dubbed "OpenGL." 

The evolution of OpenGL is controlled by the OpenGL Architecture Review Board, or ARB, 
created by Silicon Graphics in 1992. This group is governed by a set of by-laws, and its primary 
task is to guide OpenGL by controlling the specification and conformance tests. The original ARB 
contained representatives from SGI, Intel, Microsoft, Compaq, Digital Equipment Corporation, 
Evans & Sutherland, and IBM. The ARB currently has as members 3Dlabs, Apple, ATI, Dell, IBM, 
Intel, NVIDIA, SGI, and Sun Microsystems. 

OpenGL shares many of Iris GL's design characteristics. Its intention is to provide access to 
graphics hardware capabilities at the lowest possible level that still provides hardware 
independence. It is designed to be the lowestlevel interface for accessing graphics hardware. 
OpenGL has been implemented in a variety of operating environments, including Macs, PCs, and 
UNIX-based systems. It has been supported on a variety of hardware architectures, from those 
that support little in hardware other than the frame buffer itself to those that accelerate 
virtually everything in hardware. 

Since the release of the initial OpenGL specification (version 1.0) in June 1992, six revisions 
have added new functionality to the API. The current version of the OpenGL specification is 2.0. 
The first conformant implementations of OpenGL 1.0 began appearing in 1993. 

Version 1.1 was finished in 1997 and added support for two important capabilitiesvertex 
arrays and texture objects. 

The specification for OpenGL 1.2 was released in 1998 and added support for 3D textures 
and an optional set of imaging functionality. 

The OpenGL 1.3 specification was completed in 2001 and added support for cube map 
textures, compressed textures, multitextures, and other things. 

OpenGL 1.4 was completed in 2002 and added automatic mipmap generation, additional 
blending functions, internal texture formats for storing depth values for use in shadow 
computations, support for drawing multiple vertex arrays with a single command, more 
control over point rasterization, control over stencil wrapping behavior, and various 
additions to texturing capabilities. 

The OpenGL 1.5 specification was published in October 2003. It added support for vertex 
buffer objects, shadow comparison functions, occlusion queries, and nonpower-of-2 
textures. 

All versions of OpenGL through 1.5 were based on a fixed-function pipelinethe user could 
control various parameters, but the underlying functionality and order of processing were fixed. 
OpenGL 2.0, finalized in September 2004, opened up the processing pipeline for user control by 
providing programmability for both vertex processing and fragment processing as part of the 
core OpenGL specification. With this version of OpenGL, application developers have been able 
to implement their own rendering algorithms, using a high-level shading language. The addition 
of programmability to OpenGL represents a fundamental shift in its design, hence the change to 
version number 2.0 from 1.5. However, the change to the major version number does not 



 

represent any loss of compatibility with previous versions of OpenGL. OpenGL 2.0 is completely 
backward compatible with OpenGL 1.5applications that run on OpenGL 1.5 can run unmodified 
on OpenGL 2.0. Other features added in 2.0 include support for multiple render targets 
(rendering to multiple buffers simultaneously), nonpower-of-2 textures (thus easing the 
restriction that textures must always be a power of 2 in each dimension), point sprites (screen-
aligned textured quadrilaterals that are drawn with the point primitive), and separate stencil 
functionality for front- and back-facing surfaces. 

  



1.2. OpenGL Evolution 
Because of its fundamental design as a fixed function state machine, before OpenGL 2.0, the 
only way to modify OpenGL was to define extensions to it. Therefore, a great deal of 
functionality is available in various OpenGL implementations in the form of extensions that 
expose new hardware functionality. OpenGL has a well-defined extension mechanism, and 
hardware vendors are free to define and implement features that expose new hardware 
functionality. Since only OpenGL implementors can implement extensions, there was previously 
no way for applications to extend the functionality of OpenGL beyond what was provided by 
their OpenGL provider. 

To date, close to 300 extensions have been defined. Extensions that are supported by only one 
vendor are identified by a short prefix unique to that vendor (e.g., SGI for extensions 
developed by Silicon Graphics, Inc.). Extensions that are supported by more than one vendor 
are denoted by the prefix EXT in the extension name. Extensions that have been thoroughly 
reviewed by the ARB are designated with an ARB prefix in the extension name to indicate that 
they have a special status as a recommended way of exposing a certain piece of functionality. 
Extensions that achieve the ARB designation are candidates to be added to standard OpenGL. 
Published specifications for OpenGL extensions are available at the OpenGL extension registry 
at http://oss.sgi.com/projects/ogl-sample/registry. 

The extensions supported by a particular OpenGL implementation can be determined by calling 
the OpenGL glGetString function with the symbolic constant GL_EXTENSIONS. The returned 
string contains a list of all the extensions supported in the implementation, and some vendors 
currently support close to 100 separate OpenGL extensions. It can be a little bit daunting for an 
application to try and determine whether the needed extensions are present on a variety of 
implementations, and what to do if they're not. The proliferation of extensions has been 
primarily a positive factor for the development of OpenGL, but in a sense, it has become a 
victim of its own success. It allows hardware vendors to expose new features easily, but it 
presents application developers with a dizzying array of nonstandard options. Like any 
standards body, the ARB is cautious about promoting functionality from extension status to 
standard OpenGL. 

Before version 2.0 of OpenGL, none of the underlying programmability of graphics hardware 
was exposed. The original designers of OpenGL, Mark Segal and Kurt Akeley, stated, "One 
reason for this decision is that, for performance reasons, graphics hardware is usually designed 
to apply certain operations in a specific order; replacing these operations with arbitrary 
algorithms is usually infeasible." This statement may have been mostly true when it was written 
in 1994 (there were programmable graphics architectures even then). But today, all of the 
graphics hardware that is being produced is programmable. Because of the proliferation of 
OpenGL extensions and the need to support Microsoft's DirectX API, hardware vendors have no 
choice but to design programmable graphics architectures. As discussed in the remaining 
chapters of this book, providing application programmers with access to this programmability is 
the purpose of the OpenGL Shading Language. 



1.3. Execution Model 
The OpenGL API is focused on drawing graphics into frame buffer memory and, to a lesser 
extent, in reading back values stored in that frame buffer. It is somewhat unique in that its 
design includes support for drawing threedimensional geometry (such as points, lines, and 
polygons, collectively referred to as PRIMITIVES) as well as for drawing images and bitmaps. 

The execution model for OpenGL can be described as client-server. An application program (the 
client) issues OpenGL commands that are interpreted and processed by an OpenGL 
implementation (the server). The application program and the OpenGL implementation can 
execute on a single computer or on two different computers. Some OpenGL state is stored in 
the address space of the application (client state), but the majority of it is stored in the address 
space of the OpenGL implementation (server state). 

OpenGL commands are always processed in the order in which they are received by the server, 
although command completion may be delayed due to intermediate operations that cause 
OpenGL commands to be buffered. Out-of-order execution of OpenGL commands is not 
permitted. This means, for example, that a primitive will not be drawn until the previous 
primitive has been completely drawn. This in-order execution also applies to queries of state 
and frame buffer read operations. These commands return results that are consistent with 
complete execution of all previous commands. 

Data binding for OpenGL occurs when commands are issued, not when they are executed. Data 
passed to an OpenGL command is interpreted when the command is issued and copied into 
OpenGL memory if needed. Subsequent changes to this data by the application have no effect 
on the data that is now stored within OpenGL. 

  



1.4. The Frame Buffer 
OpenGL is an API for drawing graphics, and so the fundamental purpose for OpenGL is to 
transform data provided by an application into something that is visible on the display screen. 
This processing is often referred to as RENDERING. Typically, this processing is accelerated by 
specially designed hardware, but some or all operations of the OpenGL pipeline can be 
performed by a software implementation running on the CPU. It is transparent to the user of 
the OpenGL implementation how this division among the software and hardware is handled. The 
important thing is that the results of rendering conform to the results defined by the OpenGL 
specification. 

The hardware that is dedicated to drawing graphics and maintaining the contents of the display 
screen is often called the GRAPHICS ACCELERATOR. Graphics accelerators typically have a region of 
memory that is dedicated to maintaining the contents of the display. Every visible picture 
element (pixel) of the display is represented by one or more bytes of memory on the graphics 
accelerator. A grayscale display might have a byte of memory to represent the gray level at 
each pixel. A color display might have a byte of memory for each of red, green, and blue in 
order to represent the color value for each pixel. This so-called DISPLAY MEMORY is scanned 
(refreshed) a certain number of times per second in order to maintain a flicker-free 
representation on the display. Graphics accelerators also typically have a region of memory 
called OFFSCREEN MEMORY that is not displayable and is used to store things that aren't visible. 

OpenGL assumes that allocation of display memory and offscreen memory is handled by the 
window system. The window system decides which portions of memory may be accessed by 
OpenGL and how these portions are structured. In each environment in which OpenGL is 
supported, a small set of function calls tie OpenGL into that particular environment. In the 
Microsoft Windows environment, this set of routines is called WGL (pronounced "wiggle"). In the 
X Window System environment, this set of routines is called GLX. In the Macintosh 
environment, this set of routines is called AGL. In each environment, this set of calls supports 
such things as allocating and deallocating regions of graphics memory, allocating and 
deallocating data structures called GRAPHICS CONTEXTS that maintain OpenGL state, selecting the 
current graphics context, selecting the region of graphics memory in which to draw, and 
synchronizing commands between OpenGL and the window system. 

The region of graphics memory that is modified as a result of OpenGL rendering is called the 
FRAME BUFFER. In a windowing system, the OpenGL notion of a frame buffer corresponds to a 
window. Facilities in window-system-specific OpenGL routines let users select the frame buffer 
characteristics for the window. The windowing system typically also clarifies how the OpenGL 
frame buffer behaves when windows overlap. In a nonwindowed system, the OpenGL frame 
buffer corresponds to the entire display. 

A window that supports OpenGL rendering (i.e., a frame buffer) may consist of some 
combination of the following: 

Up to four color buffers 

A depth buffer 

A stencil buffer 

An accumulation buffer 

A multisample buffer 



 

One or more auxiliary buffers 

Most graphics hardware supports both a front buffer and a back buffer in order to perform 
DOUBLE BUFFERING. This allows the application to render into the (offscreen) back buffer while 
displaying the (visible) front buffer. When rendering is complete, the two buffers are swapped 
so that the completed rendering is now displayed as the front buffer and rendering can begin 
anew in the back buffer. When double buffering is used, the end user never sees the graphics 
when they are in the process of being drawn, only the finished image. This technique allows 
smooth animation at interactive rates. 

Stereo viewing is supported by having a color buffer for the left eye and one for the right eye. 
Double buffering is supported by having both a front and a back buffer. A double-buffered 
stereo window will therefore have four color buffers: front left, front right, back left, and back 
right. A normal (nonstereo) double-buffered window will have a front buffer and a back buffer. 
A single-buffered window will have only a front buffer. 

If 3D objects are to be drawn with hidden-surface removal, a DEPTH BUFFER is needed. This buffer 
stores the depth of the displayed object at each pixel. As additional objects are drawn, a depth 
comparison can be performed at each pixel to determine whether the new object is visible or 
obscured. 

A STENCIL BUFFER is used for complex masking operations. A complex shape can be stored in the 
stencil buffer, and subsequent drawing operations can use the contents of the stencil buffer to 
determine whether to update each pixel. 

The ACCUMULATION BUFFER is a color buffer that typically has higherprecision components than the 
color buffers. Several images can thus be accumulated to produce a composite image. One use 
of this capability would be to draw several frames of an object in motion into the accumulation 
buffer. When each pixel of the accumulation buffer is divided by the number of frames, the 
result is a final image that shows motion blur for the moving objects. Similar techniques can be 
used to simulate depth-of-field effects and to perform high-quality full-screen antialiasing. 

Normally, when objects are drawn, a single decision is made as to whether the graphics 
primitive affects a pixel on the screen. The MULTISAMPLE BUFFER is a buffer that allows everything 
that is rendered to be sampled multiple times within each pixel in order to perform high-quality 
full-screen antialiasing without rendering the scene more than once. Each sample within a pixel 
contains color, depth, and stencil information, and the number of samples per pixel can be 
queried. When a window includes a multisample buffer, it does not include separate depth or 
stencil buffers. As objects are rendered, the color samples are combined to produce a single 
color value, and that color value is passed on to be written into the color buffer. Because 
multisample buffers contain multiple samples (often 4, 8, or 16) of color, depth, and stencil for 
every pixel in the window, they can use up large amounts of offscreen graphics memory. 

AUXILIARY BUFFERS are offscreen memory buffers that can store arbitrary data such as 
intermediate results from a multipass rendering algorithm. A frame buffer may have 1, 2, 3, 4, 
or even more associated auxiliary buffers. 



1.5. State 
OpenGL was designed as a state machine for updating the contents of a frame buffer. The 
process of turning geometric primitives, images, and bitmaps into pixels on the screen is 
controlled by a fairly large number of state settings. These state settings are orthogonal to one 
anothersetting one piece of state does not affect the others. Cumulatively, the state settings 
define the behavior of the OpenGL rendering pipeline and the way in which primitives are 
transformed into pixels on the display device. 

OpenGL state is collected into a data structure called a graphics context. Window-system-
specific functions create and delete graphics contexts. Another window-system-specific call 
designates a graphics context and an OpenGL frame buffer that are used as the targets for 
subsequent OpenGL commands. 

Quite a few server-side state values in OpenGL have just two states: on or off. To turn a mode 
on, you must pass the appropriate symbolic constant to the OpenGL command glEnable. To turn 
a mode off, you pass the symbolic constant to glDisable. You enable client-side state (such as 
pointers that define vertex arrays) with glEnableClientState and disable it with glDisableClientState. 

OpenGL maintains a server-side stack for pushing and popping any or all of the defined state 
values. This stack can be manipulated with glPushAttrib and glPopAttrib. Similarly, client state can 
be manipulated on a second stack with glPushClientAttrib and glPopClientAttrib. 

glGet is a generic function that can query many of the components of a graphics context. 
Symbolic constants are defined for simple state items (e.g., GL_CURRENT_COLOR and 
GL_LINE_WIDTH), and these values can be passed as arguments to glGet to retrieve the current 
value of the indicated component of a graphics context. Variants of glGet return the state value 
as an integer, float, double, or boolean. More complex state values are returned by "get" 
functions that are specific to that state value, for instance, glGetClipPlane, glGetLight, and 
glGetMaterial. Error conditions can be detected with the glGetError function. 

  



1.6. Processing Pipeline 
For specifying the behavior of OpenGL, the various operations are defined to be applied in a 
particular order, so we can also think of OpenGL as a GRAPHICS PROCESSING PIPELINE. 

Let's start by looking at a block diagram of how OpenGL was defined up through OpenGL 1.5. 
Figure 1.1 is a diagram of the so-called FIXED FUNCTIONALITY of OpenGL. This diagram shows the 
fundamentals of how OpenGL has worked since its inception and is a simplified representation 
of how OpenGL still works. It shows the main features of the OpenGL pipeline for the purposes 
of this overview. Some new features were added to OpenGL in versions 1.1 through 1.5, but 
the basic architecture of OpenGL remained unchanged until OpenGL 2.0. We use the term fixed 
functionality because every OpenGL implementation is required to have the same functionality 
and a result that is consistent with the OpenGL specification for a given set of inputs. Both the 
set of operations and the order in which they occur are defined (fixed) by the OpenGL 
specification. 

Figure 1.1. Overview of OpenGL operation 

[View full size image] 

 

 
It is important to note that OpenGL implementations are not required to match precisely the 
order of operations shown in Figure 1.1. Implementations are free to modify the order of 
operations as long as the rendering results are consistent with the OpenGL specification. Many 
innovative software and hardware architectures have been designed to implement OpenGL, and 
most block diagrams of those implementations look nothing like Figure 1.1. However, the 
diagram does ground our discussion of the way the rendering process appears to work in 
OpenGL, even if the underlying implementation does things a bit differently. 



1.7. Drawing Geometry 
As you can see from Figure 1.1, data for drawing geometry (points, lines, and polygons) starts 
off in application-controlled memory (1). This memory may be on the host CPU, or, with the 
help of some recent additions to OpenGL or under-the-covers data caching by the OpenGL 
implementation, it may actually reside in video memory on the graphics accelerator. Either way, 
the fact is that it is memory that contains geometry data that the application can cause to be 
drawn. 

1.7.1. Geometry Specification 

The geometric primitives supported in OpenGL are points, lines, line strips, line loops, polygons, 
triangles, triangle strips, triangle fans, quadrilaterals, and quadrilateral strips. There are three 
main ways to send geometry data to OpenGL. The first is the vertex-at-a-time method, which 
calls glBegin to start a primitive and calls glEnd to end it. In between are commands that set 
specific VERTEX ATTRIBUTES such as vertex position, color, normal, texture coordinates, secondary 
color, edge flags, and fog coordinates, using calls such as glVertex, glColor, glNormal, and 
glTexCoord. (A number of variants of these function calls allow the application to pass these 
values with various data types as well as to pass them by value or by reference.) Up through 
version 1.5 of OpenGL, there was no way to send arbitrary (user-defined) pervertex data. The 
only per-vertex attributes allowed were those specifically defined in the OpenGL specification. 
OpenGL 2.0 added a method for sending arbitrary per-vertex data; that method is described in 
Section 7.7 "Specifying Vertex Attributes." 

When the vertex-at-a-time method is used, the call to glVertex signals the end of the data 
definition for a single vertex, and it may also define the completion of a primitive. After glBegin is 
called and a primitive type is specified, a graphics primitive is completed whenever glVertex is 
called enough times to completely specify a primitive of the indicated type. For independent 
triangles, a triangle is completed every third time glVertex is called. For triangle strips, a triangle 
is completed when glVertex is called for the third time, and an additional connecting triangle is 
completed for each subsequent call to glVertex. 

The second method of drawing primitives is to use vertex arrays. With this method, applications 
store vertex attributes in user-defined arrays, set up pointers to the arrays, and use 
glDrawArrays, glMultiDrawArrays, glDrawElements, glMultiDrawElements, glDrawRangeElements, or 
glInterleavedArrays to draw a large number of primitives at once. Because these entry points can 
efficiently pass large amounts of geometry data to OpenGL, application developers are 
encouraged to use them for portions of code that are extremely performance critical. Using 
glBegin and glEnd requires a function call to specify each attribute of each vertex, so the function 
call overhead can become substantial when objects with thousands of vertices are drawn. In 
contrast, vertex arrays can be used to draw a large number of primitives with a single function 
call after the vertex data is organized into arrays. Processing the array data in this fashion can 
be faster because it is often more efficient for the OpenGL implementation to deal with data 
organized in this way. The current array of color values is specified with glColorPointer, the 
current array of vertex positions is specified with glVertexPointer, the current array of normal 
vectors is specified with glNormalPointer, and so on. The function glInterleavedArrays can specify and 
enable several interleaved arrays simultaneously (e.g., each vertex might be defined with three 
floating-point values representing a normal followed by three floating-point values representing 
a vertex position.) 

The preceding two methods are referred to as drawing in IMMEDIATE MODE because primitives are 
rendered as soon as they have been specified. The third method involves storing either the 
vertex-at-a-time function calls or the vertex array calls in a DISPLAY LIST, an OpenGL-managed 
data structure that stores commands for later execution. Display lists can include commands to 
set state as well as commands to draw geometry. Display lists are stored on the server side and 
can be processed later with glCallList or glCallLists. This is not illustrated in Figure 1.1, but it is 



another way that data can be provided to the OpenGL processing pipeline. The definition of a 
display list is initiated with glNewList, and display list definition is completed with glEndList. All the 
commands issued between those two calls become part of the display list, although certain 
OpenGL commands are not allowed within display lists. Depending on the implementation, 
DISPLAY LIST MODE can provide a performance advantage over immediate mode. Storing 
commands in a display list gives the OpenGL implementation an opportunity to optimize the 
commands in the display list for the underlying hardware. It also gives the implementation the 
chance to store the commands in a location that enables better drawing performance, perhaps 
even in memory on the graphics accelerator. Of course, some extra computation or data 
movement is usually required to implement these optimizations, so applications will typically 
see a performance benefit only if the display list is executed more than once. 

New API calls in version 1.5 of OpenGL permitted vertex array data to be stored in server-side 
memory. This mechanism typically provides the highest performance rendering because the 
data can be stored in memory on the graphics accelerator and need not be transferred over the 
I/O bus each time it is rendered. The API also supports the concept of efficiently streaming data 
from client to server. The glBindBuffer command creates a buffer object, and glBufferData and 
glBufferSubData specify the data values in such a buffer. glMapBuffer can map a buffer object into 
the client's address space and obtain a pointer to this memory so that data values can be 
specified directly. The command glUnmapBuffer must be called before the values in the buffer are 
accessed by subsequent GL rendering commands. glBindBuffer can also make a particular buffer 
object part of current state. If buffer object 0 is bound when calls are made to vertex array 
pointer commands such as glColorPointer, glNormalPointer, glVertexPointer, and so on, the pointer 
parameter to these calls is understood to be a pointer to client-side memory. When a buffer 
object other than 0 is bound, the pointer parameter is understood to be an offset into the 
currently bound buffer object. Subsequent calls to one of the vertex array drawing commands 
(e.g., glMultiDrawArrays) can thus obtain their vertex data from either client- or server-side 
memory or a combination thereof. 

OpenGL supports the rendering of curves and surfaces with evaluators. Evaluators use a 
polynomial mapping to produce vertex attributes such as color, normal, and position that are 
sent to the vertex processing stage just as if they had been provided by the client. See the 
OpenGL specification for a complete description of this functionality. 

1.7.2. Per-Vertex Operations 

No matter which of these methods is used, the net result is that geometry data is transferred 
into the first stage of processing in OpenGL, VERTEX PROCESSING (2). At this point, vertex positions 
are transformed by the modelview and projection matrices, normals are transformed by the 
inverse transpose of the upper leftmost 3 x 3 matrix taken from the modelview matrix, texture 
coordinates are transformed by the texture matrices, lighting calculations are applied to modify 
the base color, texture coordinates may be automatically generated, color material state is 
applied, and point sizes are computed. All of these things are rigidly defined by the OpenGL 
specification. They are performed in a specific order, according to specific formulas, with 
specific items of OpenGL state controlling the process. 

Because the most important things that occur in this stage are transformation and lighting, the 
vertex processing stage is sometimes called TRANSFORMATION AND LIGHTING, or, more familiarly, 
T&L. There is no application control to this process other than modifying OpenGL state values: 
turning lighting on or off with glEnable/glDisable; changing lighting attributes with glLight and 
glLightModel; changing material properties with glMaterial; or modifying the modelview matrix by 
calling matrix manipulation functions such as glMatrixMode, glLoadMatrix, glMultMatrix, glRotate, 
glScale, glTranslate. At this stage of processing, each vertex is treated independently. The vertex 
position computed by the transformation stage is used in subsequent clipping operations. The 
transformation process is discussed in detail in Section 1.9. 

Lighting effects in OpenGL are controlled by manipulation of the attributes of one or more of the 
simulated light sources defined in OpenGL. The number of light sources supported by an 
OpenGL implementation is specifically limited to GL_MAX_LIGHTS. This value can be queried 



with glGet and must be at least 8. Each simulated light source in OpenGL has attributes that 
cause it to behave as a directional light source, a point light source, or a spotlight. Light 
attributes that can be adjusted by an application include the color of the emitted light, defined 
as ambient, diffuse, and specular RGBA intensity values; the light source position; attenuation 
factors that define how rapidly the intensity drops off as a function of distance; and direction, 
exponent, and cutoff factors for spotlights. These attributes can be modified for any light with 
glLight. Individual lights can be turned on or off by a call to glEnable/glDisable with a symbolic 
constant that specifies the affected light source. 

Lighting produces a primary and secondary color for each vertex. The entire process of lighting 
can be turned on or off by a call to glEnable/glDisable with the symbolic constant GL_LIGHTING. If 
lighting is disabled, the values of the primary and secondary color are taken from the last color 
value set with the glColor command and the last secondary color set with the glSecondaryColor 
command. 

The effects from enabled light sources are used in conjunction with surface material properties 
to determine the lit color at a particular vertex. Materials are characterized by the color of light 
they emit; the color of ambient, diffuse, and specular light they reflect; and their shininess. 
Material properties can be defined separately for front-facing surfaces and for back-facing 
surfaces and are specified with glMaterial. 

Global lighting parameters are controlled with glLightModel. You can use this function to 

Set the value used as the global ambient lighting value for the entire scene. 

Specify whether the lighting calculations assume a local viewer or one positioned at 
infinity. (This affects the computation of specular reflection angles.) 

Indicate whether one- or two-sided lighting calculations are performed on polygons. (If 
one-sided, only front material properties are used in lighting calculations. Otherwise, 
normals are reversed on back-facing polygons and back material properties are used to 
perform the lighting computation.) 

Specify whether a separate specular color component is computed. (This specular 
component is later added to the result of the texturing stage to provide specular 
highlights.) 

1.7.3. Primitive Assembly 

After vertex processing, all the attributes associated with each vertex are completely 
determined. The vertex data is then sent on to a stage called PRIMITIVE ASSEMBLY (3). At this point 
the vertex data is collected into complete primitives. Points require a single vertex, lines require 
two, triangles require three, quadrilaterals require four, and general polygons can have an 
arbitrary number of vertices. For the vertex-at-a-time API, an argument to glBegin specifies the 
primitive type; for vertex arrays, the primitive type is passed as an argument to the function 
that draws the vertex array. The primitive assembly stage effectively collects enough vertices to 
construct a single primitive, and then this primitive is passed on to the next stage of 
processing. The reason this stage is needed is that at the very next stage, operations are 
performed on a set of vertices, and the operations depend on the type of primitive. In 
particular, clipping is done differently, depending on whether the primitive is a point, line, or 
polygon. 

1.7.4. Primitive Processing 

The next stage of processing (4), actually consists of several distinct steps that have been 
combined into a single box in Figure 1.1 just to simplify the diagram. The first step that occurs 
is clipping. This operation compares each primitive to any user-defined clipping planes set by 



calling glClipPlane as well as to the VIEW VOLUME established by the MODELVIEW-PROJECT MATRIX, which 
is the concatenation of the modelview and projection matrices. If the primitive is completely 
within the view volume and the user-defined clipping planes, it is passed on for subsequent 
processing. If it is completely outside the view volume or the user-defined clipping planes, the 
primitive is rejected, and no further processing is required. If the primitive is partially in and 
partially out, it is divided (CLIPPED) in such a way that only the portion within the clip volume and 
the user-defined clipping planes is passed on for further processing. 

Another operation that occurs at this stage is perspective projection. If the current view is a 
perspective view, each vertex has its x, y, and z components divided by its homogeneous 
coordinate w. Following this, each vertex is transformed by the current viewport transformation 
(set with glDepthRange and glViewport) to generate window coordinates. Certain OpenGL states 
can be set to cause an operation called CULLING to be performed on polygon primitives at this 
stage. With the computed window coordinates, each polygon primitive is tested to see whether 
it is facing away from the current viewing position. The culling state can be enabled with 
glEnable, and glCullFace can be called to specify that back-facing polygons will be discarded 
(culled), front-facing polygons will be discarded, or both will be discarded. 

1.7.5. Rasterization 

Geometric primitives that are passed through the OpenGL pipeline contain a set of data at each 
of the vertices of the primitive. At the next stage (5), primitives (points, lines, or polygons) are 
decomposed into smaller units corresponding to pixels in the destination frame buffer. This 
process is called RASTERIZATION. Each of these smaller units generated by rasterization is referred 
to as a FRAGMENT. For instance, a line might cover five pixels on the screen, and the process of 
rasterization converts the line (defined by two vertices) into five fragments. A fragment 
comprises a window coordinate and depth and other associated attributes such as color, texture 
coordinates, and so on. The values for each of these attributes are determined by interpolation 
between the values specified (or computed) at the vertices of the primitive. At the time they 
are rasterized, vertices have a primary color and a secondary color. The glShadeModel function 
specifies whether these color values are interpolated between the vertices (SMOOTH SHADING) or 
whether the color values for the last vertex of the primitive are used for the entire primitive 
(FLAT SHADING). 

Each type of primitive has different rasterization rules and different OpenGL state. Points have a 
width controlled by glPointSize and other rendering attributes that are defined by glPointParameter. 
OpenGL 2.0 added the ability to draw an arbitrary shape at each point position by means of a 
texture called a POINT SPRITE. Lines have a width that is controlled with glLineWidth and a stipple 
pattern that is set with glLineStipple. Polygons have a stipple pattern that is set with 
glPolygonStipple. Polygons can be drawn as filled, outline, or vertex points depending only on the 
value set with glPolygonMode. The depth values for each fragment in a polygon can be modified 
by a value that is computed with the state set with glPolygonOffset. The orientation of polygons 
that are to be considered front facing can be set with glFrontFace. The process of smoothing the 
jagged appearance of a primitive is called ANTIALIASING. Primitive antialiasing can be enabled with 
glEnable and the appropriate symbolic constant: GL_POINT_SMOOTH, GL_LINE_SMOOTH, or 
GL_POLYGON_SMOOTH. 

1.7.6. Fragment Processing 

After fragments have been generated by rasterization, a number of operations occur on 
fragments. Collectively, these operations are called FRAGMENT PROCESSING (6). Perhaps the most 
important operation that occurs at this point is called TEXTURE MAPPING. In this operation, the 
texture coordinates associated with the fragment are used to access a region of graphics 
memory called TEXTURE MEMORY (7). OpenGL defines a lot of state values that affect how textures 
are accessed as well as how the retrieved values are applied to the current fragment. Many 
extensions have been defined to this area that is rather complex to begin with. We spend some 
time talking about texturing operations in Section 1.10. 



Other operations that occur at this point are FOG (modifying the color of the fragment depending 
on its distance from the view point) and COLOR SUM (combining the values of the fragment's 
primary color and secondary color). Fog parameters are set with glFog, and secondary colors are 
vertex attributes that can be passed in with the vertex attribute command glSecondaryColor or 
that can be computed by the lighting stage. 

1.7.7. Per-Fragment Operations 

After fragment processing, fragments are submitted to a set of fairly simple operations called 
PER-FRAGMENT OPERATIONS (8). These include tests like the following: 

PIXEL OWNERSHIP TEST Determines whether the destination pixel is visible or obscured by an 
overlapping window 

SCISSOR TEST Clips fragments against a rectangular region set with glScissor 

ALPHA TEST Decides whether to discard the fragment on the basis of the fragment's ALPHA 
value and the function set with glAlphaFunc 

STENCIL TEST Compares the value in the stencil buffer with a reference value, using a 
comparison set with glStencilFunc and glStencilOp, by which it decides the fate of the 
fragment 

DEPTH TEST Uses the function established with glDepthFunc to compare the depth of the 
incoming fragment to the depth stored in the frame buffer 

Blending, dithering, and logical operations are also considered per-fragment operations. The 
blending operation calculates the color to be written into the frame buffer using a blend of the 
fragment's color, the color stored in the frame buffer, and the blending state as established by 
glBlendFunc, glBlendColor, and glBlendEquation. Dithering is a method of trading spatial resolution for 
color resolution, but today's graphics accelerators contain enough frame buffer memory to 
make this trade-off unnecessary. The final fragment value is written into the frame buffer with 
the logical operation set by glLogicOp. 

Each of the per-fragment operations is conceptually simple and nowadays can be implemented 
efficiently and inexpensively in hardware. Some of these operations also involve reading values 
from the frame buffer (i.e., color, depth, or stencil). With today's hardware, all these back-end 
rendering operations can be performed at millions of pixels per second, even those that require 
reading from the frame buffer. 

1.7.8. Frame Buffer Operations 

Things that control or affect the whole frame buffer are called FRAME BUFFER OPERATIONS (9). 
Certain OpenGL state controls the region of the frame buffer into which primitives are drawn. 
OpenGL supports display of stereo images as well as double buffering, so a number of choices 
are available for the rendering destination. Regions of the frame buffer are called BUFFERS and 
are referred to as the front, back, left, right, front left, front right, back left, back right, front 
and back, and aux0, aux1, and so on up to the number of auxiliary buffers supported minus 1. 
Any of these buffers can be set as the destination for subsequent rendering operations with 
glDrawBuffer. Multiple buffers can be established as the destination for rendering with 
glDrawBuffers. Regions within the draw buffer(s) can be write protected. The glColorMask function 
determines whether writing is allowed to the red, green, blue, or alpha components of the 
destination buffer. The glDepthMask function determines whether the depth components of the 
destination buffer can be modified. The glStencilMask function controls the writing of particular 
bits in the stencil components of the destination buffer. Values in the frame buffer can be 
initialized with glClear. Values that will be used to initialize the color components, depth 
components, stencil components, and accumulation buffer components are set with glClearColor, 



 

glClearDepth, glClearStencil, and glClearAccum, respectively. The accumulation buffer operation can 
be specified with glAccum. 

For performance, OpenGL implementations often employ a variety of buffering schemes in order 
to send larger batches of graphics primitives to the 3D graphics hardware. To make sure that all 
graphics primitives for a specific rendering context are progressing toward completion, an 
application should call glFlush. To make sure that all graphics primitives for a particular 
rendering context have finished rendering, an application should call glFinish. This command 
blocks until the effects of all previous commands have been completed. Blocking can be costly 
in terms of performance, so glFinish should be used sparingly. 

The overall effect of these stages is that graphics primitives defined by the application are 
converted into pixels in the frame buffer for subsequent display. But so far, we have discussed 
only geometric primitives such as points, lines, and polygons. OpenGL also renders bitmap and 
image data. 

  



1.8. Drawing Images 
As mentioned previously, OpenGL has a great deal of support for drawing images in addition to 
its support for drawing 3D geometry. In OpenGL parlance, images are called PIXEL RECTANGLES. 
The values that define a pixel rectangle start out in application-controlled memory as shown in 
Figure 1.1 (11). Color or grayscale pixel rectangles are rendered into the frame buffer with 
glDrawPixels, and bitmaps are rendered into the frame buffer with glBitmap. Images that are 
destined for texture memory are specified with glTexImage or glTexSubImage. Up to a point, the 
same basic processing is applied to the image data supplied with each of these commands. 

1.8.1. Pixel Unpacking 

OpenGL reads image data provided by the application in a variety of formats. Parameters that 
define how the image data is stored in memory (length of each pixel row, number of rows to 
skip before the first one, number of pixels to skip before the first one in each row, etc.) can be 
specified with glPixelStore. So that operations on pixel data can be defined more precisely, pixels 
read from application memory are converted into a coherent stream of pixels by an operation 
referred to as PIXEL UNPACKING (12). When a pixel rectangle is transferred to OpenGL by a call like 
glDrawPixels, this operation applies the current set of pixel unpacking parameters to determine 
how the image data should be read and interpreted. As each pixel is read from memory, it is 
converted to a PIXEL GROUP that contains either a color, a depth, or a stencil value. If the pixel 
group consists of a color, the image data is destined for the color buffer in the frame buffer. If 
the pixel group consists of a depth value, the image data is destined for the depth buffer. If the 
pixel group consists of a stencil value, the image data is destined for the stencil buffer. Color 
values are made up of a red, a green, a blue, and an alpha component (i.e., RGBA) and are 
constructed from the input image data according to a set of rules defined by OpenGL. The result 
is a stream of RGBA values that are sent to OpenGL for further processing. 

1.8.2. Pixel Transfer 

After a coherent stream of image pixels is created, pixel rectangles undergo a series of 
operations called PIXEL TRANSFER (13). These operations are applied whenever pixel rectangles are 
transferred from the application to OpenGL (glDrawPixels, glTexImage, glTexSubImage), from OpenGL 
back to the application (glReadPixels), or when they are copied within OpenGL (glCopyPixels, 
glCopyTexImage, glCopyTexSubImage). 

The behavior of the pixel transfer stage is modified with glPixelTransfer. This command sets state 
that controls whether red, green, blue, alpha, and depth values are scaled and biased. It can 
also set state that determines whether incoming color or stencil values are mapped to different 
color or stencil values through the use of a lookup table. The lookup tables used for these 
operations are specified with the glPixelMap command. 

Some additional operations that occur at this stage are part of the OpenGL IMAGING SUBSET, which 
is an optional part of OpenGL. Hardware vendors that find it important to support advanced 
imaging capabilities will support the imaging subset in their OpenGL implementations, and other 
vendors will not support it. To determine whether the imaging subset is supported, applications 
need to call glGetString with the symbolic constant GL_EXTENSIONS. This returns a list of 
extensions supported by the implementation; the application should check for the presence of 
the string "ARB_imaging" within the returned extension string. 

The pixel transfer operations that are defined to be part of the imaging subset are convolution, 
color matrix, histogram, min/max, and additional color lookup tables. Together, they provide 
powerful image processing and color correction operations on image data as it is being 
transferred to, from, or within OpenGL. 



 

1.8.3. Rasterization and Back-End Processing 

Following the pixel transfer stage, fragments are generated through rasterization of pixel 
rectangles in much the same way as they are generated from 3D geometry (14). This process, 
along with the current OpenGL state, determines where the image will be drawn in the frame 
buffer. Rasterization takes into account the current RASTER POSITION, which can be set with 
glRasterPos or glWindowPos, and the current zoom factor, which can be set with glPixelZoom and 
which causes an image to be magnified or reduced in size as it is drawn. 

After fragments have been generated from pixel rectangles, they undergo the same set of 
fragment processing operations as geometric primitives (6) and then go on to the remainder of 
the OpenGL pipeline in exactly the same manner as geometric primitives, all the way until 
pixels are deposited in the frame buffer (8, 9, 10). 

Pixel values provided through a call to glTexImage or glTexSubImage do not go through rasterization 
or the subsequent fragment processing but directly update the appropriate portion of texture 
memory (15). 

1.8.4. Read Control 

Pixel rectangles are read from the frame buffer and returned to application memory with 
glReadPixels. They can also be read from the frame buffer and written to another portion of the 
frame buffer with glCopyPixels, or they can be read from the frame buffer and written into texture 
memory with glCopyTexImage or glCopyTexSubImage. In all of these cases, the portion of the frame 
buffer that is to be read is controlled by the READ CONTROL stage of OpenGL and set with the 
glReadBuffer command (16). 

The values read from the frame buffer are sent through the pixel transfer stage (13) in which 
various image processing operations can be performed. For copy operations, the resulting pixels 
are sent to texture memory or back into the frame buffer, depending on the command that 
initiated the transfer. For read operations, the pixels are formatted for storage in application 
memory under the control of the PIXEL PACKING stage (17). This stage is the mirror of the pixel 
unpacking stage (12), in that parameters that define how the image data is to be stored in 
memory (length of each pixel row, number of rows to skip before the first one, number of pixels 
to skip before the first one in each row, etc.) can be specified with glPixelStore. Thus, application 
developers enjoy a lot of flexibility in determining how the image data is returned from OpenGL 
into application memory. 



1.9. Coordinate Transforms 
The purpose of the OpenGL graphics processing pipeline is to convert threedimensional 
descriptions of objects into a two-dimensional image that can be displayed. In many ways, this 
process is similar to using a camera to convert a real-world scene into a two-dimensional print. 
To accomplish the transformation from three dimensions to two, OpenGL defines several 
coordinate spaces and transformations between those spaces. Each coordinate space has some 
properties that make it useful for some part of the rendering process. The transformations 
defined by OpenGL afford applications a great deal of flexibility in defining the 3D-to-2D 
mapping. For success at writing shaders in the OpenGL Shading Language, understanding the 
various transformations and coordinate spaces used by OpenGL is essential. 

In computer graphics, MODELING is the process of defining a numerical representation of an 
object that is to be rendered. For OpenGL, this usually means creating a polygonal 
representation of an object so that it can be drawn with the polygon primitives built into 
OpenGL. At a minimum, a polygonal representation of an object needs to include the 
coordinates of each vertex in each polygon and the connectivity information that defines the 
polygons. Additional data might include the color of each vertex, the surface normal at each 
vertex, one or more texture coordinates at each vertex, and so on. 

In the past, modeling an object was a painstaking effort, requiring precise physical 
measurement and data entry. (This is one of the reasons the Utah teapot, modeled by Martin 
Newell in 1975, has been used in so many graphics images. It is an interesting object, and the 
numerical data is freely available. Several of the shaders presented in this book are illustrated 
with this object; see, for example, Color Plate 24.) More recently, a variety of modeling tools 
have become available, both hardware and software, and this has made it relatively easy to 
create numerical representations of threedimensional objects that are to be rendered. 

Three-dimensional object attributes, such as vertex positions and surface normals, are defined 
in OBJECT SPACE. This coordinate space is one that is convenient for describing the object that is 
being modeled. Coordinates are specified in units that are convenient to that particular object. 
Microscopic objects may be modeled in units of angstroms, everyday objects may be modeled 
in inches or centimeters, buildings might be modeled in feet or meters, planets could be 
modeled in miles or kilometers, and galaxies might be modeled in light years or parsecs. The 
origin of this coordinate system (i.e., the point (0, 0, 0)) is also something that is convenient 
for the object being modeled. For some objects, the origin might be placed at one corner of the 
object's three-dimensional bounding box. For other objects, it might be more convenient to 
define the origin at the centroid of the object. Because of its intimate connection with the task 
of modeling, this coordinate space is also often referred to as MODEL SPACE or the MODELING 

COORDINATE SYSTEM. Coordinates are referred to equivalently as object coordinates or modeling 
coordinates. 

To compose a scene that contains a variety of three-dimensional objects, each of which might 
be defined in its own unique object space, we need a common coordinate system. This common 
coordinate system is called WORLD SPACE or the WORLD COORDINATE SYSTEM, and it provides a 
common frame of reference for all objects in the scene. Once all the objects in the scene are 
transformed into a single coordinate system, the spatial relationships between all the objects, 
the light sources, and the viewer are known. The units of this coordinate system are chosen in a 
way that is convenient for describing a scene. You might choose feet or meters if you are 
composing a scene that represents one of the rooms in your house, but you might choose city 
blocks as your units if you are composing a scene that represents a city skyline. The choice for 
the origin of this coordinate system is also arbitrary. You might define a three-dimensional 
bounding box for your scene and set the origin at the corner of the bounding box such that all 
of the other coordinates of the bounding box have positive values. Or you may want to pick an 
important point in your scene (the corner of a building, the location of a key character, etc.) 
and make that the origin. 



After world space is defined, all the objects in the scene must be transformed from their own 
unique object coordinates into world coordinates. The transformation that takes coordinates 
from object space to world space is called the MODELING TRANSFORMATION. If the object's modeling 
coordinates are in feet but the world coordinate system is defined in terms of inches, the object 
coordinates must be scaled by a factor of 12 to produce world coordinates. If the object is 
defined to be facing forward but in the scene it needs to be facing backwards, a rotation must 
be applied to the object coordinates. A translation is also typically required to position the 
object at its desired location in world coordinates. All of these individual transformations can be 
put together into a single matrix, the MODEL TRANSFORMATION MATRIX, that represents the 
transformation from object coordinates to world coordinates. 

After the scene has been composed, the viewing parameters must be specified. One aspect of 
the view is the vantage point (i.e., the eye or camera position) from which the scene will be 
viewed. Viewing parameters also include the focus point (also called the lookat point or the 
direction in which the camera is pointed) and the up direction (e.g., the camera may be held 
sideways or upside down). 

The viewing parameters collectively define the VIEWING TRANSFORMATION, and they can be 
combined into a matrix called the VIEWING MATRIX. A coordinate multiplied by this matrix is 
transformed from world space into EYE SPACE, also called the EYE COORDINATE SYSTEM. By definition, 
the origin of this coordinate system is at the viewing (or eye) position. Coordinates in this space 
are called eye coordinates. The spatial relationships in the scene remain unchanged, but 
orienting the coordinate system in this way makes it easy to determine the distance from the 
viewpoint to various objects in the scene. 

Although some 3D graphics APIs allow applications to separately specify the modeling matrix 
and the viewing matrix, OpenGL combines them into a single matrix called the MODELVIEW MATRIX. 
This matrix is defined to transform coordinates from object space into eye space (see Figure 
1.2). 

Figure 1.2. Coordinate spaces and transforms in OpenGL 



 

 
You can manipulate a number of matrices in OpenGL. Call the glMatrixMode function to select the 
modelview matrix or one of OpenGL's other matrices. Load the current matrix with the identity 
matrix by calling glLoadIdentity, or replace it with an arbitrary matrix by calling glLoadMatrix. Be 
sure you know what you're doing if you specify an arbitrary matrixthe transformation might 
give you a completely incomprehensible image! You can also multiply the current matrix by an 
arbitrary matrix by calling glMultMatrix. 

Applications often start by setting the current modelview matrix to the view matrix and then 
add on the necessary modeling matrices. You can set the modelview matrix to a reasonable 
viewing transformation with the gluLookAt function. (This function is not part of OpenGL proper 
but is part of the OpenGL utility library that is provided with every OpenGL implementation.) 
OpenGL actually supports a stack of modelview matrices, and you can duplicate the topmost 
matrix and copy it onto the top of the stack with glPushMatrix. When this is done, you can 
concatenate other transformations to the topmost matrix with the functions glScale, glTranslate, 
and glRotate to define the modeling transformation for a particular threedimensional object in the 
scene. Then, pop this topmost matrix off the stack with glPopMatrix to get back to the original 
view transformation matrix. Repeat the process for each object in the scene. 

At the time light source positions are specified with the glLight function, they are transformed by 
the current modelview matrix. Therefore, light positions are stored within OpenGL as eye 
coordinates. You must set up the modelview matrix to perform the proper transformation 
before light positions are specified or you won't get the lighting effects that you expect. The 
lighting calculations that occur in OpenGL are defined to happen on a per-vertex basis in the 
eye coordinate system. For the necessary reflection computations, light positions and surface 
normals must be in the same coordinate system. OpenGL implementations often choose to do 
lighting calculations in eye space; therefore, the incoming surface normals have to be 
transformed into eye space as well. You accomplish this by transforming surface normals by the 
inverse transpose of the upper leftmost 3 x 3 matrix taken from the modelview matrix. At that
 point, you can apply the pervertex lighting formulas defined by OpenGL to determine the lit 
color at each vertex. 

After coordinates have been transformed into eye space, the next thing is to define a viewing 
volume. This is the region of the three-dimensional scene that is visible in the final image. The 
transformation that takes the objects in the viewing volume into CLIP SPACE (also known as the 
CLIPPING COORDINATE SYSTEM, a coordinate space that is suitable for clipping) is called the PROJECTION 

TRANSFORMATION. In OpenGL, you establish the projection transformation by calling glMatrixMode to 
select the projection matrix and then setting this matrix appropriately. Parameters that may go 
into creating an appropriate projection matrix are the field of view (how much of the scene is 
visible), the aspect ratio (the horizontal field of view may differ from the vertical field of view), 
and near and far clipping planes to eliminate things that are too far away or too close (for 
perspective projections, weirdness will occur if you try to draw things that are at or behind the 
viewing position). Three utility functions set the projection matrix: glOrtho, glFrustum, and 
gluPerspective. The difference between these functions is that glOrtho defines a parallel projection 
(i.e., parallel lines in the scene are projected to parallel lines in the final two-dimensional 
image), whereas glFrustum and gluPerspective define perspective projections (i.e., parallel lines in 
the scene are foreshortened to produce a vanishing point in the image, such as railroad tracks 
converging to a point in the distance). 



FRUSTUM CLIPPING is the process of eliminating any graphics primitives that lie outside an axis-
aligned cube in clip space. This cube is defined such that the x, y, and z components of the clip 
space coordinate are less than or equal to the w component for the coordinate, and greater 
than or equal to -w (i.e., -w  x  w, -w  y  w, and -w  z  w). Graphics primitives (or 
portions thereof) that lie outside this cube are discarded. Frustum clipping is always performed 
on all incoming primitives in OpenGL. USER CLIPPING, on the other hand, is a feature that can be 
enabled or disabled by the application. Applications can call glClipPlane to specify one or more 
clipping planes that further restrict the size of the viewing volume, and each clipping plane can 
be individually enabled with glEnable. At the time user clipping planes are specified, OpenGL 
transforms them into eye space using the inverse of the current modelview matrix. Each plane 
specified in this manner defines a half-space, and only the portions of primitives that lie within 
the intersection of the view volume and all of the enabled half-spaces defined by user clipping 
planes are drawn. 

The next step in the transformation of vertex positions is the perspective divide. This operation 
divides each component of the clip space coordinate by the homogeneous coordinate w. The 
resulting x, y, and z components range from [-1,1], and the resulting w coordinate is always 1, 
so it is no longer needed. In other words, all the visible graphics primitives are transformed into 
a cubic region between the point (-1, -1, -1) and the point (1, 1, 1). This is the NORMALIZED DEVICE 

COORDINATE SPACE, which is an intermediate space that allows the viewing area to be properly 
mapped onto a viewport of arbitrary size and depth. 

Pixels within a window on the display device aren't referred to with floating-point coordinates 
from -1 to 1; they are usually referred to with coordinates defined in the WINDOW COORDINATE 

SYSTEM, where x values range from 0 to the width of the window minus 1, and y values range 
from 0 to the height of the window minus 1. Therefore, one more transformation step is 
required. The VIEWPORT TRANSFORMATION specifies the mapping from normalized device coordinates 
into window coordinates. You specify this mapping by calling the OpenGL functions glViewport, 
which specifies the mapping of the x and y coordinates, and glDepthRange, which specifies the 
mapping of the z coordinate. Graphics primitives are rasterized in the window coordinate 
system. 



1.10. Texturing 
The area of texture mapping is one of the more complex areas of the OpenGL API. It has been 
extended more often than most of the other areas of OpenGL primarily because this was the 
area of graphics for which hardware was the least mature when OpenGL was defined in the 
early 1990s. The programmability added through the OpenGL Shading Language in OpenGL 2.0 
makes this area much more straightforward, but the existing OpenGL APIs are still used to 
create, modify, and define the behavior of textures. This section describes the texturing 
functionality as it existed for OpenGL 1.5. Some significant changes have been made to this 
model by OpenGL 2.0, particularly to the concept of texture units, and are described later in 
this book. 

OpenGL currently supports four basic types of texture maps: onedimensional, two-dimensional, 
three-dimensional, and cube maps. (Only one- and two-dimensional textures were supported in 
OpenGL 1.0.) A 1D TEXTURE is an array containing width pixel values, a 2D TEXTURE is an array 
containing width x height pixel values, and a 3D TEXTURE is an array containing width x height x 
depth pixel values. A CUBE MAP TEXTURE contains six two-dimensional textures: one for each major 
axis direction (i.e., ±x, ±y, and ±z). 

OpenGL has the notion of a TEXTURE UNIT. A texture unit corresponds to the underlying piece of 
graphics hardware that performs the various texturing operations. With OpenGL 1.3, support 
was added for multiple texture units. Each texture unit maintains the following state for 
performing texturing operations: 

Enabled/disabled state of the texture unit 

Texture matrix stack that for transforming incoming texture coordinates 

State used for automatic texture coordinate generation 

Texture environment state 

Current 1D texture 

Current 2D texture 

Current 3D texture 

Current cube map texture 

Commands to set the state in the preceding list operate on the ACTIVE TEXTURE UNIT. Texture units 
are numbered from 0 to GL_MAX_TEXTURE_UNITS 1 (a value that can be queried with glGet), 
and the active texture unit can be set with glActiveTexture with a symbolic constant indicating the 
desired texture unit. Subsequent commands to set state in the preceding list operate on only 
the active texture unit. A texture unit can be enabled for 1D, 2D, 3D, or cube map texturing by 
calling glEnable with the appropriate symbolic constant. 

The active texture unit specifies the texture unit accessed by commands involving texture 
coordinate processing. Such commands include those accessing the current texture matrix stack 
(if GL_MATRIX_MODE is GL_TEXTURE), glTexGen, glEnable/glDisable (if any enumerated value for 
texture coordinate generation is selected), as well as queries of the current texture coordinates 
and current raster texture coordinates. The active texture unit selector also selects the texture 
unit accessed by commands involving texture image processing. Such commands include all 
variants of glTexEnv, glTexParameter, and glTexImage commands; glBindTexture; glEnable/glDisable for 



any texture target (e.g., GL_TEXTURE_2D); and queries of all such state. 

A TEXTURE OBJECT is created as follows: call glBindTexture and provide a texture target (a symbolic 
constant that indicates whether the texture will be a 1D, 2D, 3D, or cube map texture) and a 
previously unused texture name (an integer other than zero) that can be used to refer to the 
newly created texture object. The newly created texture object also becomes active and is used 
in subsequent texturing operations. If glBindTexture is called with a texture name that has 
already been used, that previously created texture becomes active. In this way, an application 
can create any number of textures and switch between them easily. 

After a texture object has been created, the pixel values that define the texture can be 
provided. Pixel values for a 3D texture can be supplied by glTexImage3D, pixel values for 2D or 
cube map textures can be provided by glTexImage2D, and pixel values for a 1D texture can be 
specified by glTexImage1D. In versions 1.01.5 of OpenGL, when any of these three commands 
was used, each dimension of the texture map had to be a size that was a power of 2 (including 
the border width). OpenGL 2.0 allows textures to have sizes that are not restricted to being 
powers of 2. These functions all work in the same way as glDrawPixels, except that the pixels 
constituting a texture are deposited into texture memory before rasterization. If only a portion 
of a texture needs to be respecified, the glTexSubImage1D/2D/3D functions can be used. When any 
of these three commands is used, there is no power-of-2 restriction on the texture size. 
Textures can be created or modified with values copied from frame buffer memory by 
glCopyTexImage1D/2D or glCopyTexSubImage1D/2D/3D. 

OpenGL also provides a method for specifying textures with compressed image formats. 
Applications can use the commands glCompressedTexImage1D/2D/3D and 
glCompressedTexSubImage1D/2D/3D to create and store compressed textures in texture memory. 
Compressed textures may use significantly less memory on the graphics accelerator and 
thereby enhance an application's functionality or performance. Standard OpenGL does not 
define any particular compressed image formats, so applications need to query the extension 
string in order to determine the compressed texture formats supported by a particular 
implementation. 

Each of the preceding texture creation commands includes a LEVEL-OF-DETAIL argument that 
supports the creation of MIPMAP TEXTURES. A mipmap texture is an ordered set of arrays 
representing the same image. Each array has a resolution that is half the previous one in each 
dimension. The idea behind mipmaps is that more pleasing final images will result if the texture 
to be used has roughly the same resolution as the object being drawn on the display. If a 
mipmap texture is supplied, OpenGL can automatically choose the appropriately sized texture 
(i.e., MIPMAP LEVEL) for use in drawing the object on the display. Interpolation between the TEXELS 
(pixels that comprise a texture) of two mipmap levels can also be performed. Objects that are 
textured with mipmap textures can therefore be rendered with high quality, no matter how they 
change size on the display. 

After a texture object has been defined and bound to a texture unit, properties other than the 
pixels that define the texture can be modified with the command glTexParameter. This command 
sets parameters that control how the texture object is treated when it is specified, changed, or 
accessed. Texture object parameters include 

The wrapping behavior in each dimensionWhether the texture repeats, clamps, or is 
mirrored when texture coordinates go outside the range [0,1] 

The minification filterHow the texture is to be sampled if the mapping from texture space 
to window space causes the texture image to be made smaller than a one-to-one pixel 
mapping in order to be mapped onto the surface 

The magnification filterHow the texture is to be sampled if the mapping from texture 
space to window space causes the texture image to be made larger than a one-to-one 
pixel mapping in order to be mapped onto the surface 



The border color to be used if the wrapping behavior indicates clamping to a border color 

The priority to be assigned to the textureA value from [0,1] that tells OpenGL the 
importance of performance for this texture 

Values for clamping and biasing the level-of-detail value that is automatically computed 
by OpenGL 

The level that is defined as the base (highest-resolution) level for a mipmap texture 

The level that is defined as the maximum (lowest-resolution) level for a mipmap texture 

Depth comparison valuesWhether a comparison operation should be performed when the 
texture is accessed, what type of comparison operation should be performed, and how to 
treat the result of the comparison (these values are used with depth textures to 
implement shadowing) 

A value that signifies whether mipmap levels are to be computed automatically by 
OpenGL whenever the base level is specified or modified 

The manner in which a texture value is applied to a graphics primitive is controlled by the 
parameters of the texture environment, which are set with the glTexEnv function. The set of 
fixed formulas for replacing an object color with a value computed through texture access is 
rather lengthy. Suffice it to say that texture functions include replacement, modulation, decal 
application, blending, adding, enabling point sprites, and even more complex combining of red, 
green, blue, and alpha components. A wide variety of texturing effects can be achieved with the 
flexibility provided by the glTexEnv function. This function can also specify an additional per-
textureunit level-of-detail bias that is added to the per-texture-object level-of-detail bias 
previously described. 

OpenGL supports the concept of multitexturing, by which the results of more than one texture 
access are combined to determine the value of the fragment. Each texture unit has a texture 
environment function. Texture units are connected serially. The first texture unit computes a 
fragment value by using the texture value that it reads from texture memory and its texture 
environment function, and passes on the result to be used as the input fragment value for the 
second texture unit. This fragment value is used together with the texture environment function 
for the second texture unit and the texture value read from texture memory by the second 
texture unit to provide the input fragment value for the third texture unit. This process is 
repeated for all enabled texture units. 

After texture objects have been defined and one or more texture units have been properly set 
up and enabled, texturing is performed on all subsequent graphics primitives. Texture 
coordinates are supplied at each vertex with glTexCoord or glMultiTexCoord (for use with vertex-at-
a-time entry points) or as an array indicated by glTexCoordPointer (for use with vertex array 
commands). The glMultiTexCoord command specifies texture coordinates that are to be operated 
on by a specific texture unit. This command specifies the texture unit as well as the texture 
coordinates to be used. The command glTexCoord is equivalent to the command glMultiTexCoord 
with its texture parameter set to GL_TEXTURE0. For vertex arrays, it is necessary to call 
glClientActiveTexture between each call to glTexCoordPointer in order to specify different texture 
coordinate arrays for different texture units. 

Texture coordinates can also be generated automatically by OpenGL. Parameters for controlling 
automatic texture coordinate generation are set on a per-texture unit basis with the glTexGen 
command. This function lets the application select a texture generation function and supply 
coefficients for that function for the currently active texture unit. Supported texture generation 
functions are object linear (useful for automatically generating texture coordinates for terrain 
models), eye linear (useful for producing dynamic contour lines on moving objects), and sphere 



 

map (useful for a type of environment mapping that requires just one texture). 

When texture coordinates have been sent to OpenGL or generated by the texture unit's texture 
generation function, they are transformed by the texture unit's current texture transformation 
matrix. The glMatrixMode command selects the texture matrix stack for modification, and 
subsequent matrix commands modify the texture matrix stack of the currently active texture 
unit. The current texture transformation matrix can translate the texture across the object, 
rotate it, stretch it, shrink it, and so on. Both texture generation and texture transformation are 
defined by OpenGL to occur as part of vertex processing (i.e., they are performed once per-
vertex before rasterization). 

TEXTURE ACCESS is the process by which the texture coordinates are used by a texture unit to 
access the enabled texture for that unit. It occurs after rasterization of the graphics primitive 
and interpolation of the transformed texture coordinates. The texture access is performed 
according to the bound texture object's parameters for filtering, wrapping, computed level-of-
detail, and so on. 

After a texture value has been retrieved, it is combined with the incoming color value according 
to the texture function established by calling glTexEnv. This operation is called TEXTURE APPLICATION. 
This computation produces a new fragment color value that is used for all subsequent 
processing of the fragment. Both texture access and texture application are defined to occur on 
every fragment that results from the rasterization process. 



1.11. Summary 
This chapter has briefly reviewed the fundamentals of the OpenGL API. In it, we've touched on 
the majority of the important OpenGL function calls. If you haven't used OpenGL for quite some 
time, the hope is that this review chapter has been enough to orient you properly for the task 
of using the OpenGL Shading Language to write shaders. If you have been using another 3D 
graphics programming API, the hope is that this short overview is enough to get you started 
using OpenGL and writing your own shaders. If not, the next section lists a number of resources 
for learning more about OpenGL. 

  



1.12. Further Information 
The Web site http://opengl.org has the latest information for the OpenGL community, forums 
for developers, and links to a variety of demos and technical information. OpenGL developers 
should bookmark this site and visit it often. 

The standard reference books for the OpenGL API are the OpenGL Programming Guide, Fifth 
Edition (2005) and the OpenGL Reference Manual, Fourth Edition (2004), both by the OpenGL 
Architecture Review Board. Another useful OpenGL book is OpenGL SuperBible, Third Edition, 
by Richard S. Wright, Jr. and Benjamin Lipchak (2004). 

A good overview of OpenGL is provided in the technical paper "The Design of the OpenGL 
Graphics Interface" by Mark Segal and Kurt Akeley (1994). Of course, the definitive document 
on OpenGL is the specification itself, The OpenGL Graphics System: A Specification, (Version 
2.0), by Mark Segal and Kurt Akeley, edited by Jon Leech and Pat Brown (2004). 

The OpenGL.org Web site, http://opengl.org, is also a good source for finding source code for 
OpenGL example programs. Another useful site is Tom Nuyden's site at http://delphi3d.net. The 
hardware vendors that support OpenGL typically provide lots of example programs, especially 
for newer OpenGL functionality and extensions. The SGI, NVIDIA, and ATI Web sites are 
particularly good in this regard. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com 

2. ATI developer Web site. http://www.ati.com/developer 

3. Delphi3D Web site. http://delphi3d.net 

4. NVIDIA developer Web site. http://developer.nvidia.com 

5. OpenGL Architecture Review Board, Dave Shreiner, J. Neider, T. Davis, and M. Woo, 
OpenGL Programming Guide, Fifth Edition: The Official Guide to Learning OpenGL, Version 
2, Addison-Wesley, Reading, Massachusetts, 2005. 

6. OpenGL Architecture Review Board, OpenGL Reference Manual, Fourth Edition: The 
Official Reference to OpenGL, Version 1.4, Editor: Dave Shreiner, Addison-Wesley, 
Reading, Massachusetts, 2004. 

7. OpenGL, official Web site. http://opengl.org 

8. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
Sept. 2004. http://www.opengl.org/documentation/spec.html 
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Chapter 2. Basics 
This chapter introduces the OpenGL Shading Language to get you started writing your own 
shaders as quickly as possible. When you finish reading this chapter, you should understand 
how programmability has been added to OpenGL and be ready to tackle the details of the 
shading language description in the next three chapters and the simple example in Chapter 6. 
After that, you can learn more details about the API that supports the shading language or 
explore the examples contained in the later chapters. 

  



2.1. Introduction to the OpenGL Shading Language 
This book helps you learn and use a high-level graphics programming language formally called 
the OPENGL SHADING LANGUAGE. Informally, this language is sometimes referred to as GLSL. This 
language has been made part of the OpenGL standard as of OpenGL 2.0. 

The recent trend in graphics hardware has been to replace fixed functionality with 
programmability in areas that have grown exceedingly complex. Two such areas are vertex 
processing and fragment processing. Vertex processing involves the operations that occur at 
each vertex, most notably transformation and lighting. Fragments are per-pixel data structures 
that are created by the rasterization of graphics primitives. A fragment contains all the data 
necessary to update a single location in the frame buffer. Fragment processing consists of the 
operations that occur on a per-fragment basis, most notably reading from texture memory and 
applying the texture value(s) at each fragment. With the OpenGL Shading Language, the fixed 
functionality stages for vertex processing and fragment processing have been augmented with 
programmable stages that can do everything the fixed functionality stages can doand a whole 
lot more. The OpenGL Shading Language allows application programmers to express the 
processing that occurs at those programmable points of the OpenGL pipeline. 

The OpenGL Shading Language code that is intended for execution on one of the OpenGL 
programmable processors is called a SHADER. The term OPENGL SHADER is sometimes used to 
differentiate a shader written in the OpenGL Shading Language from a shader written in 
another shading language such as RenderMan. Because two programmable processors are 
defined in OpenGL, there are two types of shaders: VERTEX SHADERS and FRAGMENT SHADERS. OpenGL 
provides mechanisms for compiling shaders and linking them to form executable code called a 
PROGRAM. A program contains one or more EXECUTABLES that can run on the programmable 
processing units. 

The OpenGL Shading Language has its roots in C and has features similar to RenderMan and 
other shading languages. The language has a rich set of types, including vector and matrix 
types to make code more concise for typical 3D graphics operations. A special set of type 
qualifiers manages the unique forms of input and output needed by shaders. Some mechanisms 
from C++, such as function overloading based on argument types and the capability to declare 
variables where they are first needed instead of at the beginning of blocks, have also been 
borrowed. The language includes support for loops, subroutine calls, and conditional 
expressions. An extensive set of built-in functions provides many of the capabilities needed for 
implementing shading algorithms. In brief, 

The OpenGL Shading Language is a high-level procedural language. 

As of OpenGL 2.0, it is part of standard OpenGL, the leading cross-platform, operating-
environment-independent API for 3D graphics and imaging. 

The same language, with a small set of differences, is used for both vertex and fragment 
shaders. 

It is based on C and C++ syntax and flow control. 

It natively supports vector and matrix operations since these are inherent to many 
graphics algorithms. 

It is stricter with types than C and C++, and functions are called by value-return. 

It uses type qualifiers rather than reads and writes to manage input and output. 



 

It imposes no practical limits to a shader's length, nor does the shader length need to be 
queried. 

The following sections contain some of the key concepts that you will need to understand in 
order to use the OpenGL Shading Language effectively. The concepts are covered in much more 
detail later in the book, but this introductory chapter should help you understand the big 
picture. 



2.2. Why Write Shaders? 
Until recently, OpenGL has presented application programmers with a flexible but static 
interface for putting graphics on the display device. As described in Chapter 1, you could think 
of OpenGL as a sequence of operations that occurred on geometry or image data as it was sent 
through the graphics hardware to be displayed on the screen. Various parameters of these 
pipeline stages could be altered to select variations on the processing that occurred for that 
pipeline stage. But neither the fundamental operation of the OpenGL graphics pipeline nor the 
order of operations could be changed through the OpenGL API. 

By exposing support for traditional rendering mechanisms, OpenGL has evolved to serve the 
needs of a fairly broad set of applications. If your particular application was well served by the 
traditional rendering model presented by OpenGL, you may never need to write shaders. But if 
you have ever been frustrated because OpenGL did not allow you to define area lights, or 
because lighting calculations are performed per-vertex rather than perfragment or, if you have 
run into any of the many limitations of the traditional OpenGL rendering model, you may need 
to write your own OpenGL shader. 

The OpenGL Shading Language and its supporting OpenGL API entry points allows application 
developers to define the processing that occurs at key points in the OpenGL processing pipeline 
by using a high-level programming language specifically designed for this purpose. These key 
points in the pipeline are defined to be programmable in order to give developers complete 
freedom to define the processing that occurs. This lets developers utilize the underlying 
graphics hardware to achieve a much wider range of rendering effects. 

To get an idea of the range of effects possible with OpenGL shaders, take a minute now and 
browse through the color images that are included in this book. This book presents a variety of 
shaders that only begin to scratch the surface of what is possible. With each new generation of 
graphics hardware, more complex rendering techniques can be implemented as OpenGL 
shaders and can be used in real-time rendering applications. Here's a brief list of what's 
possible with OpenGL shaders: 

Increasingly realistic materialsmetals, stone, wood, paints, and so on 

Increasingly realistic lighting effectsarea lights, soft shadows, and so on 

Natural phenomenafire, smoke, water, clouds, and so on 

Advanced rendering effectsglobal illumination, ray-tracing, and so on 

Non-photorealistic materialspainterly effects, pen-and-ink drawings, simulation of 
illustration techniques, and so on 

New uses for texture memorystorage of normals, gloss values, polynomial coefficients, 
and so on 

Procedural texturesdynamically generated 2D and 3D textures, not static texture images 

Image processingconvolution, unsharp masking, complex blending, and so on 

Animation effectskey frame interpolation, particle systems, procedurally defined motion 

User programmable antialiasing methods 



 

General computationsorting, mathematical modeling, fluid dynamics, and so on 

Many of these techniques have been available before now only through software 
implementations. If they were at all possible through OpenGL, they were possible only in a 
limited way. The fact that these techniques can now be implemented with hardware 
acceleration provided by dedicated graphics hardware means that rendering performance can 
be increased dramatically and at the same time the CPU can be off-loaded so that it can 
perform other tasks. 

  



2.3. OpenGL Programmable Processors 
The introduction of programmable vertex and fragment processors is the biggest change to 
OpenGL since its inception and is the reason a high-level shading language is needed. In 
Chapter 1, we discussed the OpenGL pipeline and the fixed functionality that implements vertex 
processing and fragment processing. With the introduction of programmability, the fixed 
functionality vertex processing and fixed functionality fragment processing are disabled when 
an OpenGL Shading Language program is made current (i.e., made part of the current 
rendering state). 

Figure 2.1 shows the OpenGL processing pipeline when the programmable processors are 
active. In this case, the fixed functionality vertex and fragment processing shown in Figure 1.1 
are replaced by programmable vertex and fragment processors as shown in Figure 2.1. All other 
parts of the OpenGL processing pipeline remain the same. 

Figure 2.1. OpenGL logical diagram showing programmable processors 
for vertex and fragment shaders rather than fixed functionality 
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This diagram illustrates the stream processing nature of OpenGL made possible by the 
programmable processors that are defined as part of the OpenGL Shading Language. Data flows 
from the application to the vertex processor, on to the fragment processor, and ultimately to 
the frame buffer. The OpenGL Shading Language was carefully designed to allow hardware 
implementations to perform parallel processing of both vertices and fragments. This gives 
graphics hardware vendors the opportunity to produce faster graphics hardware with more 
parallel processors with each new generation of hardware. 

2.3.1. Vertex Processor 

The VERTEX PROCESSOR is a programmable unit that operates on incoming vertex values and their 
associated data. The vertex processor usually performs traditional graphics operations such as 
the following: 

Vertex transformation 

Normal transformation and normalization 

Texture coordinate generation 



Texture coordinate transformation 

Lighting 

Color material application 

Because of its general purpose programmability, this processor can also be used to perform a 
variety of other computations. Shaders that are intended to run on this processor are called 
vertex shaders. Vertex shaders can specify a completely general sequence of operations to be 
applied to each vertex and its associated data. Vertex shaders that perform some of the 
computations in the preceding list must contain the code for all desired functionality from the 
preceding list. For instance, it is not possible to have the existing fixed functionality perform the 
vertex and normal transformation but to have a vertex shader perform a specialized lighting 
function. The vertex shader must be written to perform all three functions. 

The vertex processor does not replace graphics operations that require knowledge of several 
vertices at a time or that require topological knowledge. OpenGL operations that remain as 
fixed functionality in between the vertex processor and the fragment processor include 
perspective divide and viewport mapping, primitive assembly, frustum and user clipping, 
backface culling, two-sided lighting selection, polygon mode, polygon offset, selection of flat or 
smooth shading, and depth range. 

Figure 2.2 shows the data values that are used as inputs to the vertex processor and the data 
values that are produced by the vertex processor. Vertex shaders express the algorithm that 
executes on the vertex processor to produce output values based on the provided input values. 
Type qualifiers that are defined as part of the OpenGL Shading Language manage the input to 
the vertex processor and the output from it. 

Figure 2.2. Vertex processor inputs and outputs 

[View full size image] 



 

 
Variables defined in a vertex shader can be qualified as ATTRIBUTE VARIABLES. These represent 
values that are frequently passed from the application to the vertex processor. Because this 
type of variable is used only for data from the application that defines vertices, it is permitted 
only as part of a vertex shader. Applications can provide attribute values between calls to glBegin 
and glEnd or with vertex array calls, so they can change as often as every vertex. 

There are two types of attribute variables: built in and user defined. Standard attribute 
variables in OpenGL include things like color, surface normal, texture coordinates, and vertex 
position. The OpenGL calls glColor, glNormal, glVertex, and so on, and the OpenGL vertex array 
drawing commands can send standard OpenGL vertex attributes to the vertex processor. When 
a vertex shader is executing, it can access these data values through built-in attribute variables 
named gl_Color, gl_Normal, gl_Vertex, and so on. 

Because this method restricts vertex attributes to the set that is already defined by OpenGL, a 
new interface allows applications to pass arbitrary per-vertex data. Within the OpenGL API, 
generic vertex attributes are defined and referenced by numbers from 0 up to some 
implementation-dependent maximum value. The command glVertexAttrib sends generic vertex 
attributes to OpenGL by specifying the index of the generic attribute to be modified and the 
value for that generic attribute. 

Vertex shaders can access these generic vertex attributes through user-defined attribute 
variables. Another new OpenGL command, glBindAttribLocation, allows an application to tie 
together the index of a generic vertex attribute and the name with which to associate that 
attribute in a vertex shader. 



UNIFORM VARIABLES pass data values from the application to either the vertex processor or the 
fragment processor. Uniform variables typically provide values that change relatively 
infrequently. A shader can be written so that it is parameterized with uniform variables. The 
application can provide initial values for these uniform variables, and the end user can 
manipulate them through a graphical user interface to achieve a variety of effects with a single 
shader. But uniform variables cannot be specified between calls to glBegin and glEnd, so they can 
change at most once per primitive. 

The OpenGL Shading Language supports both built-in and user-defined uniform variables. 
Vertex shaders and fragment shaders can access current OpenGL state through built-in uniform 
variables containing the reserved prefix "gl_". Applications can make arbitrary data values 
available directly to a shader through user-defined uniform variables. glGetUniformLocation obtains 
the location of a user-defined uniform variable that has been defined as part of a shader. Data 
can be loaded into this location with another new OpenGL command, glUniform. Variations of this 
command facilitate loading of floating-point, integer, Boolean, and matrix values, as well as 
arrays of these. 

Another new feature is the capability of vertex processors to read from texture memory. This 
allows vertex shaders to implement displacement mapping algorithms, among other things. 
(However, the minimum number of vertex texture image units required by an implementation is 
0, so texture-map access from the vertex processor still may not be possible on all 
implementations that support the OpenGL Shading Language.) For accessing mipmap textures, 
level of detail can be specified directly in the shader. Existing OpenGL parameters for texture 
maps define the behavior of the filtering operation, borders, and wrapping. 

Conceptually, the vertex processor operates on one vertex at a time (but an implementation 
may have multiple vertex processors that operate in parallel). The vertex shader is executed 
once for each vertex passed to OpenGL. The design of the vertex processor is focused on the 
functionality needed to transform and light a single vertex. Output from the vertex shader is 
accomplished partly with special output variables. Vertex shaders must compute the 
homogeneous position of the coordinate in clip space and store the result in the special output 
variable gl_Position. Values to be used during user clipping and point rasterization can be stored 
in the special output variables gl_ClipVertex and gl_PointSize. 

Variables that define data that is passed from the vertex processor to the fragment processor 
are called VARYING VARIABLES. Both built-in and user-defined varying variables are supported. They 
are called varying variables because the values are potentially different at each vertex and 
perspective-correct interpolation is performed to provide a value at each fragment for use by 
the fragment shader. Built-in varying variables include those defined for the standard OpenGL 
color and texture coordinate values. A vertex shader can use a user-defined varying variable to 
pass along anything that needs to be interpolated: colors, normals (useful for per-fragment 
lighting computations), texture coordinates, model coordinates, and other arbitrary values. 

There is actually no harm (other than a possible loss of performance) in having a vertex shader 
calculate more varying variables than are needed by the fragment shader. A warning may be 
generated if the fragment shader consumes fewer varying variables than the vertex shader 
produces. But you may have good reasons to use a somewhat generic vertex shader with a 
variety of fragment shaders. The fragment shaders can be written to use a subset of the 
varying variables produced by the vertex shader. Developers of applications that manage a 
large number of shaders may find that reducing the costs of shader development and 
maintenance is more important than squeezing out a tiny bit of additional performance. 

The vertex processor output (special output variables and user-defined and built-in varying 
variables) is sent to subsequent stages of processing that are defined exactly the same as they 
are for fixed-function processing: primitive assembly, user clipping, frustum clipping, 
perspective divide, viewport mapping, polygon offset, polygon mode, shade mode, and culling. 

2.3.2. Fragment Processor 



The FRAGMENT PROCESSOR is a programmable unit that operates on fragment values and their 
associated data. The fragment processor usually performs traditional graphics operations such 
as the following: 

Operations on interpolated values 

Texture access 

Texture application 

Fog 

Color sum 

A wide variety of other computations can be performed on this processor. Shaders that are 
intended to run on this processor are called fragment shaders. Fragment shaders express the 
algorithm that executes on the fragment processor and produces output values based on the 
input values that are provided. A fragment shader cannot change a fragment's x/y position. 
Fragment shaders that perform some of the computations from the preceding list must perform 
all desired functionality from the preceding list. For instance, it is not possible to use the 
existing fixed functionality to compute fog but have a fragment shader perform specialized 
texture access and texture application. The fragment shader must be written to perform all 
three functions. 

The fragment processor does not replace graphics operations that require knowledge of several 
fragments at a time. To support parallelism at the fragment-processing level, fragment shaders 
are written in a way that expresses the computation required for a single fragment, and access 
to neighboring fragments is not allowed. An implementation may have multiple fragment 
processors that operate in parallel. 

The fragment processor can perform operations on each fragment that is generated by the 
rasterization of points, lines, polygons, pixel rectangles, and bitmaps. If images are first 
downloaded into texture memory, the fragment processor can also be used for pixel processing 
that requires access to a pixel and its neighbors. A rectangle can be drawn with texturing 
enabled, and the fragment processor can read the image from texture memory and apply it to 
the rectangle while performing traditional operations such as the following: 

Pixel zoom 

Scale and bias 

Color table lookup 

Convolution 

Color matrix 

The fragment processor does not replace the fixed functionality graphics operations that occur 
at the back end of the OpenGL pixel processing pipeline such as coverage, pixel ownership test, 
scissor test, stippling, alpha test, depth test, stencil test, alpha blending, logical operations, 
dithering, and plane masking. 

Figure 2.3 shows the values that provide input to the fragment processor and the data values 
that are produced by the fragment processor. 

Figure 2.3. Fragment processor inputs and outputs 
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The primary inputs to the fragment processor are the interpolated varying variables (both built 
in and user defined) that are the results of rasterization. User-defined varying variables must be 
defined in a fragment shader, and their types must match those defined in the vertex shader. 

Values computed by fixed functionality between the vertex processor and the fragment 
processor are made available through special input variables. The window coordinate position of 
the fragment is communicated through the special input variable gl_FragCoord. An indicator of 
whether the fragment was generated by rasterizing a front-facing primitive is communicated 
through the special input variable gl_FrontFacing. 

Just as in the vertex shader, existing OpenGL state is accessible to a fragment shader through 
built-in uniform variables. All of the OpenGL state that is available through built-in uniform 
variables is available to both vertex and fragment shaders. This makes it easy to implement 
traditional vertex operations such as lighting in a fragment shader. 

User-defined uniform variables allow the application to pass relatively infrequently changing 
values to a fragment shader. The same uniform variable can be accessed by both a vertex 
shader and a fragment shader if both shaders declare the variable using the same data type. 

One of the biggest advantages of the fragment processor is that it can access texture memory 
an arbitrary number of times and combine in arbitrary ways the values that it reads. A fragment 
shader is free to read multiple values from a single texture or multiple values from multiple 
textures. The result of one texture access can be used as the basis for performing another 
texture access (a DEPENDENT TEXTURE READ). There is no inherent limitation on the number of such 
dependent reads that are possible, so ray-casting algorithms can be implemented in a fragment 
shader. 



 

The OpenGL parameters for texture maps continue to define the behavior of the filtering 
operation, borders, wrapping, and texture comparison modes. These operations are applied 
when a texture is accessed from within a shader. The shader is free to use the resulting value 
however it chooses. The shader can read multiple values from a texture and perform a custom 
filtering operation. It can also use a texture to perform a lookup table operation. 

The fragment processor defines almost all the capabilities necessary to implement the fixed-
function pixel transfer operations defined in OpenGL, including those in the imaging subset. This 
means that advanced pixel processing is supported with the fragment processor. Lookup table 
operations can be done with 1D texture accesses, allowing applications to fully control their size 
and format. Scale and bias operations are easily expressed through the programming language. 
The color matrix can be accessed through a built-in uniform variable. Convolution and pixel 
zoom are supported by accessing a texture multiple times to compute the proper result. 
Histogram and minimum/maximum operations are left to be defined as extensions because 
these prove to be quite difficult to support at the fragment level with high degrees of 
parallelism. 

For each fragment, the fragment shader may compute color, depth, and arbitrary values 
(writing these values into the special output variables gl_FragColor, gl_FragDepth, and gl_FragData) or 
completely discard the fragment. If the fragment is not discarded, the results of the fragment 
shader are sent on for further processing. The remainder of the OpenGL pipeline remains as 
defined for fixed-function processing. Fragments are submitted to coverage application, pixel 
ownership testing, scissor testing, alpha testing, stencil testing, depth testing, blending, 
dithering, logical operations, and masking before ultimately being written into the frame buffer. 
The back end of the processing pipeline remains as fixed functionality because it is easy to 
implement in nonprogrammable hardware. Making these functions programmable is more 
complex because read/modify/write operations can introduce significant instruction scheduling 
issues and pipeline stalls. Most of these fixed functionality operations can be disabled, and 
alternative operations can be performed within a fragment shader if desired (albeit with 
possibly lower performance). 

  



2.4. Language Overview 
Because of its success as a standard, OpenGL has been the target of our efforts to define an 
industry-standard, high-level shading language. The shading language that has been defined as 
a result of the efforts of OpenGL ARB members is called the OpenGL Shading Language. This 
language has been designed to be forward looking and to eventually support programmability in 
other areas as well. 

This section provides a brief overview of the OpenGL Shading Language. For a complete 
discussion of the language, see Chapter 3, Chapter 4, and Chapter 5. 

2.4.1. Language Design Considerations 

In the past few years, semiconductor technology has progressed to the point at which the levels 
of computation that can be done per vertex or per fragment have gone beyond what is feasible 
to describe by the traditional OpenGL mechanisms of setting state to influence the action of 
fixed pipeline stages. A natural way of taming this complexity and the proliferation of OpenGL 
extensions is to replace parts of the pipeline with user-programmable stages. This has been 
done in some recent OpenGL extensions, but the programming is done in assembly language. It 
can be difficult and time consuming to write shaders in such low-level languages, and 
maintaining such code can be costly. As programmable graphics hardware evolves, the current 
crop of shader assembly languages may also prove to be cumbersome and inefficient to support 
in hardware. 

The ideal solution to these issues was to define a forward-looking, hardware-independent, high-
level language that would be easy to use and powerful enough to stand the test of time and 
that would drastically reduce the need for extensions. These desires were tempered by the need 
for fast implementations within a generation or two of hardware. 

The following design goals were fundamental to the design of the OpenGL Shading Language. 

Define a language that works well with OpenGL The OpenGL Shading 
Language is designed specifically for use within the OpenGL environment. It 
provides programmable alternatives to certain parts of the fixed functionality of 
OpenGL. Therefore, the language itself and the programmable processors it defines 
must have at least as much functionality as what they replace. Furthermore, by 
design, it is quite easy to refer to existing OpenGL state from within a shader. By 
design, it is also quite easy to use fixed functionality in one part of the OpenGL 
processing pipeline and programmable processing in another. 

Expose the flexibility of near-future hardware Graphics hardware has been 
changing rapidly to a model that allows general programmability for vertex and 
fragment processing. To expose this programmability, the shading language is high 
level, with appropriate abstractions for the graphics problem domain. The language 
includes a rich set of built-in functions that allow expression of operations on 
vectors as easily as on scalars. Exposing hardware capabilities through a high-level 
programming language also obviates the need for OpenGL extensions that define 
small changes to the fixed functionality behavior. Exposing an abstraction that is 
independent of the actual underlying hardware eliminates the plethora of piecemeal 
extensions to OpenGL. 

Provide hardware independence As previously mentioned, the first attempts at 
exposing the programmability of graphics hardware focused on assembly language 
interfaces. This was a dangerous direction for software developers to take because 
it results in software that is inherently nonportable. The goal of a high-level shading 



language is for the abstraction level to be high enough that application developers 
can code in a portable way and that hardware vendors have plenty of room to 
provide innovative hardware architectures and compiler technology. 

Define a language that exposes the performance of the underlying graphics 
hardware Today's graphics hardware is based on programmable processor 
technology. It is an established fact nowadays that compiler technology can 
generate extremely high performance executable code. With the complexity of 
today's CPUs, it is difficult to manually generate code that can surpass the 
performance of code generated by a compiler. It is the intent that the object code 
generated for a shader be independent of other OpenGL state, so that recompiles or 
managing multiple copies of object code are not necessary. 

Define a language that is easy to use One of the considerations here is that 
writing shaders should be simple and easy. Since most graphics application 
programmers are familiar with C and C++, this led us to adopt the salient features 
of these languages as the basis for the OpenGL Shading Language. We also believed 
that compilers, not application programmers, should perform difficult tasks. We 
concluded that a single language (with very minor variations) should be the basis 
for programming all the programmable processors that we were defining, as well as 
those we envisioned adding in future versions of OpenGL. This allows application 
programmers to become familiar with the basic shading language constructs and 
apply them to all programming tasks involving the programmable processors in 
OpenGL. 

Define a language that will stand the test of time This design consideration 
also led us to base the design of the OpenGL Shading Language on previously 
successful programming languages such as C and RenderMan. Our hope is that 
programs written when the OpenGL Shading Language was first defined will still be 
valid in 10 years. Longevity also requires standardization of some sort, so we 
expended a great deal of effort both in making hardware vendors happy with the 
final language specification and in pushing the specification through the approval 
process of OpenGL's governing body, the OpenGL Architecture Review Board (ARB). 

Don't preclude higher levels of parallel processing Newer graphics hardware 
architectures are providing more and more parallelism at both the vertex and the 
fragment processing levels. So we took great care with the definition of the OpenGL 
Shading Language to allow for even higher levels of parallel processing. This 
consideration has shaped the definition of the language in some subtle but 
important ways. 

Don't include unnecessary language features Some features of C have made 
implementing optimizing compilers difficult. Some OpenGL Shading Language 
features address this issue. For example, C allows hidden aliasing of memory by 
using pointers and passing pointers as function arguments, which may give multiple 
names to the same memory. These potential aliases handicap the optimizer, leading 
to complexity or less optimized code. The OpenGL Shading language does not allow 
pointers, and it calls by value-return to prevent such aliasing. In general, aliasing is 
disallowed, simplifying the job of the optimizer. 

2.4.2. C Basis 

As stated previously, the OpenGL Shading Language is based on the syntax of the ANSI C 
programming language, and at first glance, programs written in this language look very much 
like C programs. This is intentional, to make the language easier to use for those most likely to 
be using it, namely, those developing graphics applications in C or C++. 

The basic structure of programs written in the OpenGL Shading Language is the same as it is for



programs written in C. The entry point of a set of shaders is the function void main(); the body of 
this function is delimited by curly braces. Constants, identifiers, operators, expressions, and 
statements are basically the same for the OpenGL Shading Language as they are for C. Control 
flow for looping, if-then-else, and function calls are virtually identical to C. 

2.4.3. Additions to C 

The OpenGL Shading Language has a number of language features that have been added 
because of its special-purpose nature as a language for encoding graphics algorithms. Here are 
some of the main things that have been added to the OpenGL Shading Language that are 
different from ANSI C. 

Vector types are supported for floating-point, integer, and Boolean values. For floating-point 
values, these vector types are referred to as vec2 (two floats), vec3 (three floats), and vec4 
(four floats). Operators work as readily on vector types as they do on scalars. To sum vectors v1
and v2, you simply would say v1 + v2. Individual components of a vector can be accessed either 
with array syntax or as fields of a structure. Color values can be accessed by appending .r to 
the name of a vector variable to access the first component, .g to access the second 
component, .b to access the third, and .a to access the fourth. Position values can be accessed 
with .x, .y, .z, and .w, and texture values can be accessed with .s, .t, .p, and .q. Multiple 
components can be selected by specification of multiple names, like .xy. 

Floating-point matrix types are also supported as basic types. The data type mat2 refers to a 2 
x 2 matrix of floating-point values, mat3 refers to a 3 x 3 matrix, and mat4 refers to a 4 x 4 
matrix. This is a convenient type for expressing the linear transformations common in 3D 
graphics. Columns of a matrix can be selected with array syntax, yielding a vector whose 
components can be accessed as just described. 

A set of basic types called SAMPLERS has also been added to create the mechanism by which 
shaders access texture memory. Samplers are a special type of opaque variable that access a 
particular texture map. A variable of type sampler1D can be used to access a 1D texture map, 
a variable of type sampler2D can be used to access a 2D texture map, and so on. Shadow and 
cube map textures are also supported through this mechanism. 

Qualifiers have been added to manage the input and output of shaders. The attribute, 
uniform, and varying qualifiers specify what type of input or output a variable serves. 
Attribute variables communicate frequently changing values from the application to a vertex 
shader, uniform variables communicate infrequently changing values from the application to 
any shader, and varying variables communicate interpolated values from a vertex shader to a 
fragment shader. 

Shaders written in the OpenGL Shading Language can use built-in variables that begin with the 
reserved prefix "gl_" in order to access existing OpenGL state and to communicate with the 
fixed functionality of OpenGL. For instance, both vertex and fragment shaders can access built-
in uniform variables that contain state values that are readily available within the current 
rendering context. Some examples are gl_ModelViewMatrix for obtaining the current modelview 
matrix, gl_LightSource[i] for obtaining the current parameters of the ith light source, and 
gl_Fog.color for accessing the current fog color. The vertex shader must write the special variable 
gl_Position in order to provide necessary information to the fixed functionality stages between 
vertex processing and fragment processing, namely, primitive assembly, clipping, culling, and 
rasterization. A fragment shader typically writes into one or both of the special variables 
gl_FragColor or gl_FragDepth. These values represent the computed fragment color and computed 
fragment depth. These values are submitted to the back-end fixed functionality fragment 
operations such as alpha testing, stencil testing, and depth testing, before reaching their 
ultimate destination, the frame buffer. 

A variety of built-in functions is also provided in the OpenGL Shading Language in order to 
make coding easier and to take advantage of possible hardware acceleration for certain 



operations. The language defines built-in functions for a variety of operations: 

Trigonometric operationssine, cosine, tangent, and so on 

Exponential operationspower, exponential, logarithm, square root, and inverse square 
root 

Common math operationsabsolute value, floor, ceiling, fractional part, modulus, and so 
on 

Geometric operationslength, distance, dot product, cross product, normalization, and so 
on 

Relational operations based on vectorscomponent-wise operations such as greater than, 
less than, equal to, and so on 

Specialized fragment shader functions for computing derivatives and estimating filter 
widths for antialiasing 

Functions for accessing values in texture memory 

Functions that return noise values for procedural texturing effects 

2.4.4. Additions from C++ 

The OpenGL Shading Language also includes a few notable language features from C++. In 
particular, it supports function overloading to make it easy to define functions that differ only in 
the type or number of arguments being passed. This feature is heavily used by the built-in 
functions. For instance, the dot product function is overloaded to deal with arguments that are 
types float, vec2, vec3, and vec4. 

The concept of constructors also comes from C++. Initializers are done only with constructors 
in the OpenGL Shading Language. Using constructors allows for more than one way of 
initializing variables. 

Another feature borrowed from C++ is that variables can be declared when they are needed; 
they do not have to be declared at the beginning of a basic block. The basic type bool is 
supported as in C++. 

As in C++, functions must be declared before being used. This can be accomplished either with 
the function's definition (its body) or just with a prototype. 

2.4.5. C Features Not Supported 

Unlike ANSI C, the OpenGL Shading Language does not support automatic promotion of data 
types. Compiler errors are generated if variables used in an expression are of different types. 
For instance, an error is generated for the statement float f = 0; but not for the statement 
float f = 0.0;. This approach might seem like a bit of a nuisance, but it simplifies the language 
by eliminating the need for type promotion rules. It also removes a class of confusing mistakes 
made when argument type is the basis for calling a set of overloaded functions. 

The OpenGL Shading Language does not support pointers, strings, or characters, or any 
operations based on these. It is fundamentally a language for processing numerical data, not 
for processing character or string data, so there is no need for these features to complicate the 
language. To lower the implementation burden (both for the compiler and for the graphics 
hardware), there is no support for double-precision floats; byte, short, or long integers; or 



 

unsigned variants of these. 

A few other C language features that were eliminated from consideration in order to simplify the 
OpenGL Shading Language (or because there was no compelling need for them at the time) are 
unions, enumerated types, bit fields in structures, and bitwise operators. Finally, the language 
is not file based, so you won't see any #include directives or other references to file names. 

2.4.6. Other Differences 

There are a few areas in which the OpenGL Shading Language provides the same functionality 
as C but does so in a different way. One of these is that constructors, rather than type casts, 
are used for data type conversion. Constructors, not C-style initializers, are also used for 
variable initialization. There is no support at all for type casting without conversion, so 
constructors keep the language type safe. Constructors use the syntax of a function call, where 
the function name is the name of the desired type and the arguments are the values that will 
be used to construct the desired value. 

Constructors allow a much richer set of operations than simple type casts or C-style initializers, 
and the flexibility that this richness provides comes in quite handy for dealing with vector and 
matrix data types. In addition to converting from one scalar type to another, constructors can 
create a larger type out of a smaller type or reduce a larger type to a smaller type. For 
instance, the constructor vec3(1.0, 2.0, 3.0) constructs a vec3 data type out of three scalar 
values, and the constructor vec3(myVec4) strips the fourth component from myVec4 to create a 
vec3 value. 

The other area of difference is that, unlike the call-by-value calling convention used by C, the 
OpenGL Shading Language uses CALL BY VALUE-RETURN. Input parameters are copied into the 
function at call time, and output parameters are copied back to the caller before the function 
exits. Because the function deals only with copies of the function parameters, there are no 
issues regarding aliasing of variables within a function. Function parameters are identified as 
input parameters with the qualifier in, they are identified as output parameters with the 
qualifier out, and they are identified as both input and output parameters with the qualifier 
inout; if no qualifier is present, they are identified as input parameters. 

  



2.5. System Overview 
We have already described briefly some of the pieces that provide applications with access to 
the programmability of underlying graphics hardware. This section briefly describes how these 
pieces go together in a working system. 

2.5.1. Driver Model 

A piece of software that controls a piece of hardware and manages shared access to that piece 
of hardware is commonly called a DRIVER. No matter what environment OpenGL is implemented 
in, it falls into the driver category because OpenGL manages shared access to the underlying 
graphics hardware. Some of its tasks must also be coordinated with, or supervised by, facilities 
in the operating system. 

Figure 2.4 illustrates how OpenGL shaders are handled in the execution environment of 
OpenGL. Applications communicate with OpenGL by calling functions that are part of the 
OpenGL API. A new OpenGL function, glCreateShader, allows applications to allocate within the 
OpenGL driver the data structures that are necessary for storing an OpenGL shader. These data 
structures are called SHADER OBJECTS. After a shader object has been created, the application can 
provide the source code for the shader by calling glShaderSource. This command provides to 
OpenGL the character strings containing the shader source code. 

Figure 2.4. Execution model for OpenGL shaders 

 



 
As you can see from Figure 2.4, the compiler for the OpenGL Shading Language is actually part 
of the OpenGL driver environment. This is one of the key differences between the OpenGL 
Shading Language and other shading language designs, such as the Stanford Shading 
Language, High-Level Shader Language (HLSL) from Microsoft, or Cg from NVIDIA. In these 
other languages, the high-level shading language compiler sits above the graphics API and 
translates the high-level shading language into something that can be consumed by the 
underlying graphics API. (See Chapter 17 for more details.) With the OpenGL Shading 
Language, the source code for shaders is passed to the OpenGL driver, and in that 
environment, the shaders are compiled to the native machine code as efficiently as possible. 
After source code for a shader has been loaded into a shader object in the OpenGL driver 
environment, it can be compiled with glCompileShader. 

A PROGRAM OBJECT is an OpenGL-managed data structure that acts as a container for shader 
objects. Applications are required to attach shader objects to a program object by using the 
command glAttachShader. When attached to a program object, the compiled shader objects can 
be linked with glLinkProgram. Support for multiple shader objects (and the subsequent need for a 
linker built into OpenGL) is a key difference between the OpenGL Shading Language and 
assembly-level APIs such as those provided by the OpenGL extensions ARB_vertex_program 
and ARB_fragment_program. For more complex shading tasks, separately compiled shader 
objects are a much more attractive alternative than a single, monolithic block of assembly-level 
code. 

The link step resolves external references between the shaders, checks the compatibility 
between the vertex shader and the fragment shader, assigns memory locations to uniform 
variables, and so on. The result is one or more executables that can be installed with 
glUseProgram as part of OpenGL's current state. This command installs the executables on the 
vertex processor, the fragment processor, or both. The installed executables are responsible for 
processing all subsequent graphics primitives. 

2.5.2. OpenGL Shading Language Compiler/Linker 

The source for a single shader is an array of strings of characters, and a single shader is made 
from the concatenation of these strings. There is no inherent connection between strings and 
the lines of code in a shader. A shader may be entirely represented by a single string, or each 
line of shader source code may be contained in a separate string. Each string can contain 
multiple lines, separated by new-lines. No new-lines need be present in a string; a single line 
can be formed from multiple strings. No new-lines or other characters are inserted by the 
OpenGL implementation when it concatenates the strings to form a single shader. It is entirely 
up to the application programmer to provide shader source code to OpenGL with new-lines 
between each line of source code. 

Diagnostic messages returned from compiling a shader must identify both the line number 
within a string and the source string to which the diagnostic message applies. Source strings 
are counted sequentially with the first string counted as string 0. For source code parsing, the 
current line number is one more than the number of new-lines that have been processed. 

The front end of the OpenGL Shading Language compiler has been released as open source by 
3Dlabs and can be used by anyone interested in writing his or her own compiler. This publicly 
available front end performs lexical analysis of OpenGL Shading Language source code to 
produce a token stream and then performs syntactic and semantic analysis of this token stream 
to produce a binary, high-level representation of the language. This front end acts as a 
reference implementation of the OpenGL Shading Language, and therefore it goes hand-in-hand 
with the language specification to define the language clearly. Another advantage to using this 
publicly available front end in an OpenGL Shading Language compiler implementation is that 
the syntax and semantics for shaders are checked consistently by all implementations that use 
this front end. More consistency among compiler implementations makes it easier for 
developers to write shaders that work as intended across a variety of implementations. 



It is assumed that the back end of the OpenGL Shading Language compiler will be implemented 
differently on different platforms. Each implementation must take the high-level representation 
produced by the publicly available front end and produce optimized machine code for a 
particular hardware target. This is an area in which individual hardware vendors can add value 
to their shading language implementation by figuring out ways to map the high-level 
representation onto the actual machine instructions found in their hardware. Likewise, the 
linking stage is also highly hardware dependent because it involves operations like assigning 
variables to actual memory locations in the hardware. A variety of global optimizations may also 
be performed as part of linking. 

The net result of this assumption is that graphics hardware vendors will implement the majority 
of the OpenGL Shading Language compiler and linker. Along with the OpenGL driver itself, this 
software will typically be included as part of the graphics driver installation package that is 
provided by a graphics hardware vendor. 

2.5.3. OpenGL Shading Language API 

As of OpenGL 2.0, support for the OpenGL Shading Language is available as part of standard 
OpenGL. The following OpenGL entry points support the OpenGL Shading Language 

glAttachShader Attach a shader object to a program object 

glBindAttribLocation Specify the generic vertex attribute index to be used for a particular 
user-defined attribute variable in a vertex shader 

glCompileShader Compile a shader 

glCreateProgram Create a program object 

glCreateShader Create a shader object 

glDeleteProgram Delete a program object 

glDeleteShader Delete a shader object 

glDetachShader Detach a shader object from a program object 

glDisableVertexAttribArray Disable a generic vertex attribute from being sent to OpenGL with 
vertex arrays 

glEnableVertexAttribArray Enable a generic vertex attribute to be sent to OpenGL with vertex 
arrays 

glGetActiveAttrib Obtain the name, size, and type of an active attribute variable for a 
program object 

glGetActiveUniform Obtain the name, size, and type of an active uniform variable for a 
program object 

glGetAttachedShaders Get the list of shader objects attached to a program object 

glGetAttribLocation Return the generic vertex attribute index that is bound to a specified 
user-defined attribute variable 

glGetProgram Query one of the parameters of a program object 



 

glGetProgramInfoLog Obtain the information log for a program object 

glGetShader Query one of the parameters of a shader object 

glGetShaderInfoLog Obtain the information log for a shader object 

glGetShaderSource Get the source code for a specific shader object 

glGetUniform Query the current value of a uniform variable 

glGetUniformLocation Query the location assigned to a uniform variable by the linker 

glGetVertexAttrib Return current state for the specified generic vertex attribute 

glGetVertexAttribPointer Return the vertex array pointer value for the specified generic 
vertex attribute 

glIsProgram Determine if an object name corresponds to a program object 

glIsShader Determine if an object name corresponds to a shader object 

glLinkProgram Link a program object to create executable code 

glShaderSource Load source code strings into a shader object 

glUniform Set the value of a uniform variable 

glUseProgram Install a program object's executable code as part of current state 

glValidateProgram Return validation information for a program object 

glVertexAttrib Send generic vertex attributes to OpenGL one vertex at a time 

glVertexAttribPointer Specify location and organization of generic vertex attributes to be sent 
to OpenGL with vertex arrays 

These new entry points are all discussed in more detail in Chapter 7. Reference pages for all of 
the OPENGL SHADING LANGUAGE API entry points defined by these extensions are included in 
Appendix B at the back of this book. 



2.6. Key Benefits 
The following key benefits are derived from the choices that were made during the design of the 
OpenGL Shading Language. 

Tight integration with OpenGL The OpenGL Shading Language was designed for 
use in OpenGL. It is designed in such a way that an existing, working OpenGL 
application can easily be modified to take advantage of the capabilities of 
programmable graphics hardware. Built-in access to existing OpenGL state, reuse of 
API entry points that are already familiar to application developers, and a close 
coupling with the existing architecture of OpenGL are all key benefits of using the 
OpenGL Shading Language for shader development. 

Runtime compilation Source code stays as source code, in its easiest-to-maintain 
form, for as long as possible. An application passes source code to any conforming 
OpenGL implementation that supports the OpenGL Shading Language, and it will be 
compiled and executed properly. There is no need for a multitude of binaries for a 
multitude of different platforms.[1]  

[1] At the time of this writing, the OpenGL ARB is still considering the need for an API that allows shaders to 
be specified in a form other than source code. The primary issues are the protection of intellectual property 
that may be embedded in string-based shader source code and the performance that would be gained by 
allowing shaders to be at least partially precompiled. When such an API is defined, shader portability may be 
reduced, but application developers will have the option of getting better code security and better 
performance. 

No reliance on cross-vendor assembly language Both DirectX and OpenGL 
have widespread support for assembly language interfaces to graphics 
programmability. High-level shading languages could be (and have been) built on 
top of these assembly language interfaces, and such high-level languages can be 
translated into these assembly language interfaces completely outside the 
environment of OpenGL or DirectX. This does have some advantages, but relying on 
an assembly language interface as the primary interface to hardware 
programmability restricts innovation by graphics hardware designers. Hardware 
designers have many more choices for acceleration of an expressive high-level 
language than they do for a restrictive assembly language. It is much too early in 
the development of programmable graphics hardware technology to establish an 
assembly language standard for graphics programmability. C, on the other hand, 
was developed long before any CPU assembly languages that are in existence 
today, and it is still a viable choice for application development. 

Unconstrained opportunities for compiler optimization plus optimal 
performance on a wider range of hardware As we've learned through 
experience with CPUs, compilers are much better at quickly generating efficient 
code than humans are. By allowing high-level source code to be compiled within 
OpenGL, rather than outside of OpenGL, individual hardware vendors have the best 
possible opportunity to deliver optimal performance on their graphics hardware. In 
fact, compiler improvements can be made with each OpenGL driver release, and the 
applications won't need to change any application source code, recompile the 
application, or even relink it. Furthermore, most of the current crop of assembly 
language interfaces are string based. This makes them inefficient for use as 
intermediate languages for compilation because two string translations are required. 
First, the string-based, high-level source must be translated into string-based 
assembly language, and then that string-based assembly language must be passed 
to OpenGL and translated from string-based assembly language to machine code. 

A truly open, cross-platform standard No other high-level graphics shading 



 

language has been approved as part of an open, multivendor standard. Like 
OpenGL itself, the OpenGL Shading Language will be implemented by a variety of 
different vendors for a variety of different environments. 

One high-level language for all programmable graphics processing The 
OpenGL Shading Language is used to write shaders for both the vertex processor 
and the fragment processor in OpenGL, with very small differences in the language 
for the two types of shaders. In the future, it is intended that the OpenGL Shading 
Language will bring programmability to other areas of OpenGL as well. Areas that 
have already received some discussion include programmability for 
packing/unpacking arbitrary image formats and support for programmable 
tessellation of higher-order surfaces in the graphics hardware. 

Support for modular programming By defining compilation and linking as two 
separate steps, shader writers have a lot more flexibility in how they choose to 
implement complex shading algorithms. Rather than implement a complex 
algorithm as a single, monolithic shader, developers are free to implement it as a 
collection of shaders that can be independently compiled and attached to a program 
object. Shaders can be designed with common interfaces so that they are 
interchangeable, and a link operation joins them to create a program. 

No additional libraries or executables The OpenGL Shading Language and the 
compiler and linker that support it are defined as part of OpenGL. Applications need 
not worry about linking against any additional runtime libraries. Compiler 
improvements are delivered as part of OpenGL driver updates. 

  



2.7. Summary 
Here are the key points to understand about how all the pieces fit together at execution time. 

When installed as part of current state, the executable created for the vertex processor is 
executed once for every vertex provided to OpenGL. 

When installed as part of current state, the executable created for the fragment processor 
is executed once for every fragment that is produced by rasterization. 

When vertex or fragment shaders are used, the corresponding fixed functionality is 
disabled. Shaders must implement such functionality themselves if it is desired. 

Varying variables defined in a vertex shader are per-vertex values that are output from 
the vertex processor. Rasterization is the process that causes the per-vertex values to be 
interpolated and per-fragment values to be generated. The per-fragment values become 
the input to the fragment processor and are accessed in the fragment shader with the 
same varying variable name as was used in the vertex shader. 

An application can communicate directly with a vertex shader in two ways: by using 
attribute variables and by using uniform variables. 

Attribute variables are expected to change frequently and may be supplied by the 
application as often as every vertex. 

Applications can pass arbitrary vertex data to a vertex shader with user-defined attribute 
variables. 

Applications can pass standard vertex attributes (color, normal, texture coordinates, 
position, etc.) to a vertex shader with built-in attribute variables. 

An application communicates directly with a fragment shader with uniform variables. 

Uniform variables are expected to change relatively infrequently (at a minimum, they are 
constant for an entire graphics primitive). 

The compiler and linker for the language are contained within OpenGL, but tools for 
compiling, linking, and debugging shaders can exist outside of OpenGL as well. 

To summarize, the following are the most important points about the OpenGL Shading 
Language. 

The language is based on the syntax of C. 

Basic structure and many keywords are the same as in C. 

Vectors and matrices are included in the language as basic types. 

Type qualifiers attribute, uniform, and varying are added to describe variables that 
manage shader I/O. 

Variables of type attribute allow the communication of frequently changing values 



 

from the application to the vertex shader. 

Variables of type varying are the output from a vertex shader and the input to a 
fragment shader. 

Variables of type uniform allow the application to provide relatively infrequently 
changing values to both vertex shaders and fragment shaders. 

The data type sampler is added for accessing textures. 

Built-in variable names can be used to access standard OpenGL state and to communicate 
with OpenGL fixed functionality. 

A variety of built-in functions perform common graphics operations. 

Function declarations are required, and overloading based on number and type of 
arguments is supported as in C++. 

Variables can be declared when needed. 

To install and use OpenGL shaders, do the following: 

After these steps, subsequent graphics primitives will be drawn with the shaders you've 
provided rather than with OpenGL's defined fixed functionality pipeline. 

1.  Create one or more (empty) shader objects by calling glCreateShader. 
 

2.  Provide source code for these shaders by calling glShaderSource. 
 

3.  Compile each of the shaders by calling glCompileShader. 
 

4.  Create a program object by calling glCreateProgram. 
 

5.  Attach all the shader objects to the program object by calling glAttachShader. 
 

6.  Link the program object by calling glLinkProgram. 
 

7.  Install the executable program as part of OpenGL's current state by calling glUseProgram. 



2.8. Further Information 
Just keep reading this book and you'll get to all of the really good stuff! If you really must have 
more technical details, here are pointers to the official specification documents. The 3Dlabs Web 
site also has additional material, including slide presentations, demos, example shaders, and 
source code. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com 

2. Kessenich, John, Dave Baldwin, and Randi Rost, The OpenGL Shading Language, Version 
1.10, 3Dlabs, April 2004. http://www.opengl.org/documentation/spec.html 

3. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
Sept. 2004. http://www.opengl.org/documentation/spec.html 



Chapter 3. Language Definition 
by John Kessenich 

In this chapter, we present the language features of the OpenGL Shading Language. We start 
with a simple example of a working pair of vertex and fragment shaders to show their basic 
structure and interfaces. Each aspect of the language is then discussed in turn. 

The OpenGL Shading Language syntax comes from the C family of programming languages. 
Tokens, identifiers, semicolons, nesting with curly braces, control-flow, and many keywords 
look like C. Both comment styles, // . . . and /* . . . */, are accepted. Much is also different 
though, and all important differences from C are discussed. 

Each shader example is presented as it might appear in a file or onscreen. However, as 
explained in Chapter 7, the OpenGL API passes shaders as strings, not files, because OpenGL 
does not consider shaders file based. 

  



3.1. Example Shader Pair 
A program typically contains two shaders: one vertex shader and one fragment shader. More 
than one shader of each type can be present, but there must be exactly one function main 
between all the fragment shaders and exactly one function main between all the vertex shaders. 
Frequently, it's easiest to just have one shader of each type. 

The following is a simple vertex and fragment shader pair that can smoothly express a surface 
temperature with color. The range of temperatures and their colors are parameterized. First, we 
show the vertex shader. It is executed once for each vertex. 

// uniform qualified variables are changed at most once per primitive 
uniform float CoolestTemp; 
uniform float TempRange; 
 
// attribute qualified variables are typically changed per vertex 
attribute float VertexTemp; 
 
// varying qualified variables communicate from the vertex shader to 
// the fragment shader 
varying float Temperature; 
 
void main() 
{ 
    // compute a temperature to be interpolated per fragment, 
    // in the range [0.0, 1.0] 
    Temperature = (VertexTemp - CoolestTemp) / TempRange; 
 
    /* 
       The vertex position written in the application using 
       glVertex() can be read from the built-in variable 
       gl_Vertex. Use this value and the current model 
       view transformation matrix to tell the rasterizer where 
       this vertex is. 
    */ 
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 
} 

 
That's it for the vertex shader. Primitive assembly follows the preceding vertex processing, 
providing the rasterizer with enough information to create fragments. The rasterizer 
interpolates the Temperature values written per vertex to create values per fragment. Each 
fragment is then delivered to a single execution of the fragment shader, as follows: 

// uniform qualified variables are changed at most once per primitive 
// by the application, and vec3 declares a vector of three 
// floating-point numbers 
uniform vec3 CoolestColor; 
uniform vec3 HottestColor; 
 
// Temperature contains the now interpolated per-fragment 
// value of temperature set by the vertex shader 
varying float Temperature; 
 
void main() 
{ 
    // get a color between coolest and hottest colors, using 
    // the mix() built-in function 
    vec3 color = mix(CoolestColor, HottestColor, Temperature); 



 

 
    // make a vector of 4 floating-point numbers by appending an 
    // alpha of 1.0, and set this fragment's color 
    gl_FragColor = vec4(color, 1.0); 
} 

 
Both shaders receive user-defined state from the application through the declared uniform 
qualified variables. The vertex shader gets information associated with each vertex through the 
attribute qualified variable. Information is passed from the vertex shader to the fragment 
shader through varying qualified variables, whose declarations must match between the vertex 
and fragment shaders. The fixed functionality located between the vertex and fragment 
processors will interpolate the per-vertex values written to this varying variable. When the 
fragment shader reads this same varying variable, it reads the value interpolated for the 
location of the fragment being processed. 

Shaders interact with the fixed functionality OpenGL pipeline by writing built-in variables. 
OpenGL prefixes built-in variables with "gl_". In the preceding examples, writing to gl_Position 
tells the OpenGL pipeline where the transformed vertices are located, and writing to gl_FragColor 
tells the OpenGL pipeline what color to attach to a fragment. 

Execution of the preceding shaders occurs multiple times to process a single primitive, once per 
vertex for the vertex shader and once per fragment for the fragment shader. Many such 
executions of the same shader can happen in parallel. In general, there is no direct tie or 
ordering between shader executions. Information can be communicated neither from vertex to 
vertex nor from fragment to fragment. 



3.2. Data Types 
We saw vectors of floating-point numbers in the example in the previous section. Many other 
built-in data types are available to ease the expression of graphical operations. Booleans, 
integers, matrices, vectors of other types, structures, and arrays are all included. Each is 
discussed in the following sections. Notably missing are string and character types, since there 
is little use for them in processing vertex and fragment data. 

3.2.1. Scalars 

The scalar types available are 

 
These declare variables, as is familiar from C/C++. 

float f; 
float g, h = 2.4; 
int NumTextures = 4; 
bool skipProcessing; 

 
Unlike the original C, the OpenGL Shading Language requires you to provide the type name 
because there are no default types. As in C++, declarations may appear when needed, not just 
after an open curly brace ({). 

Literal floating-point numbers are also specified as in C, except there are no suffixes to specify 
precision since there is only one floating-point type. 

3.14159 
3. 
0.2 
.609 
1.5e10 
0.4E-4 
etc. 

 
In general, floating-point values and operations act as they do in C. 

Integers are not the same as in C. There is no requirement that they appear to be backed in 
hardware by a fixed-width integer register. Consequently, wrapping behavior, when arithmetic 
would overflow or underflow a fixed-width integer register, is undefined. Bit-wise operations like 
left-shift (<<) and bit-wise and (&) are also not supported. 

What can be said about integers? They are guaranteed to have at least 16 bits of precision; 
they can be positive, negative, or zero; and integer arithmetic that stays within this range gives 
the expected results. Note that the precision truly is 16 bits plus the sign of the valuethat is, a 
full range of [-65535,65535] or greater. 

float declares a single floating-point number 

int declares a single integer number 

bool declares a single Boolean number 



Literal integers can be given as decimal values, octal values, or hexadecimal values, as in C. 

42    // a literal decimal integer 
052   // a literal octal integer 
0x2A  // a literal hexadecimal integer 

 
Again, there are no suffixes to specify precision since there is only one integer type. Integers 
are useful as sizes of structures or arrays and as loop counters. Graphical types, such as color 
or position, are best expressed in floating-point variables within a shader. 

Boolean variables are as bool in C++. They can have only one of two values: true or false. 
Literal Boolean constants true and false are provided. Relational operators like less-than (<) 
and logical operators like logical and (&&) always result in Boolean values. Flow-control 
constructs like if-else accept only Boolean-typed expressions. In these regards, the OpenGL 
Shading Language is more restrictive than C++. 

3.2.2. Vectors 

Vectors of float, int, or bool are built-in basic types. They can have two, three, or four 
components and are named as follows: 

 

 

 
Vectors are quite useful. They conveniently store and manipulate colors, positions, texture 
coordinates, and so on. Built-in variables and built-in functions make heavy use of these types. 
Also, special operations are supported. Finally, hardware is likely to have vector-processing 
capabilities that mirror vector expressions in shaders. 

Note that the language does not distinguish between a color vector and a position vector or 
other uses of a floating-point vector. These are all just floating-point vectors from the 
language's perspective. 

Special features of vectors include component access that can be done either through field 
selection (as with structures) or as array accesses. For example, if position is a vec3, it can be 
considered as the vector (x, y, z), and position.x will select the first component of the vector. 

In all, the following names are available for selecting components of vectors: 

vec2 Vector of two floating-point numbers 

vec3 Vector of three floating-point numbers 

vec4 Vector of four floating-point numbers 

ivec2 Vector of two integers 

ivec3 Vector of three integers 

ivec4 Vector of four integers 

bvec2 Vector of two Booleans 

bvec3 Vector of three Booleans 

bvec4 Vector of four Booleans 



 
There is no explicit way of stating that a vector is a color, a position, a coordinate, and so on. 
Rather, these component selection names are provided simply for readability in a shader. The 
only compile-time checking done is that the vector is large enough to provide a specified 
component. Also, if multiple components are selected (swizzling, discussed in Section 3.7.2), all 
the components are from the same family. 

Vectors can also be indexed as a zero-based array to obtain components. For instance, position[2] 
returns the third component of position. Variable indices are allowed, making it possible to loop 
over the components of a vector. Multiplication takes on special meaning when operating on a 
vector since linear algebraic multiplies with matrices are understood. Swizzling, indexing, and 
other operations are discussed in detail in Section 3.7. 

3.2.3. Matrices 

Built-in types are available for matrices of floating-point numbers. There are 2 x 2, 3 x 3, and 4 
x 4 sizes. 

 
These are useful for storing linear transforms or other data. They are treated semantically as 
matrices, particularly when a vector and a matrix are multiplied together, in which case the 
proper linear-algebraic computation is performed. When relevant, matrices are organized in 
column major order, as is the tradition in OpenGL. 

You may access a matrix as an array of column vectorsthat is, if transform is a mat4, transform[2] 
is the third column of transform. The resulting type of transform[2] is vec4. Column 0 is the first 
column. Because transform[2] is a vector and you can also treat vectors as arrays, transform[3][1] is 
the second component of the vector forming the fourth column of transform. Hence, it ends up 
looking as if transform is a two-dimensional array. Just remember that the first index selects the 
column, not the row, and the second index selects the row. 

3.2.4. Samplers 

Texture lookups require some indication as to which texture or texture unit will do the lookup. 
The OpenGL Shading Language doesn't really care about the underlying implementation of 
texture units or other forms of organizing texture lookup hardware. Hence, it provides a simple 
opaque handle to encapsulate what to look up. These handles are called SAMPLERS. The sampler 
types available are 

x, y, z, w Treat a vector as a position or direction 

r, g, b, a Treat a vector as a color 

s, t, p, q Treat a vector as a texture coordinate 

mat2 2 x 2 matrix of floating-point numbers 

mat3 3 x 3 matrix of floating-point numbers 

mat4 4 x 4 matrix of floating-point numbers 

sampler1D Accesses a one-dimensional texture 

sampler2D Accesses a two-dimensional texture 

sampler3D Accesses a three-dimensional 
texture 



 
When the application initializes a sampler, the OpenGL implementation stores into it whatever 
information is needed to communicate what texture to access. Shaders cannot themselves 
initialize samplers. They can only receive them from the application, through a uniform 
qualified sampler, or pass them on to user or built-in functions. As a function parameter, a 
sampler cannot be modified, so there is no way for a shader to change a sampler's value. 

For example, a sampler could be declared as 

uniform sampler2D Grass; 

 
(Uniform qualifiers are discussed in more detail in Section 3.5.2.) 

This variable can then be passed into a corresponding texture lookup function to access a 
texture: 

vec4 color = texture2D(Grass, coord); 

 
where coord is a vec2 holding the two-dimensional position used to index the grass texture, and 
color is the result of doing the texture lookup. Together, the compiler and the OpenGL driver 
validate that Grass really references a two-dimensional texture and that Grass is passed only into 
two-dimensional texture lookups. 

Shaders may not manipulate sampler values. For example, the expression Grass + 1 is not 
allowed. If a shader wants to combine multiple textures procedurally, an array of samplers can 
be used as shown here: 

const int NumTextures = 4; 
uniform sampler2D textures[NumTextures]; 

 
These can be processed in a loop: 

for (int i = 0; i < NumTextures; ++i) 
    . . . =  texture2D(textures[i], . . .); 

 
The idiom Grass+1 could then become something like 

textures[GrassIndex+1] 

 
which is a valid way of manipulating the sampler. 

3.2.5. Structures 

The OpenGL Shading Language provides user-defined structures similar to C. For example, 

samplerCube Accesses a cube-map texture 

sampler1DShadow Accesses a one-dimensional depth 
texture with comparison 

sampler2DShadow Accesses a two-dimensional depth 
texture with comparison 



struct light 
{ 
    vec3 position; 
    vec3 color; 
}; 

 
As in C++, the name of the structure is the name of this new user-defined type. No typedef is 
needed. In fact, the typedef keyword is still reserved because there is not yet a need for it. A 
variable of type light from the preceding example is simply declared as 

light ceilingLight; 

 
Most other aspects of structures mirror C. They can be embedded and nested. Embedded 
structure type names have the same scope as the structure in which they are declared. 
However, embedded structures must be named. Structure members can also be arrays. Finally, 
each level of structure has its own name space for its members' names, as is familiar. 

Bit-fields (the capability to declare an integer with a specified number of bits) are not 
supported. 

Currently, structures are the only user-definable type. The keywords union, enum, and class 
are reserved for possible future use. 

3.2.6. Arrays 

Arrays of any type can be created. The declaration 

vec4 points[10]; 

 
creates an array of ten vec4 variables, indexed starting with zero. There are no pointers; the 
only way to declare an array is with square brackets. Declaring an array as a function 
parameter also requires square brackets and a size because, currently, array arguments are 
passed as if the whole array is a single object, not as if the argument is a pointer. 

Arrays, unless they are function parameters, do not have to be declared with a size. A 
declaration like 

vec4 points[]; 

 
is allowed, as long as either of the following two cases is true: 

1. Before the array is referenced, it is declared again with a size, with the same type as the 
first declaration. For example, 

vec4 points[];    // points is an array of unknown size 
vec4 points[10];  // points is now an array of size 10 

This cannot be followed by another declaration: 

vec4 points[];    // points is an array of unknown size 
vec4 points[10];  // points is now an array of size 10 
vec4 points[20];  // this is illegal 
vec4 points[];    // this is also illegal 



2. All indices that statically reference the array are compile-time constants. In this case, the 
compiler will make the array large enough to hold the largest index it sees used. For 
example, 

vec4 points[];         // points is an array of unknown size 
points[2] = vec4(1.0); // points is now an array of size 3 
points[7] = vec4(2.0); // points is now an array of size 8 

In this case, at runtime the array has only one size, determined by the largest index the 
compiler sees. Such automatically sized arrays cannot be passed as function arguments. 

This feature is quite useful for handling the built-in array of texture coordinates. Internally, this 
array is declared as 

varying vec4 gl_TexCoord[]; 

 
If a program uses only compile-time constant indices of 0 and 1, the array is implicitly sized as 
gl_TexCoord[2]. If a shader uses a nonconstant variable to index the array, that shader must 
explicitly declare the array with the desired size. Of course, keeping the size to a minimum is 
important, especially for varying variables, which are likely a limited hardware resource. 

Multiple shaders sharing the same array must declare it with the same size. The linker verifies 
this. 

3.2.7. Void 

The type void declares a function that returns no value. For example, the function main returns 
no value and must be declared as type void. 

void main() 
{ 
    . . . 
} 

 
Other than for functions that return nothing, the void type is not useful. 

3.2.8. Declarations and Scope 

Variables are declared quite similarly to the way they are declared in C++. They can be 
declared where needed and have scope as in C++. For example, 

float f; 
 
f = 3.0; 
 
vec4 u, v; 
 
for (int i = 0; i < 10; ++i) 
    v = f * u + v; 

 
The scope of a variable declared in a for statement ends at the end of the loop's substatement. 
However, variables may not be declared in an if statement. This simplifies implementation of 
scoping across the else substatement, with little practical cost. 

As in C, variable names are case sensitive, must start with a letter or underscore (_), and 



 

contain only letters, numbers, and underscores (_). Userdefined variables cannot start with the 
string "gl_", because those names are reserved for future use by OpenGL. Names containing 
consecutive underscores (__) are also reserved. 

3.2.9. Type Matching and Promotion 

The OpenGL Shading Language is strict with type matching. In general, types being assigned 
must match, argument types passed into functions must match formal parameter declarations, 
and types being operated on must match the requirements of the operator. There are no 
automatic promotions from one type to another. This may occasionally make a shader have an 
extra explicit conversion. However, it also simplifies the language, preventing some forms of 
obfuscated code and some classes of defects. For example, there are no ambiguities in which 
overloaded function should be chosen for a given function call. 



3.3. Initializers and Constructors 
A shader variable may be initialized when it is declared. As is familiar from C, the following 
example initializes b at declaration time and leaves a and c undefined: 

float a, b = 3.0, c; 

 
Constant qualified variables must be initialized. 

const int Size = 4;  // initializer is required 

 
Attribute, uniform, and varying variables cannot be initialized when declared. 

attribute float Temperature;  // no initializer allowed, 
                              // the vertex API sets this 
 
uniform int Size;             // no initializer allowed, 
                              // the uniform setting API sets this 
 
varying float density;        // no initializer allowed, the vertex 
                              // shader must programmatically set this 

 
To initialize aggregate types, at either declaration time or elsewhere, CONSTRUCTORS are used. No 
initializer uses the brace syntax "{. . .}" from C. Syntactically, constructors look like function 
calls that have a type name where the function name would gofor example, to initialize a vec4 
with the values (1.0, 2.0, 3.0, 4.0), use 

vec4 v = vec4(1.0, 2.0, 3.0, 4.0); 

 
Or, because constructor syntax is the same whether it's in an initializer or not, use 

vec4 v; 
v = vec4(1.0, 2.0, 3.0, 4.0); 

 
There are constructors for all the built-in types (except samplers) as well as for structures. 
Some examples: 

vec4 v = vec4(1.0, 2.0, 3.0, 4.0); 
ivec2 c = ivec2(3, 4); 
vec3 color = vec3(0.2, 0.5, 0.8); 
vec4 color4 = vec4(color, 1.0) 
struct light 
{ 
    vec4 position; 
    struct tLightColor 
    { 
        vec3 color; 
        float intensity; 
    } lightColor; 
} light1 = light(v, tLightColor(color, 0.9)); 



 
For matrices, the components are written in column major order. For example, 

mat2 m = mat2(1.0, 2.0, 3.0, 4.0); 

 
results in the following matrix: 

 

 
So far, we've only shown constructors taking one argument for each component being 
constructed. Built-in constructors for vectors can also take a single argument, which is 
replicated into each component. 

vec3 v = vec3(0.6); 

 
is equivalent to 

vec3 v = vec3(0.6, 0.6, 0.6); 

 
This is true only for vectors. Structure constructors must receive one argument per member 
being constructed. Matrix constructors also have a single argument form, but in this case it 
initializes just the diagonal of the matrix. The remaining components are initialized to 0.0. 

mat2 m = mat2(1.0);  // makes a 2 x 2 identity matrix 

 
is equivalent to 

mat2 m = mat2(1.0, 0.0, 0.0, 1.0);    // makes a 2 x 2 identity matrix 

 
Constructors can also have vectors and matrices as arguments. However, constructing matrices 
from other matrices is reserved for future definition. 

vec4 v = vec4(1.0); 
vec2 u = vec2(v);  // the first two components of v initialize u 
mat2 m = mat2(v); 

 
Matrix components are read out of arguments in column major order and written in column 
major order. 

Extra components within a single constructor argument are silently ignored. Normally, this is 
useful for shrinking a value, like eliminating alpha from a color or w from a position. It is an 
error to have completely unused arguments passed to a constructor. 

vec2 t = vec2(1.0, 2.0, 3.0);  // illegal; third argument is unused 

 



3.4. Type Conversions 
Explicit type conversions are performed with constructors. For example, 

float f = 2.3; 
bool b = bool(f); 

 
sets b to true. This is useful for flow-control constructs, like if, which require Boolean values. 
Boolean constructors convert non-zero numeric values to true and zero numeric values to false. 

The OpenGL Shading Language does not provide C-style typecast syntax, which can be 
ambiguous as to whether a value is converted to a different type or is simply reinterpreted as a 
different type. In fact, there is no way of reinterpreting a value as a different type in the 
OpenGL Shading Language. There are no pointers, no type unions, no implicit type changes, 
and no reinterpret casts. Instead, constructors perform conversions. The arguments to a 
constructor are converted to the type they are constructing. Hence, the following are allowed: 

float f = float(3);  // convert integer 3 to floating-point 3.0 
float g = float(b);  // convert Boolean b to floating point 
vec4 v = vec4(2);    // set all components of v to 2.0 

 
For conversion from a Boolean, true is converted to 1 or 1.0, and false is converted to a zero. 



3.5. Qualifiers and Interface to a Shader 
Qualifiers prefix both variables and formal function parameters. The qualifiers that modify 
formal function parameters (const, in, out, and inout) are discussed in Section 3.6.2. This 
section focuses on the other qualifiers, most of which form the interfaces of the shaders to their 
outside world. The following is the complete list of qualifiers (used outside of formal function 
parameters). 

 
Getting information into and out of a shader is quite different from more typical programming 
environments. Information is transferred to and from a shader by reading and writing built-in 
variables and user-defined attribute, uniform, and varying variables. The most common 
built-in variables were shown in the example at the beginning of this chapter. They are 
gl_Position for output of the homogeneous coordinates of the vertex position and gl_FragColor for 
output of the fragment's color from a fragment shader. The complete set of built-in variables is 
provided in Chapter 4. Examples of attribute, uniform, and varying qualified variables were 
seen briefly in the opening example for getting other information into and out of shaders. Each 
is discussed in this section. 

Variables qualified as attribute, uniform, or varying must be declared at global scope. This is 
sensible since they are visible outside of shaders and, for a single program, they all share a 
single name space. 

Qualifiers are always specified before the type of a variable, and because there is no default 
type, the form of a qualified variable declaration always includes a type. 

attribute float Temperature; 
const int NumLights = 3; 
uniform vec4 LightPosition[NumLights]; 
varying float LightIntensity; 

 
3.5.1. Attribute Qualifiers 

Attribute-qualified variables (or attributes) enable an application to pass frequently modified 
data into a vertex shader. They can be changed as often as once per vertex, either directly or 
indirectly by the application. Built-in attributes, like gl_Vertex and gl_Normal, read traditional 
OpenGL state, and user-defined attributes can be named by the coder. 

Attributes are limited to floating-point scalars, floating-point vectors, and matrices. Attributes 
declared as integers or Booleans are not allowed, nor are attributes declared as structures or 
arrays. This is, in part, a result of encouraging high-performance frequent changing of 
attributes in hardware implementations of the OpenGL system. Attributes cannot be modified by 
a shader. 

attribute For frequently changing information, from the application 
to a vertex shader 

uniform For infrequently changing information, from the application 
to either a vertex shader or a fragment shader 

varying For interpolated information passed from a vertex shader 
to a fragment shader 

const For declaring nonwritable, compile-time constant variables, 
as in C 



Attributes cannot be declared in fragment shaders. 

3.5.2. Uniform Qualifiers 

Uniform qualified variables (or uniforms), like attributes, are set only outside a shader and are 
intended for data that changes less frequently. They can be changed at most once per 
primitive. All data types and arrays of all data types are supported for uniform qualified 
variables. All the vertex and fragment shaders forming a single program share a single global 
name space for uniforms. Hence, uniforms of the same name in a vertex and fragment program 
will be the same uniform variable. 

Uniforms cannot be written to in a shader. This is sensible because an array of processors may 
be sharing the same resources to hold uniforms and other language semantics break down if 
uniforms could be modified. 

Recall that unless a sampler (e.g., sampler2D) is a function parameter, the uniform qualifier 
must be used when it is declared. This is because samplers are opaque, and making them 
uniforms allows the OpenGL driver to validate that the application initializes a sampler with a 
texture and texture unit consistent with its use in the shader. 

3.5.3. Varying Qualifiers 

Varying qualified variables (or varyings) are the only way a vertex shader can communicate 
results to a fragment shader. Such variables form the dynamic interface between vertex and 
fragment shaders. The intention is that for a particular attribute of a drawing primitive, each 
vertex might have a different value and these values need to be interpolated across the 
fragments in the primitive. The vertex shader writes the per-vertex values into a varying 
variable, and when the fragment shader reads from this variable, it gets back a value 
interpolated between the vertices. If some attribute were to be the same across a large 
primitive, not requiring interpolation, the vertex shader need not communicate it to the 
fragment shader at all. Instead, the application could pass this value directly to the fragment 
shader through a uniform qualified variable. 

The exception to using varying variables only for interpolated values is for any value the 
application will change often, either per triangle or per some small set of triangles or vertices. 
These values may be faster to pass as attribute variables and forwarded as varying variables 
because changing uniform values frequently may impact performance. 

The automatic interpolation of varying qualified variables is done in a perspective-correct 
manner. This approach is necessary no matter what type of data is being interpolated. 
Otherwise, such values would not change smoothly across edges introduced for surface 
subdivision. The non-perspective-correct interpolated result would be continuous, but its 
derivative would not be, and this effect can be quite visible. 

A varying qualified variable is written in a vertex shader and read in a fragment shader. It is 
illegal for a fragment shader to write to a varying variable. However, the vertex shader may 
read a varying variable, getting back what it has just written. Reading a varying qualified 
variable before writing it returns an undefined value. 

3.5.4. Constant Qualifiers 

Variables qualified as const (except for formal function parameters) are compile-time constants 
and are not visible outside the shader that declares them. Both scalar and nonscalar constants 
are supported. Structure fields may not be qualified with const, but structure variables can be 
declared as const and initialized with a structure constructor. Initializers for const declarations 
must be formed from literal values, other const qualified variables (not including function call 
parameters), or expressions of these. 



 

Some examples: 

const int numIterations = 10; 
const float pi = 3.14159; 
const vec2 v = vec2(1.0, 2.0); 
const vec3 u = vec3(v, pi); 
const struct light 
{ 
    vec3 position; 
    vec3 color; 
} fixedLight = light(vec3(1.0, 0.5, 0.5), vec3(0.8, 0.8, 0.5)); 

 
All the preceding variables are compile-time constants. The compiler may propagate and fold 
constants at compile time, using the precision of the processor executing the compiler, and 
need not allocate any runtime resources to const qualified variables. 

3.5.5. Absent Qualifier 

If no qualifier is specified when a variable (not a function parameter) is declared, the variable 
can be both read and written by the shader. Nonqualified variables declared at global scope can 
be shared between shaders of the same type that are linked in the same program. Vertex 
shaders and fragment shaders each have their own separate global name space for nonqualified 
globals. However, nonqualified user-defined variables are not visible outside a program. That 
privilege is reserved for variables qualified as attribute or uniform and for built-in variables 
representing OpenGL state. 

Unqualified variables have a lifetime limited to a single run of a shader. There is also no concept 
corresponding to a static variable in a C function that would allow a variable to be set to a 
value and have its shader retain that value from one execution to the next. Implementation of 
such variables is made difficult by the parallel processing nature of the execution environment, 
in which multiple instantiations run in parallel, sharing much of the same memory. In general, 
writable variables must have unique instances per processor executing a shader and therefore 
cannot be shared. 

Because unqualified global variables have a different name space for vertex shaders than that 
for fragment shaders, it is not possible to share information through such variables between 
vertex and fragment shaders. Read-only variables can be shared if declared as uniform, and 
variables written by a vertex shader can be read by the fragment shader only through the 
varying mechanism. 

  



3.6. Flow Control 
Flow control is very much like that in C++. The entry point into a shader is the function main. A 
program containing both vertex and fragment shaders has two functions named main, one for 
entering a vertex shader to process each vertex and one to enter a fragment shader to process 
each fragment. Before main is entered, any initializers for global variable declarations are 
executed. 

Looping can be done with for, while, and do-while, just as in C++. Variables can be declared 
in for and while statements, and their scope lasts until the end of their substatements. The 
keywords break and continue also exist and behave as in C. 

Selection can be done with if and if-else, just as in C++, with the exception that a variable 
cannot be declared in the if statement. Selection by means of the selection operator (?:) is also 
available, with the extra constraint that the second and third operands must have exactly the 
same type. 

The type of the expression provided to an if statement or a while statement, or to terminate a 
for statement, must be a scalar Boolean. As in C, the right-hand operand to logical and (&&) is 
not evaluated (or at least appears not to be evaluated) if the left-hand operand evaluates to 
false, and the right-hand operand to logical or (||) is not evaluated if the left-hand operand 
evaluates to true. Similarly, only one of the second or third operands in the selection operator 
(:?) will be evaluated. A logical exclusive or (^^) is also provided, for which both sides are 
always evaluated. 

A special branch, discard, can prevent a fragment from updating the frame buffer. When a 
fragment shader executes the discard keyword, the fragment being processed is marked to be 
discarded. An implementation might or might not continue executing the shader, but it is 
guaranteed that there is no effect on the frame buffer. 

A goto keyword or equivalent is not available, nor are labels. Switching with switch is also not 
provided. 

3.6.1. Functions 

Function calls operate much as in C++. Function names can be overloaded by parameter type 
but not solely by return type. Either a function definition (body) or declaration must be in scope 
before a function is called. Parameter types are always checked. This means an empty 
parameter list () in a function declaration is not ambiguous, as in C, but rather explicitly means 
that the function accepts no arguments. Also, parameters must have exact matches since no 
automatic promotions are done, so selection of overloaded functions is quite straightforward. 

Exiting from a function with return operates the same as in C++. Functions returning nonvoid 
types must return values whose type must exactly match the return type of the function. 

Functions may not be called recursively, either directly or indirectly. 

3.6.2. Calling Conventions 

The OpenGL Shading Language uses call by value-return as its calling convention. The call by 
value part is familiar from C: Parameters qualified as input parameters are copied into the 
function and not passed as a reference. Because there are no pointers, a function need not 
worry about its parameters being aliases of some other memory. The return part of call by 
value-return means parameters qualified as output parameters are returned to the caller by 



being copied back from the called function to the caller when the function returns. 

To specify which parameters are copied when, prefix them with the qualifier keywords in, out, 
or inout. For something that is just copied into the function but not returned, use in. The in 
qualifier is also implied when no qualifiers are specified. To say a parameter is not to be copied 
in but is to be set and copied back on return, use the qualifier out. To say a parameter is 
copied both in and out, use the qualifier inout. 

 
The const qualifier can also be applied to function parameters. Here, it does not mean the 
variable is a compile-time constant, but rather that the function is not allowed to write it. Note 
that an ordinary, nonqualified input-only parameter can be written to; it just won't be copied 
back to the caller. Hence, there is a distinction between a parameter qualified as const in and 
one qualified only as in (or with no qualifier). Of course, out and inout parameters cannot be 
declared as const. 

Some examples: 

void ComputeCoord(in vec3 normal,  // Parameter 'normal' is copied in, 
                                   // can be written to, but will not be 
                                   // copied back out. 
                  vec3 tangent,    // Same behavior as if "in" was used. 
                  inout vec3 coord)// Copied in and copied back out. 

 
Or, 

vec3 ComputeCoord(const vec3 normal,// normal cannot be written to 
                  vec3 tangent, 
                  in vec3 coord)    //the function will return the result 

 
The following are not legal: 

void ComputeCoord(const out vec3 normal, //not legal; can't write normal 
                  const inout vec3 tang, //not legal; can't write tang 
                  in out vec3 coord)     //not legal; use inout 

 
Structures and arrays can also be passed as arguments to a function. Keep in mind, though, 
that these data types are passed by value and there are no references, so it is possible to cause 
some large copies to occur at function call time. Array parameters must be declared with their 
size, and only arrays of matching type and size can be passed to an array parameter. The 
return type of a function is not allowed to be an array. 

Functions can either return a value or return nothing. If a function returns nothing, it must be 
declared as type void. If a function returns a value, the type can be any type except an array. 
However, structures can be returned, and structures can contain arrays. 

3.6.3. Built-in Functions 

in Copy in but don't copy back out; still writable within the 
function 

out Only copy out; readable, but undefined at entry to function 

inout Copy in and copy out 



 

A large set of built-in functions is available. Built-in functions are documented in full in Chapter 
5. 

A shader can override these functions, providing its own definition. To override a function, 
provide a prototype or definition that is in scope at call time. The compiler or linker then looks 
for a user-defined version of the function to resolve that call. For example, one of the built-in 
sine functions is declared as 

float sin(float x); 

 
If you want to experiment with performance or accuracy trade-offs in a sine function or 
specialize it for a particular domain, you can override the built-in function with your own 
function. 

float sin(float x) 
{ 
    return <.. some function of x..> 
} 
 
void main() 
{ 
    // call the sin function above, not the built-in sin function 
    float s = sin(x); 
} 

 
This is similar to the standard language linking techniques of using libraries of functions and to 
having more locally scoped function definitions satisfy references before the library is checked. 
If the definition is in a different shader, just make sure a prototype is visible before calling the 
function. Otherwise, the built-in version is used. 



3.7. Operations 
Table 3.1 includes the operators, in order of precedence, available in the OpenGL Shading 
Language. The precedence and associativity are consistent with C. 

 
3.7.1. Indexing 

Vectors, matrices, and arrays can be indexed with the index operator ([ ]). All indexing is zero 
based; the first element is at index 0. Indexing an array operates just as in C. 

Indexing a vector returns scalar components. This allows giving components numerical names 
of 0, 1, . . . and also enables variable selection of vector components, should that be needed. 
For example, 

vec4 v = vec4(1.0, 2.0, 3.0, 4.0); 
float f = v[2];  // f takes the value 3.0 

 
Here, v[2] is the floating-point scalar 3.0, which is then assigned into f. 

Indexing a matrix returns columns of the matrix as vectors. For example, 

mat4 m = mat4(3.0);  // initializes the diagonal to all 3.0 
vec4 v; 
v = m[1];   // places the vector (0.0, 3.0, 0.0, 0.0) into v 

Table 3.1. Operators, in order of precedence 

Operator Description 

[ ] Index 

. Member selection and swizzle 

++ -- Postfix increment/decrement 

++ -- Prefix increment/decrement 

- ! Unary negation and logical not 

* / Multiply and divide 

+ - Add and subtract 

< > <= >= Relational 

== != Equality 

&& Logical and 

^^ Logical exclusive or 

|| Logical inclusive or 

?: Selection 

= += -= *= /= Assignment 

, Sequence 



 
Here, the second column of m, m[1] is treated as a vector that is copied into v. 

Behavior is undefined if an array, vector, or matrix is accessed with an index that is less than 
zero or greater than or equal to the size of the object. 

3.7.2. Swizzling 

The normal structure-member selector (.) is also used to SWIZZLE components of a vectorthat is, 
select or rearrange components by listing their names after the swizzle operator (.). Examples: 

vec4 v4; 
v4.rgba;   // is a vec4 and the same as just using v4, 
v4.rgb;    // is a vec3, 
v4.b;      // is a float, 
v4.xy;     // is a vec2, 
v4.xgba;   // is illegal - the component names do not come from 
           // the same set. 

 
The component names can be out of order to rearrange the components, or they can be 
replicated to duplicate the components: 

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0); 
vec4 swiz = pos.wzyx; // swiz = (4.0, 3.0, 2.0, 1.0) 
vec4 dup = pos.xxyy; // dup = (1.0, 1.0, 2.0, 2.0) 

 
At most, four component names can be listed in a swizzle; otherwise, they would result in a 
nonexistent type. The rules for swizzling are slightly different for R-VALUES (expressions that are 
read from) and L-VALUES (expressions that say where to write to). R-values can have any 
combination and repetition of components. L-values must not have any repetition. For example: 

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0); 
pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0) 
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0) 
pos.xx = vec2(3.0, 4.0); // illegal - 'x' used twice 

 
For R-values, this syntax can be used on any expression whose resultant type is a vector. For 
example, getting a two-component vector from a texture lookup can be done as 

vec2 v = texture1D(sampler, coord).xy; 

 
where the built-in function texture1D returns a vec4. 

3.7.3. Component-wise Operation 

With a few important exceptions, when an operator is applied to a vector, it behaves as if it 
were applied independently to each component of the vector. We refer to this behavior as 
component-wise for short. 

For example, 

vec3 v, u; 
float f; 



v = u + f; 

 
is equivalent to 

v.x = u.x + f; 
v.y = u.y + f; 
v.z = u.z + f; 

 
And 

vec3 v, u, w; 
w = v + u; 

 
is equivalent to 

w.x = v.x + u.x; 
w.y = v.y + u.y; 
w.z = v.z + u.z; 

 
If a binary operation operates on a vector and a scalar, the scalar is applied to each component 
of the vector. If two vectors are operated on, their sizes must match. 

Exceptions are multiplication of a vector times a matrix and a matrix times a matrix, which 
perform standard linear-algebraic multiplies, not component-wise multiplies. 

Increment and decrement operators (++ and --) and unary negation (-) behave as in C. When 
applied to a vector or matrix, they increment or decrement each component. They operate on 
integer and floating-point-based types. 

Arithmetic operators of addition (+), subtraction (-), multiplication (*), and division (/) behave 
as in C, or component-wise, with the previously described exception of using linear-algebraic 
multiplication on vectors and matrices: 

vec4 v, u; 
mat4 m; 
v * u;  // This is a component-wise multiply 
v * m;  // This is a linear-algebraic row-vector times matrix multiply 
m * v;  // This is a linear-algebraic matrix times column-vector multiply 
m * m;  // This is a linear-algebraic matrix times matrix multiply 

 
All other operations are performed component by component. 

Logical not (!), logical and (&&), logical or (||), and logical inclusive or (^^) operate only on 
expressions that are typed as scalar Booleans, and they result in a Boolean. These cannot 
operate on vectors. A built-in function, not, computes the component-wise logical not of a vector 
of Booleans. 

Relational operations (<, >, <=, and >=) operate only on floating-point and integer scalars 
and result in a scalar Boolean. Certain built-in functions, for instance, lessThanEqual, compute a 
Boolean vector result of component-wise comparisons of two vectors. 

The equality operators (== and !=) operate on all types except arrays. They compare every 
component or structure member across the operands. This results in a scalar Boolean, 



 

indicating whether the two operands were equal. For two operands to be equal, their types 
must match, and each of their components or members must be equal. To compare two vectors 
in a component-wise fashion, call the built-in functions equal and notEqual. 

Scalar Booleans are produced by the operators equal (==), not equal (!=), relational (<, >, 
<=, and >=), and logical not (!) because flow-control constructs (if, for, etc.) require a scalar 
Boolean. If built-in functions like equal are called to compute a vector of Booleans, such a vector 
can be turned into a scalar Boolean with the built-in functions any or all. For example, to do 
something if any component of a vector is less than the corresponding component of another 
vector, the code would be 

vec4 u, v; 
. . . 
if (any(lessThan(u, v))) 
    . . . 

 
Assignment (=) requires exact type match between the left- and right-hand side. Any type, 
except for arrays, can be assigned. Other assignment operators (+=, -=, *=, and /=) are 
similar to C but must make semantic sense when expanded, as in 

a *= b    a = a * b 

 
where the expression a * b must be semantically valid, and the type of the expression a * b 
must be the same as the type of a. The other assignment operators behave similarly. 

The ternary selection operator (?:) operates on three expressions: exp1 ? exp2 : exp3. This 
operator evaluates the first expression, which must result in a scalar Boolean. If the result is 
true, the operator selects to evaluate the second expression; otherwise, it selects to evaluate 
the third expression. Only one of the second and third expressions will appear to be evaluated. 
The second and third expressions must be the same type, but they can be of any type other 
than an array. The resulting type is the same as the type of the second and third expressions. 

The sequence operator (,) operates on expressions by returning the type and value of the 
rightmost expression in a comma-separated list of expressions. All expressions are evaluated, 
in order, from left to right. 



3.8. Preprocessor 
The preprocessor is much like that in C. Support for 

#define 
#undef 
#if 
#ifdef 
#ifndef 
#else 
#elif 
#endif 

 
as well as the defined operator are exactly as in standard C. This includes macros with 
arguments and macro expansion. Built-in macros are 

__LINE__ 
__FILE__ 
__VERSION__ 

 
__LINE__ substitutes a decimal integer constant that is one more than the number of preceding 
new-lines in the current source string. 

__FILE__ substitutes a decimal integer constant that says which source string number is 
currently being processed. 

__VERSION__ substitutes a decimal integer reflecting the version number of the OpenGL Shading 
Language. The version of the shading language described in this document has __VERSION__ 
defined as the decimal integer 110. 

Macro names containing two consecutive underscores (__) are reserved for future use as 
predefined macro names, as are all macro names prefixed with "GL_". 

There is also the usual support for 

#error message 
#line 
#pragma 

 
#error puts message into the shader's information log. The compiler then proceeds as if a 
semantic error has been encountered. 

#line must have, after macro substitution, one of the following two forms: 

#line line 
#line line source-string-number 

 
where line and source-string-number are constant integer expressions. After processing this directive 
(including its new-line), the implementation behaves as if it is compiling at line number line+1 
and source string number source-string-number. Subsequent source strings are numbered 
sequentially until another #line directive overrides that numbering. 



#pragma is implementation dependent. Tokens following #pragma are not subject to preprocessor 
macro expansion. If an implementation does not recognize the tokens specified by the pragma, 
the pragma is ignored. However, the following pragmas are defined as part of the language. 

#pragma STDGL 

 
The STDGL pragma reserves pragmas for use by future revisions of the OpenGL Shading 
Language. No implementation may use a pragma whose first token is STDGL. 

Use the optimize pragma 

#pragma optimize(on) 
#pragma optimize(off) 

 
to turn optimizations on or off as an aid in developing and debugging shaders. The optimize 
pragma can occur only outside function definitions. By default, optimization is turned on for all 
shaders. 

The debug pragma 

#pragma debug(on) 
#pragma debug(off) 

 
enables compiling and annotating a shader with debug information so that it can be used with a 
debugger. The debug pragma can occur only outside function definitions. By default, debug is 
set to off. 

Shaders should declare the version of the language to which they are written by using 

#version number 

 
If the targeted version of the language is the version that was approved in conjunction with 
OpenGL 2.0, then a value of 110 should be used for number. Any value less than 110 causes an 
error to be generated. Any value greater than the latest version of the language supported by 
the compiler also causes an error to be generated. Version 110 of the language does not 
require shaders to include this directive, and shaders without this directive are assumed to 
target version 110 of the OpenGL Shading Language. This directive, when present, must occur 
in a shader before anything else except comments and white space. 

By default, compilers must issue compile-time syntactic, grammatical, and semantic errors for 
shaders that do not conform to the OpenGL Shading Language specification. Any extended 
behavior must first be enabled through a preprocessor directive. The behavior of the compiler 
with respect to extensions is declared with the #extension directive: 

#extension extension_name : behavior 
#extension all : behavior 

 
extension_name is the name of an extension. The token all means that the specified behavior 
should apply to all extensions supported by the compiler. The possible values for behavior and 
their corresponding effects are shown in Table 3.2. A shader could check for the existence of a 
built-in function named foo defined by a language extension named GL_ARB_foo in the following 
way: 



 
#ifdef GL_ARB_foo 
    #extension GL_ARB_foo : enable 
    myFoo = foo(); // use the built-in foo() 
#else 
    // use some other method to compute myFoo 
#endif 

 
Directives that occur later override those that occur earlier. The all token sets the behavior for 
all extensions, overriding all previously issued #extension directives, but only for behaviors warn 
and disable. 

The initial state of the compiler is as if the directive 

#extension all : disable 

 
were issued, telling the compiler that all error and warning reporting must be done according to 
the nonextended version of the OpenGL Shading Language that is being targeted (i.e., all 
extensions are ignored). 

Macro expansion is not done on lines containing #extension and #version directives. 

The number sign (#) on a line by itself is ignored. Any directive not described in this section 

Table 3.2. Permitted values for the behavior expression in 
the #extension directive 

Value of behavior Effect 

require Behave as specified by the extension 
extension_name. The compiler reports an error on 
the #extension directive if the specified extension is 
not supported or if the token all is used instead of 
an extension name. 

enable Behave as specified by the extension 
extension_name. The compiler provides a warning 
on the #extension directive if the specified 
extension is not supported, and it reports an error 
if the token all is used instead of an extension 
name. 

warn Behave as specified by the extension 
extension_name, except cause the compiler to issue 
warnings on any detectable use of the specified 
extension, unless such use is supported by other 
enabled or required extensions. If all is specified, 
then the compiler warns on all detectable uses of 
any extension used. 

disable Behave (including errors and warnings) as if the 
extension specified by extension_name is not part of 
the language definition. If all is specified, then 
behavior must revert to that of the nonextended 
version of the language that is being targeted. The 
compiler warns if the specified extension is not 
supported. 

 

causes the compiler to generate an error message. The shader is subsequently treated as ill-
formed. 



3.9. Preprocessor Expressions 
Preprocessor expressions can contain the operators listed in Table 3.3. 

 
Preprocessor expressions have precedence, associativity, and behavior matching the standard C 
preprocessor. 

Preprocessor expressions can be executed on the processor running the compiler and not on the 
graphics processor that executes the shader. Precision is allowed to be this host processor's 
precision and hence will likely be different from the precision available when expressions are 
executed in the core language. 

As with the core language, string types and operations are not provided. None of the hash-
based operators (#, ##, etc.) are provided, nor is a preprocessor sizeof operator. 

Table 3.3. Preprocessor operators 

Operator Description 

+ - ~ ! defined unary 

* / % multiplicative 

+ - additive 

<< >> bit-wise shift 

< > <= >= relational 

== != equality 

& ^ | bit-wise 

&& || logical 



3.10. Error Handling 
Compilers accept some ill-formed programs because it is impossible to detect all ill-formed 
programs. For example, completely accurate detection of usage of an uninitialized variable is 
not possible. Such ill-formed shaders may execute differently on different platforms. Therefore, 
the OpenGL Shading Language specification states that portability is ensured only for well-
formed programs. 

OpenGL Shading Language compilers should detect ill-formed programs and issue diagnostic 
messages but are not required to do so for all cases. Compilers are required to return messages 
regarding shaders that are lexically, grammatically, or semantically incorrect. Shaders that 
generate such error messages cannot be executed. The OpenGL entry points for obtaining any 
diagnostic messages are discussed in Section 7.6. 



3.11. Summary 
The OpenGL Shading Language is a high-level procedural language designed specifically for the 
OpenGL environment. This language allows applications to specify the behavior of 
programmable, highly parallel graphics hardware. It contains constructs that allow succinct 
expression of graphics shading algorithms in a way that is natural for programmers experienced 
in C and C++. 

The OpenGL Shading Language includes support for scalar, vector, and matrix types; structures 
and arrays; sampler types that access textures; data type qualifiers that define shader input 
and output; constructors for initialization and type conversion; and operators and flow-control 
statements like those in C and C++. 



3.12. Further Information 
The OpenGL Shading Language is defined in The OpenGL Shading Language, Version 1.10, by 
Kessenich, Baldwin, and Rost (2004). The grammar for the OpenGL Shading Language is 
included in its entirety in Appendix A. These two documents can be consulted for additional 
details about the language itself. Additional tutorials, slides, and white papers are available at 
the 3Dlabs Web site. 

The functionality of the OpenGL Shading Language is augmented by the OpenGL extensions 
that were designed to support it. Read the specifications for these extensions and the OpenGL 
specification itself to gain further clarity on the behavior of a system that supports the OpenGL 
Shading Language. You can also consult the OpenGL books referenced at the conclusion of 
Chapter 1 for a better overall understanding of OpenGL. 

The standard reference for the C programming language is The C Programming Language by 
the designers of the language, Brian Kernighan and Dennis Ritchie (1988). Likewise, the 
standard for the C++ programming language is The C++ Programming Language, written by 
the designer of C++, Bjarne Stroustrup (2000). Numerous other books on both languages are 
available. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com/ 

2. Kernighan, Brian, and Dennis Ritchie, The C Programming Language, Second Edition, 
Prentice Hall, Englewood Cliffs, New Jersey, 1988. 

3. Kessenich, John, Dave Baldwin, and Randi Rost, The OpenGL Shading Language, Version 
1.10, 3Dlabs, April 2004. http://www.opengl.org/documentation/spec.html 

4. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
Sept. 2004. http://www.opengl.org/documentation/spec.html 

5. Stroustrup, Bjarne, The C++ Programming Language (Special 3rd Edition), Addison-
Wesley, Reading, Massachusetts, 2000. 

  



Chapter 4. The OpenGL Programmable 
Pipeline 
With contributions by Barthold Lichtenbelt 

The OpenGL Shading Language is designed specifically for use with OpenGL. Vertex shader and 
fragment shader input and output are tied into the standard OpenGL pipeline in a well-defined 
manner. The basics of how the programmable processors fit into the OpenGL pipeline were 
covered in Section 2.3. This chapter discusses the details of that integration and the language 
mechanisms used to achieve it. 

Applications can provide data to shaders with user-defined attribute variables and user-defined 
uniform variables. The OpenGL Shading Language also provides built-in variables that can 
communicate between the programmable processors and the surrounding fixed functionality in 
the following ways. 

Standard OpenGL attributes can be accessed from within a vertex shader by means of 
built-in attribute variable names. 

A variety of OpenGL state is accessible from either vertex shaders or fragment shaders by 
means of built-in uniform variables. 

Vertex shaders communicate to subsequent processing in OpenGL through the use of 
special built-in vertex shader output variables and built-in varying variables. 

Fragment shaders obtain the results from the preceding processing through special built-
in fragment shader input variables and built-in varying variables. 

Fragment shaders communicate results to subsequent processing stages of OpenGL 
through special fragment shader output variables. 

Built-in constants are accessible from within both types of shaders and define some of the 
same implementation-dependent constants that are accessible with OpenGL's glGet 
function. 

All the built-in identifiers begin with the reserved prefix "gl_" to set them apart. 

  



4.1. The Vertex Processor 
The vertex processor executes a vertex shader and replaces the fixed functionality OpenGL per-
vertex operations. Specifically, when the vertex processor is executing a vertex shader, the 
following fixed functionality operations are affected: 

The modelview matrix is not applied to vertex coordinates. 

The projection matrix is not applied to vertex coordinates. 

The texture matrices are not applied to texture coordinates. 

Normals are not transformed to eye coordinates. 

Normals are not rescaled or normalized. 

Normalization of GL_AUTO_NORMAL evaluated normals is not performed. 

Texture coordinates are not generated automatically. 

Per-vertex lighting is not performed. 

Color material computations are not performed. 

Color index lighting is not performed. 

Point size distance attenuation is not performed. 

All of the preceding apply to setting the current raster position. 

The following fixed functionality operations are applied to vertex values that are the result of 
executing the vertex shader: 

Color clamping or masking (for built-in varying variables that deal with color but not for 
user-defined varying variables) 

Perspective division on clip coordinates 

Viewport mapping 

Depth range scaling 

Clipping, including user clipping 

Front face determination 

Flat-shading 

Color, texture coordinate, fog, point size, and user-defined varying clipping 

Final color processing 



The basic operation of the vertex processor was discussed in Section 2.3.1. As shown in Figure 
2.2, data can come into the vertex shader through attribute variables (built in or user defined), 
uniform variables (built in or user defined), or texture maps (a vertex processing capability that 
is new with the OpenGL Shading Language). Data exits the vertex processor through built-in 
varying variables, user-defined varying variables, and special vertex shader output variables. 
Built-in constants (described in Section 4.4) are also accessible from within a vertex shader. A 
vertex shader has no knowledge of the primitive type for the vertex it is working on. 

OpenGL has a mode that causes color index values to be produced rather than RGBA values. 
However, this mode is not supported in conjunction with vertex shaders. If the frame buffer is 
configured as a color index buffer, behavior is undefined when a vertex shader is used. 

4.1.1. Vertex Attributes 

To draw things with OpenGL, applications must provide vertex information such as normal, 
color, texture coordinates, and so on. These attributes can be specified one vertex at a time 
with OpenGL functions such as glNormal, glColor, and glTexCoord. When set with these function 
calls, the attributes become part of OpenGL's current state. 

Geometry can also be drawn with vertex arrays. With this method, applications arrange vertex 
attributes in separate arrays containing positions, normals, colors, texture coordinates, and so 
on. By calling glDrawArrays, applications can send a large number of vertex attributes to OpenGL 
in a single function call. Vertex buffer objects (i.e., server-side storage for vertex arrays) were 
added in OpenGL 1.5 to provide even better performance for drawing vertex arrays. 

Vertex attributes come in two flavors: standard and generic. The standard attributes are the 
attributes as defined by OpenGL; these are color, secondary color, color index, normal, vertex 
position, texture coordinates, edge flag, and the fog coordinate. The color index attribute, which 
sets the current color index, and the edge flag attribute are not available to a vertex shader 
(but the application is allowed to send the edge flags to OpenGL while using a vertex shader). A 
vertex shader accesses the standard attributes with the following built-in names. A compiler 
error is generated if these names are used in a fragment shader. 

// 
// Vertex Attributes 
// 
attribute vec4 gl_Color; 
attribute vec4 gl_SecondaryColor; 
attribute vec3 gl_Normal; 
attribute vec4 gl_Vertex; 
attribute vec4 gl_MultiTexCoord0; 
attribute vec4 gl_MultiTexCoord1; 
attribute vec4 gl_MultiTexCoord2; 
// . . . up to gl_MultiTexCoordN-1 where N = gl_MaxTextureCoords 
attribute float gl_FogCoord; 

 
Details on providing generic vertex attributes to a vertex shader through the OpenGL Shading 
Language API are provided in Section 7.7. 

Both standard attributes and generic attributes are part of the current OpenGL state. That 
means that they retain their values, once set. An application is free to set values for all generic 
and all standard attributes and count on OpenGL to store them (except for vertex position, see 
Section 7.7). However, the number of attributes a vertex shader can use is limited. Typically, 
this limit is smaller than the sum of all the standard and generic attributes. This limit is 
implementation specific and can be queried with glGet with the symbolic constant 
GL_MAX_VERTEX_ATTRIBS. Every OpenGL implementation is required to support at least 16 
vertex attributes in a vertex shader. 



To signal the end of one vertex, the application can set either the standard vertex attribute 
gl_Vertex or the generic vertex attribute with index zero. The gl_Vertex attribute is set with the 
glVertex command or one of the vertex array commands, and the generic attribute with index 
zero is set with glVertexAttrib with an index of zero. These two commands are equivalent, and 
either one signals the end of a vertex. 

4.1.2. Uniform Variables 

Shaders can access current OpenGL state through built-in uniform variables containing the 
reserved prefix "gl_". For instance, the current modelview matrix can be accessed with the 
built-in variable name gl_ModelViewMatrix. Various properties of a light source can be accessed 
through the array containing light parameters as in gl_LightSource[2].spotDirection. Any OpenGL state 
used by the shader is automatically tracked and made available to the shader. This automatic 
state-tracking mechanism enables the application to use existing OpenGL state commands for 
state management and have the current values of such state automatically available for use in 
the shader. 

OpenGL state is accessible to both vertex shaders and fragment shaders by means of the built-
in uniform variables defined in Section 4.3. 

Applications can also define their own uniform variables in a vertex shader and use OpenGL API 
calls to set their values (see Section 7.8 for a complete description). There is an 
implementation-dependent limit on the amount of storage allowed for uniform variables in a 
vertex shader. The limit refers to the storage for the combination of built-in uniform variables 
and user-defined uniform variables that are actually used in a vertex shader. It is defined in 
terms of components, where a component is the size of a float. Thus, a vec2 takes up two 
components, a vec3 takes three, and so on. This value can be queried with glGet with the 
symbolic constant GL_MAX_VERTEX_UNIFORM_COMPONENTS. 

4.1.3. Special Output Variables 

Earlier we learned that results from the vertex shader are sent on for additional processing by 
fixed functionality within OpenGL, including primitive assembly and rasterization. Several built-
in variables are defined as part of the OpenGL Shading Language to allow the vertex shader to 
pass information to these subsequent processing stages. The built-in variables discussed in this 
section are available only from within a vertex shader. 

The variable gl_Position writes the vertex position in clipping coordinates after it has been 
computed in a vertex shader. Every execution of a wellformed vertex shader must write a value 
into this variable. Compilers may generate an error message if they detect that gl_Position is not 
written or read before being written, but not all such cases are detectable. Results are 
undefined if a vertex shader is executed and it does not store a value into gl_Position. 

The built-in variable gl_PointSize writes the size (diameter) of a point primitive. It is measured in 
pixels. This allows a vertex shader to compute a screen size that is related to the distance to 
the point, for instance. Section 4.5.2 provides more details on using gl_PointSize. 

If user clipping is enabled, it occurs as a fixed functionality operation after the vertex shader 
has been executed. For user clipping to function properly in conjunction with the use of a vertex 
shader, the vertex shader must compute a vertex position that is relative to the user-defined 
clipping planes. This value must then be stored in the built-in variable gl_ClipVertex. It is up to the 
application to ensure that the clip vertex value computed by the vertex shader and the user 
clipping planes are defined in the same coordinate space. User clip planes work properly only 
under linear transform. More details on using gl_ClipVertex are contained in Section 4.5.3. 

These variables each have global scope. They can be written to at any time during the 
execution of the vertex shader, and they can be read back after they have been written. 
Reading them before writing them results in undefined behavior. If they are written more than 



once, the last value written will be the one that is consumed by the subsequent operations. 

These variables can be referenced only from within a vertex shader and are intrinsically 
declared with the following types: 

vec4  gl_Position;   // must be written to 
float gl_PointSize;  // may be written to 
vec4  gl_ClipVertex; // may be written to 

 
4.1.4. Built-in Varying Variables 

As explained previously, varying variables describe attributes that vary across a primitive. The 
vertex shader is responsible for writing values that need to be interpolated into varying 
variables. The fragment shader reads the interpolated results from varying variables and 
operates on them to produce a resulting value for each fragment. For each user-defined varying 
variable actually used by the fragment shader, there must be a matching varying variable 
declared in the vertex shader; otherwise, a link error occurs. 

To properly communicate with the fixed functionality of OpenGL, the OpenGL Shading Language 
defines a number of built-in varying variables. A vertex shader can write certain varying 
variables that are not accessible from the fragment shader, and a fragment shader can read 
certain varying variables that were not accessible from the vertex shader. 

The following built-in varying variables can be written in a vertex shader. (Those available from 
a fragment shader are described in Section 4.2.1.) The vertex shader should write to those that 
are required for the desired fixed functionality fragment processing (if no fragment shader is to 
be used), or to those required by the corresponding fragment shader. 

varying vec4  gl_FrontColor; 
varying vec4  gl_BackColor; 
varying vec4  gl_FrontSecondaryColor; 
varying vec4  gl_BackSecondaryColor; 
varying vec4  gl_TexCoord[]; // at most will be gl_MaxTextureCoords 
varying float gl_FogFragCoord; 

 
Values written to gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and gl_BackSecondaryColor are 
clamped to the range [0,1] by fixed functionality when they exit the vertex shader. These four 
values and the fixed functionality to determine whether the primitive is front facing or back 
facing are used to compute the two varying variables gl_Color and gl_SecondaryColor that are 
available in the fragment shader. 

One or more sets of texture coordinates can be passed from a vertex shader with the gl_TexCoord 
array. This makes the coordinates available for fixed functionality processing if no fragment 
shader is present. Alternatively, they can be accessed from within a fragment shader with the 
gl_TexCoord varying variable. Index values used to reference this array must be constant integral 
expressions or this array must be redeclared with a size. The maximum size of the texture 
coordinate array is implementation specific and can be queried with glGet with the symbolic 
constant GL_MAX_TEXTURE_COORDS. Using array index values near 0 may aid the 
implementation in conserving resources consumed by varying variables. 

For gl_FogFragCoord, the value written should be the one required by the current fog coordinate 
source as set by a previous call to glFog. If the fog coordinate source is set to 
GL_FRAGMENT_DEPTH, the value written into gl_FogFragCoord should be the distance from the 
eye to the vertex in eye coordinates (where the eye position is assumed to be (0, 0, 0, 1)). If 
the fog coordinate source is set to GL_FOG_COORDINATE, the value written into gl_FogFragCoord 
should be the fog coordinate value that is to be interpolated across the primitive (i.e., the built-



 

in attribute variable gl_FogCoord). 

4.1.5. User-Defined Varying Variables 

Vertex shaders can also define varying variables to pass arbitrary values to the fragment 
shader. Such values are not clamped, but they are subjected to subsequent fixed functionality 
processing such as clipping and interpolation. There is an implementation-dependent limit to 
the number of floating-point values that can be interpolated. This limit can be queried with glGet 
with the symbolic constant GL_MAX_VARYING_FLOATS. 

  



4.2. The Fragment Processor 
The fragment processor executes a fragment shader and replaces the texturing, color sum, and 
fog fragment operations. Specifically, when the fragment processor is executing a fragment 
shader, the following fixed functionality operations are affected: 

The texture environments and texture functions are not applied. 

Texture application is not performed. 

Color sum is not applied. 

Fog is not applied. 

The behavior of the following operations does not change: 

Texture image specification 

Alternate texture image specification 

Compressed texture image specification 

Texture parameters that behave as specified even when a texture is accessed from within 
a fragment shader 

Texture state and proxy state 

Texture object specification 

Texture comparison modes 

The basic operation of the fragment processor was discussed in Section 2.3.2. As shown in 
Figure 2.3, data can come into the fragment shader through varying variables (built in or user 
defined), uniform variables (built in or user defined), special input variables, or texture maps. 
Data exits the fragment processor through special fragment shader output variables. Built-in 
constants (described in Section 4.4) are also accessible from within a fragment shader. 

Like vertex shaders, the behavior of a fragment shader is undefined when the frame buffer is 
configured as a color index buffer rather than as an RGBA buffer (i.e., OpenGL is in color index 
mode). 

4.2.1. Varying Variables 

The following built-in varying variables can be read in a fragment shader. The gl_Color and 
gl_SecondaryColor names are the same as built-in attribute variable names available in the vertex 
shader. However, the names do not conflict because attributes are visible only in vertex 
shaders and the following are only visible in fragment shaders: 

varying vec4  gl_Color; 
varying vec4  gl_SecondaryColor; 
varying vec4  gl_TexCoord[]; // at most will be gl_MaxTextureCoords 
varying float gl_FogFragCoord; 



 
The values in gl_Color and gl_SecondaryColor are derived automatically from gl_FrontColor, gl_BackColor, 
gl_FrontSecondaryColor, and gl_BackSecondaryColor as part of fixed functionality processing that 
determines whether the fragment belongs to a front facing or a back facing primitive (see 
Section 4.5.1). If fixed functionality is used for vertex processing, gl_FogFragCoord is either the z-
coordinate of the fragment in eye space or the interpolated value of the fog coordinate, 
depending on whether the fog coordinate source is currently set to GL_FRAGMENT_DEPTH or 
GL_FOG_COORDINATE. The gl_TexCoord[] array contains either the values of the interpolated 
gl_TexCoord[] values from a vertex shader or the texture coordinates from the fixed functionality 
vertex processing. No automatic division of texture coordinates by their q-component is 
performed. 

When the fragment shader is processing fragments resulting from the rasterization of a pixel 
rectangle or bitmap, results are undefined if the fragment shader uses a varying variable that is 
not a built-in varying variable. In this case, the values for the built-in varying variables are 
supplied by the current raster position and the values contained in the pixel rectangle or bitmap 
because a vertex shader is not executed. 

Fragment shaders also obtain input data from user-defined varying variables. Both built-in and 
user-defined varying variables contain the result of perspective-correct interpolation of values 
that are defined at each vertex. 

4.2.2. Uniform Variables 

As described in Section 4.1.2, OpenGL state is available to both vertex shaders and fragment 
shaders through built-in uniform variables that begin with the reserved prefix "gl_". The list of 
uniform variables that can be used to access OpenGL state is provided in Section 4.3. 

User-defined uniform variables can be defined and used within fragment shaders in the same 
manner as they are used within vertex shaders. OpenGL API calls are provided to set their 
values (see Section 7.8 for complete details). 

The implementation-dependent limit that defines the amount of storage available for uniform 
variables in a fragment shader can be queried with glGet with the symbolic constant 
GL_MAX_FRAGMENT_UNIFORM_COMPONENTS. This limit refers to the storage for the 
combination of built-in uniform variables and user-defined uniform variables that are actually 
used in a fragment shader. It is defined in terms of components, where a component is the size 
of a float. 

4.2.3. Special Input Variables 

The variable gl_FragCoord is available as a read-only variable from within fragment shaders, and 
it holds the window relative coordinates x, y, z, and 1/w for the fragment. This window position 
value is the result of the fixed functionality that interpolates primitives after vertex processing 
to generate fragments. The z component contains the depth value as modified by the polygon 
offset calculation. This built-in variable allows implementation of window position-dependent 
operations such as screen-door transparency (e.g., use discard on any fragment for which 
gl_FragCoord.x is odd or gl_FragCoord.y is odd, but not both). 

The fragment shader also has access to the read-only built-in variable gl_FrontFacing whose value 
is true if the fragment belongs to a front-facing primitive, and false otherwise. This value can be 
used to select between two colors calculated by the vertex shader to emulate two-sided 
lighting, or it can be used to apply completely different shading effects to front and back 
surfaces. A fragment derives its facing direction from the primitive that generates the fragment. 
All fragments generated by primitives other than polygons, triangles, or quadrilaterals are 
considered to be front facing. For all other fragments (including fragments resulting from 
polygons drawn with a polygon mode of GL_POINT or GL_LINE), the determination is made by 
examination of the sign of the area of the primitive in window coordinates. This sign can 



possibly be reversed, depending on the last call to glFrontFace. If the sign is positive, the 
fragments are front facing; otherwise, they are back facing. 

These special input variables have global scope and can be referenced only from within a 
fragment shader. They are intrinsically declared with the following types: 

vec4 gl_FragCoord; 
bool gl_FrontFacing; 

 
4.2.4. Special Output Variables 

The primary purpose of a fragment shader is to compute values that will ultimately be written 
into the frame buffer. Unless the keyword discard is encountered, the output of the fragment 
shader goes on to be processed by the fixed function operations at the back end of the OpenGL 
pipeline. Fragment shaders send their results on to the back end of the OpenGL pipeline by 
using the built-in variables gl_FragColor, gl_FragData, and gl_FragDepth. These built-in fragment 
shader variables have global scope, and they may be written more than once by a fragment 
shader. If they are written more than once, the last value assigned is the one used in the 
subsequent operations. They can also be read back after they have been written. Reading them 
before writing them results in undefined behavior. 

The color value that is to be written into the frame buffer (assuming that it passes through the 
various back-end fragment processing stages unscathed) is computed by the fragment shader 
and stored in the built-in variable gl_FragColor. As it exits the fragment processor, each 
component of gl_FragColor is clamped to the range [0,1] and converted to fixed point with at 
least as many bits as are in the corresponding color component in the destination frame buffer. 
Most shaders compute a value for gl_FragColor, but it is not required that this value be computed 
by all fragment shaders. It is perfectly legal for a shader to compute values for gl_FragDepth or 
gl_FragData instead. The shader could also use the discard keyword to mark the fragment as 
one to be discarded rather than used to update the frame buffer. Note that if subsequent fixed 
functionality consumes fragment color and an execution of a fragment shader does not write a 
value to gl_FragColor, the behavior is undefined. 

If depth buffering is enabled and a shader does not write gl_FragDepth, the fixed function value 
for depth is used as the fragment's depth value. Otherwise, writing to gl_FragDepth establishes 
the depth value for the fragment being processed. As it exits the fragment processor, this value 
is clamped to the range [0,1] and converted to fixed point with at least as many bits as are in 
the depth component in the destination frame buffer. Fragment shaders that write to 
gl_FragDepth should take care to write to it for every execution path through the shader. If it is 
written in one branch of a conditional statement but not the other, the depth value will be 
undefined for some execution paths. 

The z component of gl_FragCoord contains the depth value resulting from the preceding fixed 
function processing. It contains the value that would be used for the fragment's depth if the 
shader contained no writes to gl_FragDepth. This component can be used to achieve an invariant 
result if a fragment shader conditionally computes gl_FragDepth but otherwise wants the fixed 
functionality fragment depth. 

The values written to gl_FragColor and gl_FragDepth do not need to be clamped within a shader. 
The fixed functionality pipeline following the fragment processor clamps these values, if needed, 
to the range required by the buffer into which the fragment will be written. 

gl_FragData is an array that can be assigned values that are written into one or more offscreen 
buffers. The size of this array is implementation dependent and can be queried with glGet with 
the symbolic constant GL_MAX_DRAW_BUFFERS. The offscreen buffers that are modified as a 
result of writing values into gl_FragData within a fragment shader are specified with glDrawBuffers. 
The value written into gl_FragData[0] updates the first buffer in the list specified in the call to 



 

glDrawBuffers, the value written into gl_FragData[1] updates the second buffer in the list, and so 
on. If subsequent fixed function processing consumes a value for gl_FragData[i] but this value is 
never written by the fragment shader, then the data consumed by the fixed function processing 
is undefined. 

A fragment shader may assign values to gl_FragColor or gl_FragData but not both. If a shader 
executes the discard keyword, the fragment is discarded, no update of the frame buffer 
contents is performed, and the values of gl_FragDepth, gl_FragData and gl_FragColor become 
irrelevant. 

The fragment shader output variables have global scope, can be referenced only from within a 
fragment shader, and are intrinsically declared with the following types: 

vec4  gl_FragColor; 
vec4  gl_FragData[gl_MaxDrawbuffers]; 
float gl_FragDepth; 

 

  



4.3. Built-in Uniform Variables 
OpenGL was designed as a state machine. It has a variety of state that can be set. At the time 
graphics primitives are provided to OpenGL for rendering, the current state settings affect how 
the graphics primitives are treated and ultimately how they are rendered into the frame buffer. 

Some applications heavily utilize this aspect of OpenGL. Large amounts of application code 
might be dedicated to manipulating OpenGL state and providing an interface to allow the end 
user to change state to produce different rendering effects. 

The OpenGL Shading Language makes it easy for these types of applications to take advantage 
of programmable graphics technology. It contains a variety of built-in uniform variables that 
allow a shader to access current OpenGL state. In this way, an application can continue to use 
OpenGL as a state management machine and still provide shaders that combine that state in 
ways that aren't possible with the OpenGL fixed functionality path. Because they are defined as 
uniform variables, shaders are allowed to read from these built-in variables but not to write to 
them. 

The built-in uniform variables in Listing 4.1 allow shaders to access current OpenGL state. Any 
of these variables can be accessed from within either vertex shaders or fragment shaders. If an 
OpenGL state value has not been modified by an application, it contains the default value as 
defined by OpenGL, and the corresponding built-in uniform variable is also equal to that value. 

Listing 4.1. Built-in uniform variables 

// 
// Matrix state 
// 
uniform mat4  gl_ModelViewMatrix; 
uniform mat4  gl_ProjectionMatrix; 
uniform mat4  gl_ModelViewProjectionMatrix; 
uniform mat4  gl_TextureMatrix[gl_MaxTextureCoords]; 
 
// 
// Derived matrix state that provides inverse and transposed versions 
// of the matrices above. Poorly conditioned matrices may result 
// in unpredictable values in their inverse forms. 
// 
uniform mat3  gl_NormalMatrix; // transpose of the inverse of the upper 
                               // leftmost 3x3 of gl_ModelViewMatrix 
 
uniform mat4  gl_ModelViewMatrixInverse; 
uniform mat4  gl_ProjectionMatrixInverse; 
uniform mat4  gl_ModelViewProjectionMatrixInverse; 
uniform mat4  gl_TextureMatrixInverse[gl_MaxTextureCoords]; 
 
uniform mat4  gl_ModelViewMatrixTranspose; 
uniform mat4  gl_ProjectionMatrixTranspose; 
uniform mat4  gl_ModelViewProjectionMatrixTranspose; 
uniform mat4  gl_TextureMatrixTranspose[gl_MaxTextureCoords] 
 
uniform mat4  gl_ModelViewMatrixInverseTranspose; 
uniform mat4  gl_ProjectionMatrixInverseTranspose; 
uniform mat4  gl_ModelViewProjectionMatrixInverseTranspose; 
uniform mat4  gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords] 
 
// 



// Normal scaling 
// 
uniform float gl_NormalScale; 
 
// 
// Depth range in window coordinates 
// 
struct gl_DepthRangeParameters 
{ 
    float near;        // n 
    float far;         // f 
    float diff;        // f - n 
}; 
uniform gl_DepthRangeParameters gl_DepthRange; 
 
// 
// Clip planes 
// 
uniform vec4  gl_ClipPlane[gl_MaxClipPlanes]; 
 
// 
// Point Size 
// 
struct gl_PointParameters 
{ 
    float size; 
    float sizeMin; 
    float sizeMax; 
    float fadeThresholdSize; 
    float distanceConstantAttenuation; 
    float distanceLinearAttenuation; 
    float distanceQuadraticAttenuation; 
}; 
 
uniform gl_PointParameters gl_Point; 
 
// 
// Material State 
// 
struct gl_MaterialParameters 
{ 
    vec4 emission;     // Ecm 
    vec4 ambient;      // Acm 
    vec4 diffuse;      // Dcm 
    vec4 specular;     // Scm 
    float shininess;   // Srm 
}; 
uniform gl_MaterialParameters  gl_FrontMaterial; 
uniform gl_MaterialParameters  gl_BackMaterial; 
// 
// Light State 
// 
 
struct gl_LightSourceParameters 
{ 
    vec4  ambient;              // Acli 
    vec4  diffuse;              // Dcli 
    vec4  specular;             // Scli 
    vec4  position;             // Ppli 
    vec4  halfVector;           // Derived: Hi 
    vec3  spotDirection;        // Sdli 
    float spotExponent;         // Srli 
    float spotCutoff;           // Crli 



                                // (range: [0.0,90.0], 180.0) 
    float spotCosCutoff;        // Derived: cos(Crli) 
                                // (range: [1.0,0.0],-1.0) 
    float constantAttenuation;  // K0 
    float linearAttenuation;    // K1 
    float quadraticAttenuation; // K2 
}; 
 
uniform gl_LightSourceParameters   gl_LightSource[gl_MaxLights]; 
 
struct gl_LightModelParameters 
{ 
    vec4 ambient;        // Acs 
}; 
 
uniform gl_LightModelParameters gl_LightModel; 
 
// 
// Derived state from products of light and material. 
// 
 
struct gl_LightModelProducts 
{ 
    vec4 sceneColor;      // Derived. Ecm + Acm * Acs 
}; 
 
uniform gl_LightModelProducts gl_FrontLightModelProduct; 
uniform gl_LightModelProducts gl_BackLightModelProduct; 
 
struct gl_LightProducts 
{ 
    vec4 ambient;         // Acm * Acli 
    vec4 diffuse;         // Dcm * Dcli 
    vec4 specular;        // Scm * Scli 
}; 
uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights]; 
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights]; 
 
// 
// Texture Environment and Generation 
// 
uniform vec4  gl_TextureEnvColor[gl_MaxTextureUnits]; 
uniform vec4  gl_EyePlaneS[gl_MaxTextureCoords]; 
uniform vec4  gl_EyePlaneT[gl_MaxTextureCoords]; 
uniform vec4  gl_EyePlaneR[gl_MaxTextureCoords]; 
uniform vec4  gl_EyePlaneQ[gl_MaxTextureCoords]; 
uniform vec4  gl_ObjectPlaneS[gl_MaxTextureCoords]; 
uniform vec4  gl_ObjectPlaneT[gl_MaxTextureCoords]; 
uniform vec4  gl_ObjectPlaneR[gl_MaxTextureCoords]; 
uniform vec4  gl_ObjectPlaneQ[gl_MaxTextureCoords]; 
 
// 
// Fog 
// 
struct gl_FogParameters 
{ 
    vec4 color; 
    float density; 
    float start; 
    float end; 
    float scale;   // 1.0 / (gl_Fog.end - gl_Fog.start) 
}; 
 



 

As you can see, these built-in uniform variables have been defined so as to take advantage of 
the language features whenever possible. Structures are used as containers to group a 
collection of parameters such as depth range parameters, material parameters, light source 
parameters, and fog parameters. Arrays define clip planes and light sources. Defining these 
uniform variables in this way improves code readability and allows shaders to take advantage of 
language capabilities like looping. 

The list of built-in uniform variables also includes some derived state. These state values are 
things that aren't passed in directly by the application but are derived by the OpenGL 
implementation from values that are passed. For various reasons, it's convenient to have the 
OpenGL implementation compute these derived values and allow shaders to access them. The 
normal matrix (gl_NormalMatrix) is an example of this. It is simply the inverse transpose of the 
upper-left 3 x 3 subset of the modelview matrix. Because it is used so often, it wouldn't make 
sense to require shaders to compute this from the modelview matrix whenever it is needed. 
Instead, the OpenGL implementation is responsible for computing this whenever it is needed, 
and it is accessible to shaders through a built-in uniform variable. 

Here are some examples of how these built-in uniform variables might be used. A vertex shader 
can transform the incoming vertex position (gl_Vertex) by OpenGL's current modelview-projection 
matrix (gl_ModelViewProjectionMatrix) with the following line of code: 

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 

 
Similarly, if a normal is needed, it is transformed by the current normal matrix: 

tnorm = gl_NormalMatrix * gl_Normal; 

 
(The transformed normal would typically also need to be normalized in order to be used in 
lighting computations. This normalization can be done with the built-in function normalize, which 
is discussed in Section 5.4.) 

Here are some other examples of accessing built-in OpenGL state: 

gl_FrontMaterial.emission  // emission value for front material 
gl_LightSource[0].ambient  // ambient term of light source #0 
gl_ClipPlane[3][0]         // first component of user clip plane #3 
gl_Fog.color.rgb           // r, g, and b components of fog color 
gl_TextureMatrix[1][2][3]  // 3rd column, 4th component of 2nd 
                           // texture matrix 

 
The mapping of OpenGL state values to these built-in variables should be straightforward, but if 
you need more details, see the OpenGL Shading Language Specification document. 

uniform gl_FogParameters gl_Fog; 

 

  



4.4. Built-in Constants 
The OpenGL Shading Language defines a number of built-in constants. These values can be 
accessed from within either vertex shaders or fragment shaders. Values for lights, clip planes, 
and texture units are values that are equivalent to those that would be returned by OpenGL's 
glGet function for the underlying implementation. Implementation-dependent values that are 
new with the OpenGL Shading Language are the number of floatingpoint values that could be 
stored as uniform values accessible by the vertex shader and by the fragment shader, the 
number of floating-point values that could be defined as varying variables, the number of 
texture image units that are accessible by the vertex processor and by the fragment processor, 
the total number of texture image units available to the vertex processor and the fragment 
processor combined, the number of texture coordinates sets that are supported, and the 
number of draw buffers that are accessible. All these new implementation-dependent constants 
can also be obtained in application code with the OpenGL glGet function (see Section 7.12). 

OpenGL defines minimum values for each implementation-dependent constant. The minimum 
value informs application writers of the lowest value that is permissible for a conforming 
OpenGL implementation. The minimum value for each of the built-in constants is shown here. 

// 
// Implementation dependent constants.  The values below 
// are the minimum values allowed for these constants. 
// 
const int  gl_MaxLights = 8; 
const int  gl_MaxClipPlanes = 6; 
const int  gl_MaxTextureUnits = 2; 
const int  gl_MaxTextureCoords = 2; 
const int  gl_MaxVertexAttribs = 16; 
const int  gl_MaxVertexUniformComponents = 512; 
const int  gl_MaxVaryingFloats = 32; 
const int  gl_MaxVertexTextureImageUnits = 0; 
const int  gl_MaxTextureImageUnits = 2; 
const int  gl_MaxFragmentUniformComponents = 64; 
const int  gl_MaxCombinedTextureImageUnits = 2; 
const int  gl_MaxDrawBuffers = 1; 

 
These values can occasionally be useful within a shader. For instance, a shader might include a 
general-purpose lighting function that loops through the available OpenGL lights and adds 
contributions from each enabled light source. The loop can easily be set up with the built-in 
constant gl_MaxLights. More likely, however, is that an application will use OpenGL's glGet 
function to obtain these implementation-dependent constants and decide, based on those 
values, whether to even load a shader (see Section 7.12). 

  



4.5. Interaction with OpenGL Fixed Functionality 
This section offers a little more detail to programmers who are intimately familiar with OpenGL 
operations and need to know precisely how the programmable capabilities introduced by the 
OpenGL Shading Language interact with the rest of the OpenGL pipeline. This section is more 
suitable for seasoned OpenGL programmers than for OpenGL novices. 

4.5.1. Two-Sided Color Mode 

Vertex shaders can operate in two-sided color mode. Front and back colors can be computed by 
the vertex shader and written to the gl_FrontColor, gl_BackColor, gl_FrontSecondaryColor, and 
gl_BackSecondaryColor output variables. If two-sided color mode is enabled after vertex processing, 
OpenGL fixed functionality chooses which of the front or back colors to forward to the rest of 
the pipeline. Which side OpenGL picks depends on the primitive type being rendered and the 
sign of the area of the primitive in window coordinates (see the OpenGL specification for 
details). If two-sided color mode is disabled, OpenGL always selects the front color outputs. 
Two-sided color mode is enabled and disabled with glEnable or glDisable with the symbolic value 
GL_VERTEX_PROGRAM_TWO_SIDE. 

The colors resulting from this front/back facing selection step are clamped to the range [0,1] 
and converted to a fixed-point representation before being interpolated across the primitive that 
is being rendered. This is normal OpenGL behavior. When higher precision and dynamic range 
colors are required, the application should use its own user-defined varying variables instead of 
the four built-in gl_Color ones. The front/back facing selection step is then skipped. However, a 
built-in variable available in the fragment shader (gl_FrontFacing) indicates whether the current 
fragment is the result of rasterizing a front or back facing primitive. 

4.5.2. Point Size Mode 

Vertex shaders can also operate in point size mode. A vertex shader can compute a point size in 
pixels and assign it to the built-in variable gl_PointSize. If point size mode is enabled, the point 
size is taken from this variable and used in the rasterization stage; otherwise, it is taken from 
the value set with the glPointSize command. If gl_PointSize is not written while vertex shader point 
size mode is enabled, the point size used in the rasterization stage is undefined. Vertex shader 
point size mode is enabled and disabled with glEnable or glDisable with the symbolic value 
GL_VERTEX_PROGRAM_POINT_SIZE. 

This point size enable is convenient for the majority of applications that do not change the point 
size within a vertex shader. By default, this mode is disabled, so most vertex shaders for which 
point size doesn't matter need not write a value to gl_PointSize. The value set by calls to glPointSize 
is always used by the rasterization stage. 

If the primitive is clipped and vertex shader point size mode is enabled, the point size values 
are also clipped in a manner analogous to color clipping. The potentially clipped point size is 
used by the fixed functionality part of the pipeline as the derived point size (the distance 
attenuated point size). Thus, if the application wants points farther away to be smaller, it 
should compute some kind of distance attenuation in the vertex shader and scale the point size 
accordingly. If vertex shader point size mode is disabled, the derived point size is taken directly 
from the value set with the glPointSize command and no distance attenuation is performed. The 
derived point size is then used, as usual, optionally to alpha-fade the point when multisampling 
is also enabled. Again, see the OpenGL specification for details. 

Distance attenuation should be computed in a vertex shader and cannot be left to the fixed 
functionality distance attenuation algorithm. This fixed functionality algorithm computes 
distance attenuation as a function of the distance between the eye at (0, 0, 0, 1) and the vertex 



position, in eye coordinates. However, the vertex position computed in a vertex shader might 
not have anything to do with locations in eye coordinates. Therefore, when a vertex shader is 
active, this fixed functionality algorithm is skipped. A point's alpha-fade, on the other hand, can 
be computed correctly only with the knowledge of the primitive type. That information is not 
available to a vertex shader, because it executes before primitive assembly. Consider the case 
of rendering a triangle and having the back polygon mode set to GL_POINT and the front 
polygon mode to GL_FILL. The vertex shader should fade only the alpha if the vertex belongs to 
a back facing triangle. But it cannot do that because it does not know the primitive type. 

4.5.3. Clipping 

User clipping can be used in conjunction with a vertex shader. The user clip planes are specified 
as usual with the glClipPlane command. When specified, these clip planes are transformed by the 
inverse of the current modelview matrix. The vertices resulting from the execution of a vertex 
shader are evaluated against these transformed clip planes. The vertex shader must provide the
position of the vertex in the same space as the user-defined clip planes (typically, eye space). 
It does that by writing this location to the output variable gl_ClipVertex. If gl_ClipVertex is not 
specified and user clipping is enabled, the results are undefined. 

When a vertex shader that mimics OpenGL's fixed functionality is used, the vertex shader 
should compute the eye-coordinate position of the vertex and store it in gl_ClipVertex. For 
example, 

gl_ClipVertex = gl_ModelViewMatrix * gl_Vertex; 

 
When you want to do object space clipping instead, keep in mind that the clip planes are 
transformed with the inverse of the modelview matrix. For correct object clipping, the 
modelview matrix needs to be set to the identity matrix when the clip planes are specified. 

After user clipping, vertices are clipped against the view volume, as usual. In this operation, the 
value specified by gl_Position (i.e., the homogeneous vertex position in clip space) is evaluated 
against the view volume. 

4.5.4. Raster Position 

If a vertex shader is active when glRasterPos is called, it processes the coordinates provided with 
the glRasterPos command just as if these coordinates were specified with a glVertex command. The 
vertex shader is responsible for outputting the values necessary to compute the current raster 
position data. 

The OpenGL state for the current raster position consists of the following seven items: 

1. Window coordinates computed from the value written to gl_Position. These coordinates are 
treated as if they belong to a point and passed to the clipping stage and then projected to 
window coordinates. 

2. A valid bit indicating if this point was culled. 

3. The raster distance, which is set to the vertex shader varying variable gl_FogFragCoord. 

4. The raster color, which is set to either the vertex shader varying variable gl_FrontColor or 
gl_BackColor, depending on the front/back facing selection process. 

5. The raster secondary color, which is set to either the vertex shader varying variable 
gl_FrontSecondaryColor or gl_BackSecondaryColor, depending on the front/back facing selection 
process. 



6. One or more raster texture coordinates. These are set to the vertex shader varying 
variable array gl_TexCoord[]. 

7. The raster color index. Because the result of a vertex shader is undefined in color index 
mode, the raster color index is always set to 1. 

If any of the outputs necessary to compute the first six items are not provided, the value(s) for 
the associated item is undefined. 

4.5.5. Position Invariance 

For multipass rendering, in which a vertex shader performs some passes and other passes use 
the fixed functionality pipeline, positional invariance is important. This means that both the 
vertex shader and fixed functionality compute the exact same vertex position in clip 
coordinates, given the same vertex position in object coordinates and the same modelview and 
projection matrices. Positional invariance can be achieved with the built-in function ftransform in 
a vertex shader as follows: 

gl_Position = ftransform(); 

 
In general, the vertex shader code 

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex 

 
does not result in positional invariance, because of possible compiler optimizations and potential 
underlying hardware differences. 

4.5.6. Texturing 

One of the major improvements to OpenGL made by the OpenGL Shading Language is in the 
area of texturing. For one thing, texturing operations can be performed in a vertex shader. But 
the fragment side of the pipeline has improved as well. A fragment shader can potentially have 
access to more texture image units than the fixed functionality pipeline does. This means that 
more texture lookups can be performed in a single rendering pass. And with programmability, 
the results of all those texture lookups can be combined in any way the shader writer sees fit. 

The changes to the pipeline have resulted in some clarification to the language used to describe 
texturing capabilities in OpenGL. The term "texture unit" in OpenGL formerly specified more 
than one thing. It specified the number of texture coordinates that could be attached to a 
vertex (now called texture coordinate sets) as well as the number of hardware units that could 
be used simultaneously for accessing texture maps (now called texture image units). A texture 
coordinate set encompasses vertex texture coordinate attributes, as well as the texture matrix 
stack and texture generation state. The symbolic constant GL_MAX_TEXTURE_UNITS can be 
queried with glGet to obtain a single number that indicates the quantity of both of these items. 

For the implementations that support the OpenGL Shading Language, these two things might 
actually have different values, so the number of available texture coordinate sets is now 
decoupled from the maximum number of texture image units. Typically, the number of available 
texture coordinate sets is less than the available texture image units. This should not prove to 
be a limitation because new texture coordinates can easily be derived from the texture 
coordinate attributes passed in or the coordinates can be retrieved from a texture map. 

Five different limits related to texture mapping should be taken into account. 

1. For a vertex shader, the maximum number of available texture image units is given by 



 

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS. 

2. For a fragment shader, the maximum number of available texture image units is given by 
GL_MAX_TEXTURE_IMAGE_UNITS. 

3. The combined number of texture image units used in the vertex and the fragment 
processing parts of OpenGL (either a fragment shader or fixed function) cannot exceed 
the limit GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS. If a vertex shader and the 
fragment processing part of OpenGL both use the same texture image unit, that counts as 
two units against this limit. This rule exists because an OpenGL implementation might 
have only GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS actual texture image units 
implemented, and it might share those units between the vertex and fragment processing 
parts of OpenGL. 

4. When a fragment shader is not active, OpenGL can still perform multi-texturing. In this 
case, the maximum available multitexture stages are given by the state variable 
GL_MAX_TEXTURE_UNITS. 

5. The number of supported texture coordinate sets is given by 
GL_MAX_TEXTURE_COORDS. This limit applies regardless of whether a vertex shader or 
fixed-function OpenGL performs vertex processing. 

The fixed function hierarchy of texture-enables (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_3D, 
GL_TEXTURE_2D, and GL_TEXTURE_1D) is ignored by shaders. For example, even if the 
texture target GL_TEXTURE_1D is enabled for a texture image unit, a sampler can be used to 
access the GL_TEXTURE_2D target for that texture image unit. 

Samplers of type sampler1DShadow or sampler2DShadow must be used to access depth 
textures (textures with a base internal format of GL_DEPTH_COMPONENT). The texture 
comparison mode requires the shader to use one of the variants of the shadow1D or shadow2D 
built-in functions for accessing the texture (see Section 5.7). If these built-in functions are used 
to access a texture with a base internal format other than GL_DEPTH_COMPONENT, the result is 
undefined. Similarly, if a texture access function other than one of the shadow variants is used 
to access a depth texture, the result is undefined. 

If a shader uses a sampler to reference a texture object that is not complete (e.g., one of the 
textures in a mipmap has a different internal format or border width than the others, see the 
OpenGL specification for a complete list), the texture image unit returns (R, G, B, A) = (0, 0, 0, 
1). 

  



4.6. Summary 
Two new programmable units have been added to OpenGL: the vertex processor and the 
fragment processor. The same language, with minor differences, expresses algorithms intended 
to run on either processor. The vertex processor replaces the fixed functionality vertex 
processing of OpenGL, and a shader intended for execution on this processor is called a vertex 
shader. When installed as part of current state, the vertex shader is executed once for each 
vertex that is processed by OpenGL. The fragment processor replaces the fixed functionality 
fragment processing of OpenGL, and a shader that is intended for execution on this processor is 
called a fragment shader. When installed as part of current state, the fragment shader is 
executed once for each fragment that arises from rasterization. 

Great care was taken to define the interfaces between the programmable stages of OpenGL and 
the intervening fixed functionality. As a result, rendering is permitted with programmable 
vertex processing and fixed functionality fragment processing, or vice versa. Built-in variables 
allow access to standard OpenGL attributes, implementation-dependent constants, and a 
variety of current state. They also allow a shader to communicate with the preceding and 
following fixed functionality stages of the graphicsprocessing pipeline. 

  



4.7. Further Information 
The built-in variables defined in this chapter are used in various examples throughout this book. 
The OpenGL Shading Language specification and the OpenGL specification can be consulted for 
additional details. The OpenGL books referenced at the conclusion of Chapter 1 can also be 
consulted for a better understanding of the OpenGL state that is referenced through built-in 
variables. Parts of the paper Integrating the OpenGL Shading Language by Barthold Lichtenbelt 
have been adapted for inclusion in this book. 

1. Kessenich, John, Dave Baldwin, and Randi Rost, The OpenGL Shading Language, Version 
1.10, 3Dlabs, April 2004. http://www.opengl.org/documentation/spec.html 

2. Lichtenbelt, Barthold, Integrating the OpenGL Shading Language, 3Dlabs internal white 
paper, July 2003. 

3. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
Sept. 2004. http://www.opengl.org/documentation/spec.html 

  



Chapter 5. Built-in Functions 
This chapter provides the details of the functions that are defined as part of the OpenGL 
Shading Language. Feel free to skip ahead to the next chapter if you want to get down to the 
nitty-gritty of writing your own shaders. This chapter can be useful as a reference after you are 
well on your way to writing OpenGL shaders for your own application. 

The OpenGL Shading Language defines an assortment of built-in convenience functions for 
scalar and vector operations. The reasons for providing built-in functions for the OpenGL 
Language include 

Making shaders simpler to develop and easier to understand and maintain. 

Exposing some necessary hardware functionality in a convenient way such as accessing a 
texture map. The language for these functions cannot be emulated by a shader. 

Representing a trivial operation (clamp, mix, etc.) that is simple for a user to write but 
that is common and may have direct hardware support. Providing a built-in function 
makes it much easier for the compiler to map such expressions to complex hardware 
instructions. 

Representing an operation that graphics hardware is likely to accelerate at some point. 
The trigonometry functions fall into this category. 

Many of the functions are similar to the same named ones in common C libraries, but they 
support vector input as well as the more traditional scalar input. Because the OpenGL Shading 
Language supports function overloading, the built-in functions usually have several variants, all 
with the same name. The difference in the functions is in the type of arguments and the type of 
the value returned. Quite a few of the built-in functions have four variants: one that takes float 
parameters and returns a float, one that takes vec2 parameters and returns a vec2, one that 
takes vec3 parameters and returns a vec3, and one that takes vec4 parameters and returns a 
vec4. 

Whenever possible, you should use the built-in functions rather than do the equivalent 
computations in your own shader code. It is expected that the built-in functions will be 
implemented in an optimal way, perhaps even supported directly in hardware. Almost all the 
built-in functions can be used in either a vertex shader or a fragment shader, but a few are 
available only for a specific type of shader. You can write a shader to replace a built-in function 
with your own code simply by redeclaring and defining the same function name and argument 
list. 

Graphical representations of some of the functions are shown for clear illustration. The functions 
are generally simple ones, and most readers would have no trouble constructing such diagrams 
themselves. But as we see in later chapters, many of the built-in functions can be used in 
unconventional ways to achieve interesting effects in shaders. When you are developing a 
shader, it is often helpful to draw a simple function diagram to clearly envision the value of a 
variable at a particular spot in a shader. By seeing a pictorial representation of some of these 
functions, you may find it easier to draw such diagrams yourself and to gain some insight about 
how you might use them in procedural shaders. Some common uses for these functions are 
pointed out along the way, and some are illustrated by shader examples in the later chapters of 
this book. 

  



5.1. Angle and Trigonometry Functions 
Trigonometry functions can be used within either vertex shaders or fragment shaders. Function 
parameters specified as angle are assumed to be in units of radians. In no case do any of these 
functions result in a divide-by-zero error. If the divisor of a ratio is 0, results are undefined. 

These functions all operate component-wise (see Table 5.1). The description column specifies 
the operation on each component. 

Table 5.1. Angle and trigonometry functions 

Syntax Description 

float radians (float degrees)  
vec2 radians (vec2 degrees)  
vec3 radians (vec3 degrees)  
vec4 radians (vec4 degrees) 

Converts degrees to radians and returns the 
result, i.e., result = π/180 · degrees. 

float degrees (float radians)  
vec2 degrees (vec2 radians)  
vec3 degrees (vec3 radians)  
vec4 degrees (vec4 radians) 

Converts radians to degrees and returns the 
result, i.e., result = 180/π · radians. 

float sin (float radians)  
vec2 sin (vec2 radians)  
vec3 sin (vec3 radians)  
vec4 sin (vec4 radians) 

The standard trigonometric sine function.  
The values returned by this function range 
from [-1,1]. 

float cos (float radians)  
vec2 cos (vec2 radians)  
vec3 cos (vec3 radians)  
vec4 cos (vec4 radians) 

The standard trigonometric cosine function.  
The values returned by this function range 
from [-1,1]. 

float tan (float radians)  
vec2 tan (vec2 radians)  
vec3 tan (vec3 radians)  
vec4 tan (vec4 radians) 

The standard trigonometric tangent 
function. 

float asin (float x)  
vec2 asin (vec2 x)  
vec3 asin (vec3 x)  
vec4 asin (vec4 x) 

Arc sine. Returns an angle whose sine is x.  
The range of values returned by this 
function is [-π/2, π/2]. Results are 
undefined if |x| > 1. 

float acos (float x)  
vec2 acos (vec2 x)  
vec3 acos (vec3 x)  
vec4 acos (vec4 x) 

Arc cosine. Returns an angle whose cosine 
is x.  
The range of values returned by this 
function is [0, π]. Results are undefined if 
|x| > 1. 

float atan (float y, float x)  
vec2 atan (vec2 y, vec2 x)  
vec3 atan (vec3 y, vec3 x)  
vec4 atan (vec4 y, vec4 x) 

Arc tangent. Returns an angle whose 
tangent is y/x. The signs of x and y 
determine what quadrant the angle is in. 
The range of values returned by this 
function is [-π, π]. Results are undefined if x 
and y are both 0. 

float atan (float y_over_x)  
vec2 atan (vec2 y_over_x)  
vec3 atan (vec3 y_over_x)  

Arc tangent. Returns an angle whose 
tangent is y_over_x. The range of values 
returned by this function is [-π/2, π/2]. 



 

 
In addition to their usefulness as trigonometric functions, sin and cos can be used in a variety of 
ways as the basis for a smoothly varying function with no cusps or discontinuities (see Figure 
5.1). Such a function can be used to model waves on the surface of an object, to change 
periodically between two materials, to introduce a rocking motion to an object, or to achieve 
many other effects. 

Figure 5.1. The sin and cos functions 

 

 

vec4 atan (vec4 y_over_x) 



5.2. Exponential Functions 
Exponential functions can be used within either vertex shaders or fragment shaders. These all 
operate component-wise (see Table 5.2). The description column specifies the operation on 
each component. 

 

Table 5.2. Exponential functions 

Syntax Description 

float pow (float x, float y)  
vec2 pow (vec2 x, vec2 y)  
vec3 pow (vec3 x, vec3 y)  
vec4 pow (vec4 x, vec4 y) 

Returns x raised to the y power, i.e., xy. 
Results are undefined if x < 0. Results are 
undefined if x = 0 and y = 0. 

float exp (float x)  
vec2 exp (vec2 x)  
vec3 exp (vec3 x)  
vec4 exp (vec4 x) 

Returns the natural exponentiation of x, i.e., 
ex. 

float log (float x)  
vec2 log (vec2 x)  
vec3 log (vec3 x)  
vec4 log (vec4 x) 

Returns the natural logarithm of x, i.e., 
returns the value y, which satisfies the 
equation x = ey.  
Results are undefined if x <= 0. 

float exp2 (float x)  
vec2 exp2 (vec2 x)  
vec3 exp2 (vec3 x)  
vec4 exp2 (vec4 x) 

Returns 2 raised to the x power, i.e., 2x. 

float log2 (float x)  
vec2 log2 (vec2 x)  
vec3 log2 (vec3 x)  
vec4 log2 (vec4 x) 

Returns the base 2 log of x, i.e., returns the 
value y, which satisfies the equation x = 2y. 
Results are undefined if x <= 0. 

float sqrt (float x)  
vec2 sqrt (vec2 x)  
vec3 sqrt (vec3 x)  
vec4 sqrt (vec4 x) 

Returns the positive square root of x. 
Results are undefined if x < 0. 

float inversesqrt (float x)  
vec2 inversesqrt (vec2 x)  
vec3 inversesqrt (vec3 x)  
vec4 inversesqrt (vec4 x) 

Returns the reciprocal of the positive square 
root of x. Results are undefined if x <= 0. 



5.3. Common Functions 
Common functions can be used within either vertex shaders or fragment shaders. These 
functions all operate in a component-wise fashion (see Table 5.3) The description column 
specifies the operation on each component. 

Table 5.3. Common functions 

Syntax Description 

float abs (float x)  
vec2 abs (vec2 x)  
vec3 abs (vec3 x)  
vec4 abs (vec4 x) 

Returns x if x >= 0; otherwise, it returns -x. 

float sign (float x)  
vec2 sign (vec2 x)  
vec3 sign (vec3 x)  
vec4 sign (vec4 x) 

Returns 1.0 if x > 0, 0.0 if x = 0, or -1.0 if x < 0. 

float floor (float x)  
vec2 floor (vec2 x)  
vec3 floor (vec3 x)  
vec4 floor (vec4 x) 

Returns a value equal to the nearest integer that is 
less than or equal to x. 

float ceil (float x)  
vec2 ceil (vec2 x)  
vec3 ceil (vec3 x)  
vec4 ceil (vec4 x) 

Returns a value equal to the nearest integer that is 
greater than or equal to x. 

float fract (float x)  
vec2 fract (vec2 x)  
vec3 fract (vec3 x)  
vec4 fract (vec4 x) 

Returns x floor (x). 

float mod (float x, float y)  
vec2 mod (vec2 x, float y)  
vec3 mod (vec3 x, float y)  
vec4 mod (vec4 x, float y) 

Modulus. Returns x y * floor (x/y) for each 
component in x using the floating-point value y. 

vec2 mod (vec2 x, vec2 y)  
vec3 mod (vec3 x, vec3 y)  
vec4 mod (vec4 x, vec4 y) 

Modulus. Returns x y * floor (x/y) for each 
component in x using the corresponding component 
of y. 

float min (float x, float y)  
vec2 min (vec2 x, vec2 y)  
vec3 min (vec3 x, vec3 y)  
vec4 min (vec4 x, vec4 y) 

Returns y if y < x; otherwise, it returns x. 

vec2 min (vec2 x, float y)  
vec3 min (vec3 x, float y)  
vec4 min (vec4 x, float y) 

Returns minimum of each component of x 
compared with the floating-point value y. 

float max (float x, float y)  
vec2 max (vec2 x, vec2 y)  
vec3 max (vec3 x, vec3 y)  
vec4 max (vec4 x, vec4 y) 

Returns y if x < y; otherwise, it returns x. 

vec2 max (vec2 x, float y)  
vec3 max (vec3 x, float y)  

Returns maximum of each component of x 
compared with the floating-point value y. 



 
Aside from their general usefulness as math functions, many of these functions are useful in 
creating interesting shaders, as we see in subsequent chapters. The abs function can ensure 
that a particular function never produces negative values. It can also introduce a discontinuity 
in an otherwise smooth function. As we see in Section 15.5, this property of the abs function is 
used to introduce discontinuities in a noise function to produce an effect that looks like 
turbulence. A graphical representation of the abs function is shown in Figure 5.2. 

Figure 5.2. The abs function 

vec4 max (vec4 x, float y) 

float clamp (float x, float 
minVal, float maxVal)  
vec2 clamp (vec2 x, float 
minVal, float maxVal)  
vec3 clamp (vec3 x, float 
minVal, float maxVal)  
vec4 clamp (vec4 x, float 
minVal, float maxVal) 

Returns min (max (x, minVal), maxVal) for each 
component in x using the floating-point values 
minVal and maxVal. Results are undefined if minVal > 
maxVal. 

vec2 clamp (vec2 x, vec2 
minVal, vec2 maxVal)  
vec3 clamp (vec3 x, vec3 
minVal, vec3 maxVal)  
vec4 clamp (vec4 x, vec4 
minVal, vec4 maxVal) 

Returns the component-wise result of min (max (x, 
minVal), maxVal). Results are undefined if minVal > 
maxVal. 

float mix (float x, float y, float 
a)  
vec2 mix (vec2 x, vec2 y, float 
a)  
vec3 mix (vec3 x, vec3 y, float 
a)  
vec4 mix (vec4 x, vec4 y, float 
a) 

Returns x * (1.0 a) + y * a, i.e., the linear blend of x 
and y using the floating-point value a. The value for 
a is not restricted to the range [0,1]. 

vec2 mix (vec2 x, vec2 y, 
vec2 a)  
vec3 mix (vec3 x, vec3 y, 
vec3 a)  
vec4 mix (vec4 x, vec4 y, 
vec4 a) 

Returns the component-wise result of x * (1.0 a) + 
y * a, i.e., the linear blend of vectors x and y using 
the vector a. The value for a is not restricted to the 
range [0,1]. 

float step (float edge, float x)  
vec2 step (vec2 edge, vec2 x)  
vec3 step (vec3 edge, vec3 x)  
vec4 step (vec4 edge, vec4 x) 

Returns 0 if x < edge; otherwise, it returns 1.0. 

float smoothstep (float edge0, 
float edge1, float x)  
vec2 smoothstep (vec2 edge0, 
vec2 edge1, vec2 x)  
vec3 smoothstep (vec3 edge0, 
vec3 edge1, vec3 x)  
vec4 smoothstep (vec4 edge0, 
vec4 edge1, vec4 x) 

Returns 0 if x <= edge0 and 1.0 if x >= edge1 and 
performs smooth Hermite interpolation between 0 
and 1 when edge0 < x < edge1. Results are undefined 
if edge0 >= edge1. 



 

 
The sign function simply maps the incoming value to -1, 0, or 1, depending on its sign. This 
results in a discontinuous function, as shown in Figure 5.3. 

Figure 5.3. The sign function 

 

 
The floor function produces a discontinuous stair-step pattern, as shown in Figure 5.4. The 
fractional part of each incoming value is dropped, so the output value is always the integer 
value that is closest to but less than or equal to the input value. 

Figure 5.4. The floor function 



 

 
The ceil function is almost the same as the floor function, except that value returned is always 
the integer value that is closest to but greater than or equal to the input value. This function is 
shown in Figure 5.5. As you can see, this function looks the same as Figure 5.4 except that the 
output values are shifted up by one. (Although ceil and floor always produce integer values, the 
functions are defined to return floating-point data types.) 

Figure 5.5. The ceil function 

 

 
The fract function produces a discontinuous function where each segment has a slope of 1.0 
(see Figure 5.6). 



Figure 5.6. The fract function 

 

 
The mod function is very similar to fract. In fact, if we divide the result of mod(x, y) by y, the 
result is very nearly the same. The only difference is the period of the discontinuous segments 
(see Figure 5.7). 

Figure 5.7. The periodic function mod(x, y) 

 

 
The clamp function is useful for making sure that a value is within a particular range. A common 
operation is 

clamp(x, 0.0, 1.0); 

 
which clamps the variable x to the range [0,1]. Because two comparisons are necessary for this 
function, you should use it only when there is a chance that the tested value could be outside 
either end of the specified range. For the min and max functions, only one comparison is 
necessary. If you know a value will not be less than 0, using 

min(x, 1.0); 

 
will likely be faster and may use fewer machine instructions than 

clamp(x, 0.0, 1.0); 

 
because there is no point in testing to see whether the final value is less than 0. Keep in mind 
that there is no need to clamp the final color and depth values computed by a fragment shader 



because they are clamped automatically by the back-end fixed functionality processing. 

The min, max, and clamp functions are shown in Figure 5.8, Figure 5.9, and Figure 5.10. The min
(x, y) function has a slope of 1 where x is less than y, and a slope of 0 where x is greater than y. 
This function is often used to put an upper bound on a value, for instance, to make sure the 
computed result never exceeds 1.0. 

Figure 5.8. The min function 

 

 
Figure 5.9. The max function 

 

 
Figure 5.10. The clamp function 

 



 
The max(x, y) function has a slope of 0 where x is less than y, and a slope of 1 where x is greater 
than y. This function is often used to put a lower bound on a value, for instance, to make sure 
the computed result never goes below 0. 

The clamp(x, minVal, maxVal) function has a slope of 0 where x is less than minVal and where x is 
greater than maxVal, and it has a slope of 1 in between where x is greater than minVal and less 
than maxVal. It is functionally equivalent to the expression min(max(x, minVal), maxVal). 

The step function creates a discontinuous jump at an arbitrary point (see Figure 5.11). We use 
this function to create a simple procedural brick shader in Chapter 6. 

Figure 5.11. The step function 

 

 
The smoothstep function (see Figure 5.12) is useful in cases in which you want a threshold 
function with a smooth transition. For the case in which t is a float, this is equivalent to 

float t; 
t = clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); 
return t * t * (3.0 - 2.0 * t); 

 
Figure 5.12. The smoothstep function 

 

 

 
The cases for vec2, vec3, and vec4 differ from the preceding example only in the data type 
used to declare t. 

  



5.4. Geometric Functions 
Except for ftransform, geometric functions can be used within either vertex shaders or fragment 
shaders. These functions operate on vectors as vectors, not in a component-wise fashion (see 
Table 5.4). 

Table 5.4. Geometric functions 

Syntax Description 

float length (float x)  
float length (vec2 x)  
float length (vec3 x)  
float length (vec4 x) 

Returns the length of vector x, i.e.,  
sqrt(x[0] * x[0] + x[1] * x[1] + . . .). 

float distance (float p0, float p1)  
float distance (vec2 p0, vec2 p1)  
float distance (vec3 p0, vec3 p1)  
float distance (vec4 p0, vec4 p1) 

Returns the distance between p0 and p1,  
i.e., length(p0 - p1). 

float dot (float x, float y)  
float dot (vec2 x, vec2 y)  
float dot (vec3 x, vec3 y)  
float dot (vec4 x, vec4 y) 

Returns the dot product of x and y, i.e.,  
result = x[0] * y[0] + x[1] * y[1] + . . .. 

vec3 cross (vec3 x, vec3 y) Returns the cross product of x and y, i.e.,  
result[0] = x[1] * y[2] - y[1] * x[2]  
result[1] = x[2] * y[0] - y[2] * x[0]  
result[2] = x[0] * y[1] - y[0] * x[1] 

float normalize (float x)  
vec2 normalize (vec2 x)  
vec3 normalize (vec3 x)  
vec4 normalize (vec4 x) 

Returns a vector in the same direction as x but 
with a length of 1. 

vec4 ftransform() For vertex shaders only. This function ensures 
that the incoming vertex position is transformed 
in a way that produces exactly the same result as 
would be produced by OpenGL's fixed functionality 
transform. This function typically computes the 
value for gl_Position. 

float faceforward (float N, float I, float 
Nref)  
vec2 faceforward (vec2 N, vec2 I, vec2 
Nref)  
vec3 faceforward (vec3 N, vec3 I, vec3 
Nref)  
vec4 faceforward (vec4 N, vec4 I, vec4 
Nref) 

If dot (Nref, I) < 0.0, return N; otherwise, return -
N. 

float reflect (float I, float N)  
vec2 reflect (vec2 I, vec2 N)  
vec3 reflect (vec3 I, vec3 N)  
vec4 reflect (vec4 I, vec4 N) 

For the incident vector I and surface orientation N, 
returns the reflection direction:  
result = I 2.0 * dot (N, I) * N  
N must already be normalized to achieve the 
desired result. I need not be normalized. 

float refract (float I, float N, float eta)  
vec2 refract (vec2 I, vec2 N, float eta)  

For the incident vector I and surface normal N and 
the ratio of indices of refraction eta, returns the 



 

 
The float version of the distance function may not seem terribly useful (it's the same as the 
absolute value of the difference), but the vector forms compute the Euclidean distance between 
two points. Similarly, the float version of normalize always returns 1, and the float version of 
length always returns the absolute value of the input argument as the result. These scalar forms 
are useful in that the data type of the argument can be changed without the need to change the 
code that calls the built-in function. 

You can use the ftransform function to transform the incoming vertex position: 

gl_Position = ftransform() 

 
It transforms the value of gl_Vertex by the current modelview-projection matrix to produce a 
value for gl_Position that is identical to what would have been computed by the fixed functionality 
pipeline. This function should be used, for example, when an application is rendering the same 
geometry in separate passes, where one pass uses the fixed functionality path to render and 
another pass uses the programmable processors. 

vec3 refract (vec3 I, vec3 N, float eta)  
vec4 refract (vec4 I, vec4 N, float eta) 

refraction vector. The returned result is computed 
as  

k = 1.0 - eta * eta * 
      (1.0 - dot (N, I) * dot (N, I)) 
if (k < 0.0) 
    result = 0.0; 
    // result type is float or vec2/3/4 
 else 
   result = eta * I- 
              (eta * dot (N, I) * sqrt (k)) * N

 
 
The input parameters for the incident vector I 
and surface normal N must already be 
normalized to achieve the desired result. 



5.5. Matrix Functions 
Matrix functions can be used within either vertex shaders or fragment shaders (see Table 5.5). 

 
These functions produce the component-wise multiplication of two matrices. For instance, the 
result of calling matrixCompMult with two 3D matrices x and y looks like this: 

mat3 x, y, newmat; 
. . . 
newmat = matrixCompMult(x, y); 

 

 

 
This is not usually what you want if you are using matrices to represent transformation steps. 
In this case, you would use the multiply operator (*) to perform the linear-algebraic matrix 
multiplication 

mat3 x, y, newmat; 
. . . 
newmat = x * y; 

 
which performs the following operation:

 

Table 5.5. Matrix functions 

Syntax Description 

mat2 matrixCompMult (mat2 x, mat2 
y)  
mat3 matrixCompMult (mat3 x, mat3 
y)  
mat4 matrixCompMult (mat4 x, mat4 
y) 

Multiply matrix x by matrix y 
component-wise, i.e., result[i][j] is 
the scalar product of x[i][j] and y[i]
[j].  
Note: To get linear-algebraic matrix 
multiplication, use the multiply 
operator (*). 



5.6. Vector Relational Functions 
Relational and equality operators (<, <=, >, >=, ==, !=) are defined to produce scalar 
Boolean results and can be used within either vertex shaders or fragment shaders. For vector 
results, use the built-in functions in Table 5.6. 

Table 5.6. Vector relational functions 

Syntax Description 

bvec2 lessThan(vec2 x, vec2 y)  
bvec3 lessThan(vec3 x, vec3 y)  
bvec4 lessThan(vec4 x, vec4 y)  
bvec2 lessThan(ivec2 x, ivec2 y)  
bvec3 lessThan(ivec3 x, ivec3 y)  
bvec4 lessThan(ivec4 x, ivec4 y) 

Returns the component-wise 
compare of x < y. 

bvec2 lessThanEqual(vec2 x, vec2 y)  
bvec3 lessThanEqual(vec3 x, vec3 y)  
bvec4 lessThanEqual(vec4 x, vec4 y)  
bvec2 lessThanEqual(ivec2 x, ivec2 y)  
bvec3 lessThanEqual(ivec3 x, ivec3 y)  
bvec4 lessThanEqual(ivec4 x, ivec4 y) 

Returns the component-wise 
compare of x <= y. 

bvec2 greaterThan(vec2 x, vec2 y)  
bvec3 greaterThan(vec3 x, vec3 y)  
bvec4 greaterThan(vec4 x, vec4 y)  
bvec2 greaterThan(ivec2 x, ivec2 y)  
bvec3 greaterThan(ivec3 x, ivec3 y)  
bvec4 greaterThan(ivec4 x, ivec4 y) 

Returns the component-wise 
compare of x > y. 

bvec2 greaterThanEqual(vec2 x, vec2 y)  
bvec3 greaterThanEqual(vec3 x, vec3 y)  
bvec4 greaterThanEqual(vec4 x, vec4 y)  
bvec2 greaterThanEqual(ivec2 x, ivec2 y)  
bvec3 greaterThanEqual(ivec3 x, ivec3 y)  
bvec4 greaterThanEqual(ivec4 x, ivec4 y) 

Returns the component-wise 
compare of x >= y. 

bvec2 equal(vec2 x, vec2 y)  
bvec3 equal(vec3 x, vec3 y)  
bvec4 equal(vec4 x, vec4 y)  
bvec2 equal(ivec2 x, ivec2 y)  
bvec3 equal(ivec3 x, ivec3 y)  
bvec4 equal(ivec4 x, ivec4 y)  
bvec2 equal(bvec2 x, bvec2 y)  
bvec3 equal(bvec3 x, bvec3 y)  
bvec4 equal(bvec4 x, bvec4 y) 

Returns the component-wise 
compare of x == y. 

bvec2 notEqual(vec2 x, vec2 y)  
bvec3 notEqual(vec3 x, vec3 y)  
bvec4 notEqual(vec4 x, vec4 y)  
bvec2 notEqual(ivec2 x, ivec2 y)  
bvec3 notEqual(ivec3 x, ivec3 y)  
bvec4 notEqual(ivec4 x, ivec4 y)  
bvec2 notEqual(bvec2 x, bvec2 y)  
bvec3 notEqual(bvec3 x, bvec3 y)  
bvec4 notEqual(bvec4 x, bvec4 y) 

Returns the component-wise 
compare of x != y. 

bool any(bvec2 x)  Returns true if any component of x is 



bool any(bvec3 x)  
bool any(bvec4 x) 

true. 

bool all(bvec2 x)  
bool all(bvec3 x)  
bool all(bvec4 x) 

Returns true only if all components 
of x are true. 

bvec2 not(bvec2 x  
bvec3 not(bvec3 x)  
bvec4 not(bvec4 x) 

Returns the component-wise logical 
complement of x. 



5.7. Texture Access Functions 
Texture access functions are available to both vertex and fragment shaders. Each of these 
functions takes as its first argument a variable of type sampler. If a variable qualified by 
sampler1D is used, then the texture access operation reads from the 1D texture that has 
previously been associated with that sampler by the application. (It is an error for the 
application to associate a non-1D texture with a sampler1D variable.) Similarly, a sampler2D 
variable is used to access a 2D texture, and so on. The texture precedence rules for OpenGL 
fixed functionality are ignored. It is up to the application to set up texture state before the 
shader executes in order to get the expected results (see Section 7.9). 

The texture access functions obtain texture values from either mipmapped or non-mipmapped 
textures. However, level-of-detail is not computed by fixed functionality for vertex shaders, so 
there are some differences in operation between vertex and fragment texture access functions. 
Texture properties such as size, pixel format, number of dimensions, filtering method, number 
of mipmap levels, depth comparison, and so on are also defined by OpenGL API calls. Such 
properties are taken into account as the texture is accessed through the built-in functions 
defined in this section. 

In all functions that follow, the bias parameter is optional for fragment shaders. The bias 
parameter is not accepted in a vertex shader. For a fragment shader, if bias is present, it is 
added to the calculated level of detail before the texture access operation is performed. If the 
bias parameter is not provided, the implementation automatically selects level-of-detail. For a 
texture that is not mipmapped, the texture is used directly. If a mipmap texture is accessed 
from a fragment shader, the level-of-detail computed by the implementation is used during the 
texture lookup. If a mipmapped texture is accessed from a vertex shader, the base texture is 
used. 

The built-in functions suffixed with "Lod" are allowed only in a vertex shader. For the "Lod" 
functions, lod is directly used as the level-of-detail. The built-in functions suffixed with "Proj" 
can perform projective texturing. This allows a texture to be projected onto an object in much 
the same way that a slide projector projects an image onto a surface. Functions suffixed with 
"Proj" can compute shadow maps for rendering shadows, among other things. 

A number of examples in later sections illustrate the use of these functions. With the 
programmability available with the OpenGL Shading Language, texture memory can store much 
more than just image data. These texture access functions provide fast, flexible access to such 
data in order to achieve a wide variety of effects (see Table 5.7). 

Table 5.7. Texture access functions 

Syntax Description 

vec4 texture1D (sampler1D sampler, float coord 
[, float bias])  
vec4 texture1DProj (sampler1D sampler, vec2 
coord [, float bias])  
vec4 texture1DProj (sampler1D sampler, vec4 
coord [, float bias])  
vec4 texture1DLod (sampler1D sampler, float 
coord, float lod)  
vec4 texture1DProjLod (sampler1D sampler, 
vec2 coord, float lod)  
vec4 texture1DProjLod (sampler1D sampler, 
vec4 coord, float lod) 

Use the texture coordinate coord to 
access the 1D texture currently 
specified by sampler. For the 
projective ("Proj") versions, the 
texture coordinate coord.s is divided 
by the last component of coord. The 
second and third components of coord 
are ignored for the vec4 coord 
variant. 



 

 
Texturing results are undefined if 

A texture function other than one of the shadow variants is called with a sampler whose 
texture is a depth texture with depth comparisons enabled, 

A shadow texture call is made to a sampler whose texture is a depth texture with depth 
comparisons disabled, or 

A shadow texture call is made to a sampler whose texture is not a depth texture. 

vec4 texture2D (sampler2D sampler, vec2 coord 
[, float bias])  
vec4 texture2DProj (sampler2D sampler, vec3 
coord [, float bias])  
vec4 texture2DProj (sampler2D sampler, vec4 
coord [, float bias])  
vec4 texture2DLod (sampler2D sampler, vec2 
coord, float lod)  
vec4 texture2DProjLod (sampler2D sampler, 
vec3 coord, float lod)  
vec4 texture2DProjLod (sampler2D sampler, 
vec4 coord, float lod) 

Use the texture coordinate coord to 
access the 2D texture currently 
specified by sampler. For the 
projective ("Proj") versions, the 
texture coordinate (coord.s, coord.t) is 
divided by the last component of 
coord. The third component of coord is 
ignored for the vec4 coord variant. 

vec4 texture3D (sampler3D sampler, vec3 coord 
[, float bias])  
vec4 texture3DProj (sampler3D sampler, vec4 
coord [, float bias])  
vec4 texture3DLod (sampler3D sampler, vec3 
coord, float lod)  
vec4 texture3DProjLod (sampler3D sampler, 
vec4 coord, float lod) 

Use the texture coordinate coord to 
access the 3D texture currently 
specified by sampler. For the 
projective ("Proj") versions, the 
texture coordinate is divided by 
coord.q. 

vec4 textureCube (samplerCube sampler, vec3 
coord [, float bias])  
vec4 textureCubeLod (samplerCube sampler, 
vec3 coord, float lod) 

Use the texture coordinate coord to 
access the cube map texture 
currently specified by sampler. The 
direction of coord selects the face in 
which to do a two-dimensional 
texture lookup. 

vec4 shadow1D (sampler1DShadow sampler, 
vec3 coord [, float bias])  
vec4 shadow2D (sampler2DShadow sampler, 
vec3 coord [, float bias])  
vec4 shadow1DProj (sampler1DShadow 
sampler, vec4 coord [, float bias])  
vec4 shadow2DProj (sampler2DShadow 
sampler, vec4 coord [, float bias])  
vec4 shadow1DLod (sampler1DShadow 
sampler, vec3 coord, float lod)  
vec4 shadow2DLod (sampler2DShadow 
sampler, vec3 coord, float lod)  
vec4 shadow1DProjLod (sampler1DShadow 
sampler, vec4 coord, float lod)  
vec4 shadow2DProjLod (sampler2DShadow 
sampler, vec4 coord, float lod) 

Use texture coordinate coord to do a 
depth comparison lookup on the 
depth texture specified by sampler. 
The third component of coord (coord.p) 
is compared to the value read from 
the depth texture. The texture 
bound to sampler must be a depth 
texture or results are undefined. For 
the projective ("Proj") version of 
each built-in, the texture coordinate 
is divided by coord.q, giving a depth 
value of coord.p/coord.q. The second 
component of coord is ignored for the 
"1D" variants. 



5.8. Fragment Processing Functions 
Fragment processing functions are only available in shaders intended for use on the fragment 
processor. This category has three built-in functions. Two obtain derivatives and the other 
estimates the filter width used to antialias procedural textures. 

The derivative functions, dFdx and dFdy, determine the rate of change of an expression. The 
function dFdx(p) evaluates the derivative of the expression p in the x direction in window 
coordinates, and the function dFdy(p) evaluates the derivative of the expression p in the y 
direction in window coordinates. These values indicate how fast the expression is changing in 
window space, and this information can be used to take steps to prevent aliasing. For instance, 
if texture coordinates are changing rapidly, it may be better to set the resulting color to the 
average color for the texture in order to avoid aliasing. 

It only makes sense to apply these functions to expressions that vary from one fragment to the 
next. Because the value of a uniform variable does not change from one pixel to the next, its 
derivative in x and in y is always 0. See Table 5.8. 

 

Table 5.8. Fragment Processing Functions 

Syntax Description 

float dFdx (float p)  
vec2 dFdx (vec2 p)  
vec3 dFdx (vec3 p)  
vec4 dFdx (vec4 p) 

Returns the derivative in x for the input 
argument p. 

float dFdy (float p)  
vec2 dFdy (vec2 p)  
vec3 dFdy (vec3 p)  
vec4 dFdy (vec4 p) 

Returns the derivative in y for the input 
argument p. 

float fwidth (float p)  
vec2 fwidth (vec2 p)  
vec3 fwidth (vec3 p)  
vec4 fwidth (vec4 p) 

Returns the sum of the absolute derivative in 
x and y for the input argument p, i.e.,  
return = abs (dFdx (p)) + abs (dFdy (p)); 



5.9. Noise Functions 
Noise functions (see Table 5.9) are available to both fragment and vertex shaders. These 
stochastic functions, first described by Ken Perlin, increase visual complexity. Values returned 
by the following noise functions give the appearance of randomness, but they are not truly 
random. A more complete description of and motivation for the noise function can be found in 
Chapter 15. 

 
The built-in noise functions are defined to have the following characteristics: 

The return values are always in the range [1,1] and cover at least the range [0.6,0.6] 
with a Gaussian-like distribution. 

The return values have an overall average of 0. 

The functions are repeatable, in that a particular input value always produces the same 
return value. 

They are statistically invariant under rotation; that is, no matter how the domain is 
rotated, it has the same statistical character. 

They have a statistical invariance under translation; that is, no matter how the domain is 
translated, it has the same statistical character. 

They typically give different results under translation. 

The spatial frequency is narrowly concentrated, centered somewhere between 0.5 and 
1.0. 

They are C1 continuous everywhere; that is the first derivative is continuous.

 

Table 5.9. Noise Functions 

Syntax Description 

float noise1 (float x)  
float noise1 (vec2 x)  
float noise1 (vec3 x)  
float noise1 (vec4 x) 

Returns a 1D noise value based on the input 
value x. 

vec2 noise2 (float x)  
vec2 noise2 (vec2 x)  
vec2 noise2 (vec3 x)  
vec2 noise2 (vec4 x) 

Returns a 2D noise value based on the input 
value x. 

vec3 noise3 (float x)  
vec3 noise3 (vec2 x)  
vec3 noise3 (vec3 x)  
vec3 noise3 (vec4 x) 

Returns a 3D noise value based on the input 
value x. 

vec4 noise4 (float x)  
vec4 noise4 (vec2 x)  
vec4 noise4 (vec3 x)  
vec4 noise4 (vec4 x) 

Returns a 4D noise value based on the input 
value x. 



5.10. Summary 
The OpenGL Shading Language contains a rich set of built-in functions. Some of these functions 
are similar to those found in C and C++, and others are similar to those found in RenderMan. 
These functions expose hardware functionality (e.g., texture access) or support common 
operations (e.g., square root, clamp), or they represent operations likely to be accelerated in 
future generations of graphics hardware (trigonometry functions, noise, etc.). 

Function overloading is used extensively because many of these functions operate on either 
vectors or scalars. Vendors that support the OpenGL Shading Language are expected to provide 
optimal implementations of these functions, so the built-in functions should be used whenever 
possible. 

The built-in mathematical functions can be used in some unique and perhaps unexpected ways 
to create procedural textures. Shader examples throughout the rest of this book illustrate this. 
Visualizing the function needed to achieve a particular effect can be a vital part of the shader 
development process. 

  



5.11. Further Information 
Many of the built-in functions described in this chapter are used in example shaders in the 
remainder of this book. All you need to do is keep reading to see them in action. 

Some additional detail on the built-in functions can be found in the The OpenGL Shading 
Language, Version 1.10, by John Kessenich, Dave Baldwin, and Randi Rost (2004). 

Various OpenGL Shading Language built-in functions, including the derivative and filter width 
functions, were inspired by similar functions in RenderMan. Motivation for some of these 
functions is discussed in The RenderMan Companion: A Programmer's Guide to Realistic 
Computer Graphics by Steve Upstill (1990) and Advanced RenderMan: Creating CGI for Motion 
Pictures by Tony Apodaca and Larry Gritz (1999). For additional details on noise functions, see 
the papers by Perlin and the references provided at the end of Chapter 15. 
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287296, July 1985. 
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6. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
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Graphics, Addison-Wesley, Reading, Massachusetts, 1990. 

8. Zwillinger, Dan, CRC Standard Mathematical Tables and Formulas, 30th Edition, CRC 
Press, 1995. http://www.geom.uiuc.edu/docs/reference/CRC-formulas/ 



Chapter 6. Simple Shading Example 
Now that we've described the OpenGL Shading Language, let's look at a simple example. In this 
example, we apply a brick pattern to an object. The brick pattern is calculated entirely within a 
fragment shader. If you'd prefer to skip ahead to the next chapter for a more in-depth 
discussion of the API that allows shaders to be defined and manipulated, feel free to do so. 

The shader for rendering a procedural brick pattern was the first interesting shader ever 
executed by the OpenGL Shading Language on programmable graphics hardware. It ran for the 
first time in March 2002, on the 3Dlabs Wildcat VP graphics accelerator. Dave Baldwin published 
the first GLSL brick fragment shader in a white paper that described the language destined to 
become the OpenGL Shading Language. His GLSL shader was based on a RenderMan shader by 
Darwyn Peachey that was published in the book, Texturing and Modeling: A Procedural 
Approach. Steve Koren and John Kessenich adapted Dave's shader to get it working on real 
hardware for the first time, and it has subsequently undergone considerable refinement for 
inclusion in this book. 

This example, like most of the others in this book, consists of three essential components: the 
source code for the vertex shader, the source code for the fragment shader, and the application 
code that initializes and uses these shaders. This chapter focuses on the vertex and fragment 
shaders. The application code for using these shaders is discussed in Section 7.13, after the 
details of the OpenGL Shading Language API have been discussed. 

With this first example, we take a little more time discussing the details in order to give you a 
better grasp of what's going on. In examples later in the book, we focus mostly on the details 
that differ from previous examples. 

  



6.1. Brick Shader Overview 
One approach to writing shaders is to come up with a description of the effect that you're trying 
to achieve and then decide which parts of the shader need to be implemented in the vertex 
shader, which need to be implemented in the fragment shader, and how the application will tie 
everything together. 

In this example, we develop a shader that applies a computed brick pattern to all objects that 
are drawn. We don't attempt the most realistic looking brick shader, but rather a fairly simple 
one that illustrates many of the concepts we introduced in the previous chapters. We don't use 
textures for this brick pattern; the pattern itself is generated algorithmically. We can build a lot 
of flexibility into this shader by parameterizing the different aspects of our brick algorithm. 

Let's first come up with a description of the overall effect we're after. We want 

A single light source 

Diffuse and specular reflection characteristics 

A brick pattern based on the position in modeling coordinates of the object being 
renderedwhere the x coordinate is related to the brick horizontal position and the y 
coordinate is related to the brick vertical position 

Alternate rows of bricks offset by one-half the width of a single brick 

Easy-to-modify colors and ratios: brick color, mortar color, brick-to-brick horizontal 
distance, brick-to-brick vertical distance, brick width fraction (ratio of the width of a brick 
to the overall horizontal distance between two adjacent bricks), and brick height fraction 
(ratio of the height of a brick to the overall vertical distance between two adjacent bricks) 

The brick geometry parameters that we use to control geometry and color are illustrated in 
Figure 6.1. Brick size and brick percentage parameters are both stored in user-defined uniform 
variables of type vec2. The horizontal distance between two bricks, including the width of the 
mortar, is provided by BrickSize.x. The vertical distance between two rows of bricks, including the 
height of the mortar, is provided by BrickSize.y. These two values are given in units of modeling 
coordinates. The fraction of BrickSize.x represented by the brick only is provided by BrickPct.x. The 
fraction of BrickSize.y represented by the brick only is provided by BrickPct.y. These two values are 
in the range [0,1]. Finally, the brick color and the mortar color are represented by the variables 
BrickColor and MortarColor. 

Figure 6.1. Parameters for defining brick 



 

 

 
Now that we're armed with a firm grasp of our desired outcome, we'll design our vertex shader, 
then our fragment shader, and then the application code that will tie it all together. 



6.2. Vertex Shader 
The vertex shader embodies the operations that occur on each vertex that is provided to 
OpenGL. To define our vertex shader, we need to answer three questions. 

1. What data must be passed to the vertex shader for every vertex (i.e., attribute 
variables)? 

2. What global state is required by the vertex shader (i.e., uniform variables)? 

3. What values are computed by the vertex shader (i.e., varying variables)? 

Let's look at these questions one at a time. 

We can't draw any geometry at all without specifying a value for each vertex position. 
Furthermore, we can't do any lighting unless we have a surface normal for each location for 
which we want to apply a lighting computation. So at the very least, we need a vertex position 
and a normal for every incoming vertex. These attributes are already defined as part of 
OpenGL, and the OpenGL Shading Language provides built-in variables to refer to them 
(gl_Vertex and gl_Normal). If we use the standard OpenGL entry points for passing vertex positions 
and normals, we don't need any user-defined attribute variables in our vertex shader. We can 
access the current values for vertex position and normal simply by referring to gl_Vertex and 
gl_Normal. 

We need access to several pieces of OpenGL state for our brick algorithm. These are available 
to our shader as built-in uniform variables. We need to access the current modelview-projection 
matrix (gl_ModelViewProjection-Matrix) in order to transform our vertex position into the clipping 
coordinate system. We need to access the current modelview matrix (gl_ModelViewMatrix) in order 
to transform the vertex position into eye coordinates for use in the lighting computation. And 
we also need to transform our incoming normals into eye coordinates by using OpenGL's normal 
transformation matrix (gl_NormalMatrix, which is just the inverse transpose of the upper-left 3 x 3 
subset of gl_ModelViewMatrix). 

In addition, we need the position of a single light source. We could use the OpenGL lighting 
state and reference that state within our vertex shader, but to illustrate the use of uniform 
variables, we define the light source position as a uniform variable like this:[1] 

[1] The shaders in this book observe the convention of capitalizing the first letter of user-specified uniform, varying, attribute, and 
nonqualified global variable names to set them apart from local variables. 

uniform vec3 LightPosition; 

 
We also need values for the lighting calculation to represent the contribution from specular 
reflection and the contribution from diffuse reflection. We could define these as uniform 
variables so that they could be changed dynamically by the application, but to illustrate some 
additional features of the language, we define them as constants like this: 

const float SpecularContribution = 0.3; 
const float DiffuseContribution  = 1.0 - SpecularContribution; 

 
Finally, we need to define the values that are passed on to the fragment shader. Every vertex 
shader must compute the homogeneous vertex position and store its value in the standard 
variable gl_Position, so we know that our brick vertex shader must do likewise. On the fly, we 



compute the brick pattern in the fragment shader as a function of the incoming geometry's x 
and y values in modeling coordinates, so we define a varying variable called MCposition for this 
purpose. To apply the lighting effect on top of our brick, we do part of the lighting computation 
in the fragment shader and apply the final lighting effect after the brick/mortar color has been 
computed in the fragment shader. We do most of the lighting computation in the vertex shader 
and simply pass the computed light intensity to the fragment shader in a varying variable called 
LightIntensity. These two varying variables are defined like this: 

varying float LightIntensity; 
varying vec2  MCposition; 

 
We're now ready to get to the meat of our brick vertex shader. We begin by declaring a main 
function for our vertex shader and computing the vertex position in eye coordinates: 

void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 

 
In this first line of code, our vertex shader defines a variable called ecPosition to hold the eye 
coordinate position of the incoming vertex. We compute the eye coordinate position by 
transforming the vertex position (gl_Vertex) by the current modelview matrix (gl_ModelViewMatrix). 
Because one of the operands is a matrix and the other is a vector, the * operator performs a 
matrix multiplication operation rather than a component-wise multiplication. 

The result of the matrix multiplication is a vec4, but ecPosition is defined as a vec3. There is no 
automatic conversion between variables of different types in the OpenGL Shading Language, so 
we convert the result to a vec3 by using a constructor. This causes the fourth component of the 
result to be dropped so that the two operands have compatible types. (Constructors provide an 
operation that is similar to type casting, but it is much more flexible, as discussed in Section 
3.3). As we'll see, the eye coordinate position is used a couple of times in our lighting 
calculation. 

The lighting computation that we perform is a simple one. Some light from the light source is 
reflected in a diffuse fashion (i.e., in all directions). Where the viewing direction is very nearly 
the same as the reflection direction from the light source, we see a specular reflection. To 
compute the diffuse reflection, we need to compute the angle between the incoming light and 
the surface normal. To compute the specular reflection, we need to compute the angle between 
the reflection direction and the viewing direction. First, we transform the incoming normal: 

vec3 tnorm     = normalize(gl_NormalMatrix * gl_Normal); 

 
This line defines a new variable called tnorm for storing the transformed normal (remember, in 
the OpenGL Shading Language, variables can be declared when needed). The incoming surface 
normal (gl_Normal, a built-in variable for accessing the normal value supplied through the 
standard OpenGL entry points) is transformed by the current OpenGL normal transformation 
matrix (gl_NormalMatrix). The resulting vector is normalized (converted to a vector of unit length) 
by the built-in function normalize, and the result is stored in tnorm. 

Next, we need to compute a vector from the current point on the surface of the three-
dimensional object we're rendering to the light source position. Both of these should be in eye 
coordinates (which means that the value for our uniform variable LightPosition must be provided 
by the application in eye coordinates). The light direction vector is computed as follows: 

vec3 lightVec  = normalize(LightPosition - ecPosition); 



 
The object position in eye coordinates was previously computed and stored in ecPosition. To 
compute the light direction vector, we subtract the object position from the light position. The 
resulting light direction vector is also normalized and stored in the newly defined local variable 
lightVec. 

The calculations we've done so far have set things up almost perfectly to call the built-in 
function reflect. Using our transformed surface normal and the computed incident light vector, 
we can now compute a reflection vector at the surface of the object; however, reflect requires 
the incident vector (the direction from the light to the surface), and we've computed the 
direction to the light source. Negating lightVec gives us the proper vector: 

vec3 reflectVec = reflect(-lightVec, tnorm); 

 
Because both vectors used in this computation were unit vectors, the resulting vector is a unit 
vector as well. To complete our lighting calculation, we need one more vectora unit vector in 
the direction of the viewing position. Because, by definition, the viewing position is at the origin 
(i.e., (0,0,0)) in the eye coordinate system, we can simply negate and normalize the computed 
eye coordinate position, ecPosition: 

vec3 viewVec   = normalize(-ecPosition); 

 
With these four vectors, we can perform a per-vertex lighting computation. The relationship of 
these vectors is shown in Figure 6.2. 

Figure 6.2. Vectors involved in the lighting computation for the brick 
vertex shader 

 

 



The modeling of diffuse reflection is based on the assumption that the incident light is scattered 
in all directions according to a cosine distribution function. The reflection of light is strongest 
when the light direction vector and the surface normal are coincident. As the difference between 
the two angles increases to 90°, the diffuse reflection drops off to zero. Because both vectors 
have been normalized to produce unit vectors, we can determine the cosine of the angle 
between lightVec and tnorm by performing a dot product operation between those vectors. We 
want the diffuse contribution to be 0 if the angle between the light and the surface normal is 
greater than 90° (there should be no diffuse contribution if the light is behind the object), and 
the max function accomplishes this: 

float diffuse = max(dot(lightVec, tnorm), 0.0); 

 
The specular component of the light intensity for this vertex is computed by 

float spec = 0.0; 
if (diffuse > 0.0) 
{ 
    spec = max(dot(reflectVec, viewVec), 0.0); 
    spec = pow(spec, 16.0); 
} 

 
The variable for the specular reflection value is defined and initialized to 0. We compute a 
specular value other than 0 only if the angle between the light direction vector and the surface 
normal is less than 90° (i.e., the diffuse value is greater than 0) because we don't want any 
specular highlights if the light source is behind the object. Because both reflectVec and viewVec are 
normalized, computing the dot product of these two vectors gives us the cosine of the angle 
between them. If the angle is near zero (i.e., the reflection vector and the viewing vector are 
almost the same), the resulting value is near 1.0. By raising the result to the 16th power in the 
subsequent line of code, we effectively "sharpen" the highlight, ensuring that we have a 
specular highlight only in the region where the reflection vector and the view vector are almost 
the same. The choice of 16 for the exponent value is arbitrary. Higher values produce more 
concentrated specular highlights, and lower values produce less concentrated highlights. This 
value could also be passed in as a uniform variable so that it can be easily modified by the end 
user. 

All that remains is to multiply the computed diffuse and specular reflection values by the 
diffuseContribution and specularContribution constants and sum the two values: 

LightIntensity = DiffuseContribution * diffuse + 
                 SpecularContribution * spec; 

 
This value will be assigned to the varying variable LightIntensity and interpolated between vertices. 
We also have one other varying variable to compute, and we can do that quite easily: 

MCposition = gl_Vertex.xy; 

 
When the brick pattern is applied to a geometric object, we want the brick pattern to remain 
constant with respect to the surface of the object, no matter how the object is moved. We also 
want the brick pattern to remain constant with respect to the surface of the object, no matter 
what the viewing position. To generate the brick pattern algorithmically in the fragment shader, 
we need to provide a value at each fragment that represents a location on the surface. For this 
example, we provide the modeling coordinate at each vertex by setting our varying variable 
MCposition to the same value as our incoming vertex position (which is, by definition, in modeling 
coordinates). 



 

We don't need the z or w coordinate in the fragment shader, so we need a way to select just 
the x and y components of gl_Vertex. We could have used a constructor here (e.g., vec2
(gl_Vertex)), but to show off another language feature, we use the component selector .xy to 
select the first two components of gl_Vertex and store them in our varying variable MCposition. 

All that remains to be done is what all vertex shaders must do: compute the homogeneous 
vertex position. We do this by transforming the incoming vertex value by the current 
modelview-projection matrix, using the built-in function ftransform: 

    gl_Position = ftransform(); 
} 

 
For clarity, the code for our vertex shader is provided in its entirety in Listing 6.1. 

Listing 6.1. Source code for brick vertex shader 

uniform vec3 LightPosition; 
 
const float SpecularContribution = 0.3; 
const float DiffuseContribution  = 1.0 - SpecularContribution; 
 
varying float LightIntensity; 
varying vec2  MCposition; 
 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPosition); 
    vec3 reflectVec = reflect(-lightVec, tnorm); 
    vec3 viewVec    = normalize(-ecPosition); 
    float diffuse   = max(dot(lightVec, tnorm), 0.0); 
    float spec      = 0.0; 
 
    if (diffuse > 0.0) 
    { 
        spec = max(dot(reflectVec, viewVec), 0.0); 
        spec = pow(spec, 16.0); 
    } 
 
    LightIntensity = DiffuseContribution * diffuse + 
                     SpecularContribution * spec; 
 
    MCposition     = gl_Vertex.xy; 
    gl_Position    = ftransform(); 
} 

 

  



6.3. Fragment Shader 
The typical purpose of a fragment shader is to compute the color to be applied to a fragment or 
to compute the depth value for the fragment or both. In this case (and indeed with most 
fragment shaders), we're concerned only about the color of the fragment. We're perfectly happy 
using the depth value that's been computed by the OpenGL rasterization stage. Therefore, the 
entire purpose of this shader is to compute the color of the current fragment. 

Our brick fragment shader starts off by defining a few more uniform variables than did the 
vertex shader. The brick pattern that will be rendered on our geometry is parameterized to 
make it easier to modify. The parameters that are constant across an entire primitive can be 
stored as uniform variables and initialized (and later modified) by the application. This makes it 
easy to expose these controls to the end user for modification through user interface elements 
such as sliders and color pickers. The brick fragment shader uses the parameters that are 
illustrated in Figure 6.1. These are defined as uniform variables as follows: 

uniform vec3  BrickColor, MortarColor; 
uniform vec2  BrickSize; 
uniform vec2  BrickPct; 

 
We want our brick pattern to be applied consistently to our geometry in order to have the 
object look the same no matter where it is placed in the scene or how it is rotated. The key to 
determining the placement of the brick pattern is the modeling coordinate position that is 
computed by the vertex shader and passed in the varying variable MCposition: 

varying vec2 MCposition; 

 
This variable was computed at each vertex by the vertex shader in the previous section, and it 
is interpolated across the primitive and made available to the fragment shader at each fragment 
location. Our fragment shader can use this information to determine where the fragment 
location is in relation to the algorithmically defined brick pattern. The other varying variable 
that is provided as input to the fragment shader is defined as follows: 

varying float LightIntensity; 

 
This varying variable contains the interpolated value for the light intensity that we computed at 
each vertex in our vertex shader. Note that both of the varying variables in our fragment 
shader are defined with the same type that was used to define them in our vertex shader. A 
link error would be generated if this were not the case. 

With our uniform and varying variables defined, we can begin with the actual code for the brick 
fragment shader: 

void main() 
{ 
    vec3  color; 
    vec2  position, useBrick; 

 
In this shader, we do things more like we would in C and define all our local variables before 
they're used at the beginning of our main function. In some cases, this can make the code a 
little cleaner or easier to read, but it is mostly a matter of personal preference and coding style. 



The first actual line of code in our brick fragment shader computes values for the local vec2 
variable position: 

position = MCposition / BrickSize; 

 
This statement divides the fragment's x position in modeling coordinates by the brick column 
width and the y position in modeling coordinates by the brick row height. This gives us a "brick 
row number" (position.y) and a "brick number" within that row (position.x). Keep in mind that these 
are signed, floating-point values, so it is perfectly reasonable to have negative row and brick 
numbers as a result of this computation. 

Next, we use a conditional to determine whether the fragment is in a row of bricks that is offset 
(see Figure 6.3): 

if (fract(position.y * 0.5) > 0.5) 
    position.x += 0.5; 

 
Figure 6.3. A graph of the function fract(position.y * 0.5) shows how the 
even/odd row determination is made. The result of this function is 

compared against 0.5. If the value is greater than 0.5, a value of 0.5 is 
added to position.x; otherwise, nothing is added. The result is that rows 

whose integer values are 1, 3, 5, . . ., are shifted half a brick position to 
the right. 

 

 
The "brick row number" (position.y) is multiplied by 0.5, the integer part is dropped by the fract 
function, and the result is compared to 0.5. Half the time (or every other row), this comparison 
is true, and the "brick number" value (position.x) is incremented by 0.5 to offset the entire row by 
half the width of a brick. This is illustrated by the graph in Figure 6.3. 

Following this, we compute the fragment's location within the current brick: 

position = fract(position); 

 
This computation gives us the vertical and horizontal position within a single brick. This position 
serves as the basis for determining whether to use the brick color or the mortar color. 

Figure 6.4 shows how we might visualize the results of the fragment shader to this point. If we 



were to apply this shader to a square with modeling coordinates of (1.0, 1.0) at the lower-left 
corner and (1.0, 1.0) at the upper right, our partially completed shader would show the 
beginnings of the brick pattern we're after. Because the overall width of the square is 2.0 units 
in modeling coordinates, our division of MCposition.x by BrickSize.x gives us 2.0 / 0.3 or roughly six 
and two-thirds bricks across, as we see in Figure 6.4. Similarly the division of MCposition.y by 
BrickSize.y gives us 2.0 / 0.15 or roughly thirteen and two-thirds rows of bricks from top to 
bottom. For this illustration, we shaded each fragment by summing the fractional part of 
position.x and position.y, multiplying the result by 0.5, and then storing this value in the red, green, 
and blue components of gl_FragColor. 

Figure 6.4. Intermediate results of brick fragment shader 

[View full size image] 

 

 
To complete our brick shader, we need a function that gives us a value of 1.0 when the brick 
color should be used and 0 when the mortar color should be used. If we can achieve this, we 
can end up with a simple way to choose the appropriate color. We know that we're working with 
a horizontal component of the brick texture function and a vertical component. If we can create 
the desired function for the horizontal component and the desired function for the vertical 
component, we can just multiply the two values together to get our final answer. If the result of 
either of the individual functions is 0 (mortar color), the multiplication causes the final answer 
to be 0; otherwise, it is 1.0, and the brick color is used. 

We use the step function to achieve the desired effect. The step function takes two arguments, an 
edge (or threshold) and a parameter to test against that edge. If the value of the parameter to 
be tested is less than the edge value, the function returns 0; otherwise, it returns 1.0. (Refer to 
Figure 5.11 for a graph of this function). In typical use, the step function produces a pattern of 
pulses (i.e., a square wave) whereby the function starts at 0 and rises to 1.0 when the 
threshold is reached. We can get a function that starts at 1.0 and drops to 0 just by reversing 
the order of the two arguments provided to this function: 

useBrick = step(position, BrickPct); 



 
In this line of code, we compute two values that tell us whether we are in the brick or in the 
mortar in the horizontal direction (useBrick.x) and in the vertical direction (useBrick.y). The built-in 
function step produces a value of 0 when BrickPct.x < position.x and a value of 1.0 when BrickPct.x 
>= position.x. Because of the fract function, we know that position.x varies from (0,1). The variable 
BrickPct is a uniform variable, so its value is constant across the primitive. This means that the 
value of useBrick.x is 1.0 when the brick color should be used and 0 when the mortar color should 
be used as we move horizontally. The same thing is done in the vertical direction, with position.y 
and BrickPct.y computing the value for useBrick.y. By multiplying useBrick.x by useBrick.y, we can get a 
value of 0 or 1.0 that lets us select the appropriate color for the fragment. The periodic step 
function for the horizontal component of the brick pattern is illustrated in Figure 6.5. 

Figure 6.5. The periodic step function that produces the horizontal 
component of the procedural brick pattern 

 

 
The values of BrickPct.x and BrickPct.y can be computed by the application to give a uniform 
mortar width in both directions based on the ratio of column width to row height, or the values 
can be chosen arbitrarily to give a mortar appearance that looks right. 

All that remains is to compute our final color value and store it in the special variable 
gl_FragColor: 

    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y); 
    color *= LightIntensity; 
    gl_FragColor = vec4(color, 1.0); 
} 

 
Here we compute the color of the fragment and store it in the local variable color. We use the 
built-in function mix to choose the brick color or the mortar color, depending on the value of 
useBrick.x * useBrick.y. Because useBrick.x and useBrick.y can have values of only 0 (mortar) or 1.0 
(brick), we choose the brick color only if both values are 1.0; otherwise, we choose the mortar 
color. 

The resulting value is then multiplied by the light intensity, and that result is stored in the local 
variable color. This local variable is a vec3, and gl_FragColor is defined as a vec4, so we create 
our final color value by using a constructor to add a fourth component (alpha) equal to 1.0 and 
assign the result to the built-in variable gl_FragColor. 



The source code for the complete fragment shader is shown in Listing 6.2. 

Listing 6.2. Source code for brick fragment shader 

When comparing this shader to the vertex shader in the previous example, we notice one of the 
key features of the OpenGL Shading Language, namely, that the language used to write these 
two shaders is almost identical. Both shaders have a main function, some uniform variables, 
and some local variables; expressions are the same; built-in functions are called in the same 
way; constructors are used in the same way; and so on. The only perceptible differences 
exhibited by these two shaders are (A) the vertex shader accesses built-in attribute variables, 
such as gl_Vertex and gl_Normal, (B) the vertex shader writes to the built-in variable gl_Position, 
whereas the fragment shader writes to the built-in variable gl_FragColor, and (C) the varying 
variables are written by the vertex shader and are read by the fragment shader. 

The application code to create and use these shaders is shown in Section 7.13, after the 
OpenGL Shading Language API has been presented. The result of rendering some simple 
objects with these shaders is shown in Figure 6.6. A color version of the result is shown in Color 
Plate 35. 

Figure 6.6. A flat polygon, a sphere, and a torus rendered with the brick 
shaders 

uniform vec3  BrickColor, MortarColor; 
uniform vec2  BrickSize; 
uniform vec2  BrickPct; 
 
varying vec2  MCposition; 
varying float LightIntensity; 
 
void main() 
{ 
    vec3  color; 
    vec2  position, useBrick; 
    position = MCposition / BrickSize; 
 
    if (fract(position.y * 0.5) > 0.5) 
        position.x += 0.5; 
 
    position = fract(position); 
 
    useBrick = step(position, BrickPct); 
 
    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y); 
    color *= LightIntensity; 
    gl_FragColor = vec4(color, 1.0); 
} 

 



6.4. Observations 
A couple of problems with our shader make it unfit for anything but the simplest cases. Because 
the brick pattern is computed with the modeling coordinates of the incoming object, the 
apparent size of the bricks depends on the size of the object in modeling coordinates. The brick 
pattern might look fine with some objects, but the bricks may turn out much too small or much 
too large on other objects. At the very least, we should probably have a uniform variable in the 
vertex shader to scale the modeling coordinates. The application could allow the end user to 
adjust the scale factor to make the brick pattern look good on the object being rendered. 

Another potential issue is that we've chosen to base the brick pattern on the object's x and y 
coordinates in modeling space. This can result in some unrealistic-looking effects on objects 
that aren't as regular as the objects shown in Figure 6.6. By using only the x and y coordinates 
of the object, we end up modeling bricks that are infinitely deep. The brick pattern looks fine 
when viewed from the front of the object, but when you look at it from the side, you'll be able 
to see how the brick extends in depth. To get a truly three-dimensional brick shader, we'd need 
to add a third dimension to our procedural texture calculation and use the z component of the 
position in modeling coordinates to determine whether we were in brick or mortar in the z 
dimension as well (see if you can modify the shaders to do this). 

If we look closely at our brick pattern, we also notice aliasing artifacts (jaggies) along the 
transition from brick color to mortar color. These artifacts are due to the step function causing 
an instantaneous change from 0 to 1.0 (or from 1.0 to 0) when we cross the transition point 
between brick color and mortar color. Our shader has no alternative but to pick one color or the 
other for each fragment, and, because we cannot sample at a high enough frequency to 
represent this instantaneous change at the brick/mortar border, aliasing artifacts occur. Instead 
of using the step function, we could have used the built-in smoothstep function. This function is like 
the step function, except that it defines two edges and a smooth interpolation between 0 and 1.0 
between those two edges. This would have the effect of blurring the transition between the 
brick color and the mortar color, thus making the aliasing artifacts much less noticeable. A 
method for analytically antialiasing the procedural brick texture is described in Section 17.4.5. 

Despite these shortcomings, our brick shaders are perfectly good examples of a working 
OpenGL shader. Together, our brick vertex and fragment shaders illustrate a number of the 
interesting features of the OpenGL Shading Language. 

  



6.5. Summary 
This chapter has applied the language concepts from previous chapters to the development of 
working shaders that create a procedurally defined brick pattern. The vertex shader is 
responsible for transforming the vertex position, passing along the modeling coordinate position 
of the vertex, and computing a light intensity value at each vertex, using a single simulated 
light source. The fragment shader is responsible for determining whether each fragment should 
be brick color or mortar color. Once this determination is made, the light intensity value is 
applied to the chosen color, and the final color value is passed from the fragment shader so 
that it can ultimately be written in the frame buffer. The source code for these two shaders was 
discussed line by line to explain clearly how they work. This pair of shaders illustrates many of 
the features of the OpenGL Shading Language and can be used as a springboard for doing 
bigger and better things with the language. 



6.6. Further Information 
This shader and others are available from the 3Dlabs developer Web site. Source code for 
getting started with OpenGL shaders is also available. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com/ 

2. Baldwin, Dave, OpenGL 2.0 Shading Language White Paper, Version 1.0, 3Dlabs, October, 
2001. 

3. Ebert, David S., John Hart, Bill Mark, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, 
and Steven Worley, Texturing and Modeling: A Procedural Approach, Third Edition, 
Morgan Kaufmann Publishers, San Francisco, 2002. 
http://www.texturingandmodeling.com 

4. Kessenich, John, Dave Baldwin, and Randi Rost, The OpenGL Shading Language, Version 
1.10, 3Dlabs, April 2004. http://www.opengl.org/documentation/spec.html 

5. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
Sept. 2004. http://www.opengl.org/documentation/spec.html 

  



Chapter 7. OpenGL Shading Language API
In support of the OpenGL Shading Language, more than 30 new entry points were added to 
OpenGL in version 2.0. This set of API calls is referred to throughout this book as the OPENGL 
SHADING LANGUAGE API. In this chapter, we look at the OpenGL entry points that have been added 
to create, load, compile, and link shaders, as well as the entry points that have been added for 
passing generic vertex attributes and uniform variables to shaders. Reference pages for all of 
the OpenGL Shading Language API entry points are found in Appendix B. 

At the end of this chapter, we discuss the application code that is needed to create and use the 
brick shader presented in Chapter 6. If you just can't wait, go ahead and sneak a peek at 
Section 7.13, and then come back here to learn the details of the API. 

Here is an overview of creating and using OpenGL shaders: 

If the vertex shader uses user-defined attribute variables, the application must provide values 
for them, using OpenGL API calls that place attribute values in generic, numbered vertex 
attribute locations. Before such attribute data is passed to the shader, the index of the generic 
vertex attribute should be associated with an attribute variable in a vertex shader in one of two 
ways. Applications can create this association explicitly by calling glBindAttribLocation before 
linking. Alternatively, if no explicit association is made, OpenGL makes these associations 
automatically during linking. An application can query the assignment that was made with 
glGetAttribLocation. Thereafter, generic vertex attributes can be passed to a vertex shader with 
glVertexAttrib or with glVertexAttribPointer and glEnableVertexArrayPointer in conjunction with standard 
OpenGL commands to draw vertex arrays. 

1.  Create one or more (empty) shader objects with glCreateShader. 
 

2.  Provide source code for these shaders with glShaderSource. 
 

3.  Compile each of the shaders with glCompileShader. 
 

4.  Create a program object with glCreateProgram. 
 

5.  Attach all the shader objects to the program object with glAttachShader. 
 

6.  Link the program object with glLinkProgram. 
 

7.  Install the executable program as part of OpenGL's current state with glUseProgram. 
 

8.  If the shaders use user-defined uniform variables, query the locations of these variables 
with glGetUniformLocation and then set their values with glUniform. 
 



7.1. Obtaining Version Information 
With the addition of the OpenGL Shading Language, the OpenGL version number was changed 
from 1.5 to 2.0. The number before the period is referred to as the major version number and 
the number after the period is referred to as the minor version number. This did not reflect a 
change in compatibility, as is often the case when a product's major version number is 
changed. Instead, the OpenGL ARB believed that inclusion of a high-level shading language was 
a major addition to OpenGL. To call attention to this important capability, the committee 
decided that a change to OpenGL's major version number was warranted. 

This caused some incompatibility with applications that were written assuming that OpenGL 
would never have a major version number greater than 1. The OpenGL Shading Language also 
has a version number since it is expected that it too will have additional features added over 
time. Both of these values can be queried with the OpenGL function glGetString. 

To write applications that will work properly in a variety of OpenGL environments and that will 
stand the test of time, be sure to properly query and parse the OpenGL and OpenGL Shading 
Language version strings. Both strings are defined as 

<version number><space><vendor-specific information> 

The version number is defined to be either 

majorVersionNumber.minorVersionNumber 

or 

majorVersionNumber.minorVersionNumber.releaseNumber 

where each component contains one or more digits. The vendor specification information and 
the release number are optional and might not appear in the version string. The version 
number is not a floating-point number, but a series of integers separated by periods. 

To determine the OpenGL version number, call glGetString with the symbolic constant 
GL_VERSION. To determine the OpenGL Shading Language version, call glGetString with the 
symbolic constant GL_SHADING_LANGUAGE_VERSION. The shading language version that was 
approved at the time OpenGL 2.0 was approved was 1.10. 

Listing 7.1 contains code for C functions that query and parse the OpenGL and OpenGL Shading 
Language version strings. Both functions assume that a valid OpenGL context already exists, 
and both return 0 for the major and minor number if an error is encountered. Values returned 
by these functions can be tested to see if the underlying implementation provides the necessary 
support. 

Listing 7.1. C functions to obtain OpenGL and OpenGL Shading 
Language version information 

void getGlVersion(int *major, int *minor) 
{ 
    const char *verstr = (const char *) glGetString(GL_VERSION); 
    if ((verstr == NULL) || (sscanf(verstr,"%d.%d", major, minor) != 2)) 
    { 
        *major = *minor = 0; 
        fprintf(stderr, "Invalid GL_VERSION format!!!\n"); 



 

    } 
} 
 
void getGlslVersion(int *major, int *minor) 
{ 
    int gl_major, gl_minor; 
    getGlVersion(&gl_major, &gl_minor); 
 
    *major = *minor = 0; 
    if(gl_major == 1) 
    { 
        /* GL v1.x can only provide GLSL v1.00 as an extension */ 
        const char *extstr = (const char *) glGetString(GL_EXTENSIONS); 
        if ((extstr != NULL) && 
            (strstr(extstr, "GL_ARB_shading_language_100") != NULL)) 
        { 
            *major = 1; 
            *minor = 0; 
        } 
    } 
    else if (gl_major >= 2) 
    { 
        /* GL v2.0 and greater must parse the version string */ 
        const char *verstr = 
            (const char *) glGetString(GL_SHADING_LANGUAGE_VERSION); 
 
        if((verstr == NULL) || 
            (sscanf(verstr, "%d.%d", major, minor) != 2)) 
        { 
            *major = *minor = 0; 
            fprintf(stderr, 
                "Invalid GL_SHADING_LANGUAGE_VERSION format!!!\n"); 
        } 
    } 
} 

 

  



7.2. Creating Shader Objects 
The design of the OpenGL Shading Language API mimics the process of developing a C or C++ 
application. The first step is to create the source code. The source code must then be compiled, 
the various compiled modules must be linked, and finally the resulting code can be executed by 
the target processor. 

To support the concept of a high-level shading language within OpenGL, the design must 
provide storage for source code, compiled code, and executable code. The solution to this 
problem is to define two new OpenGL-managed data structures, or objects. These objects 
provide the necessary storage, and operations on these objects have been defined to provide 
functionality for specifying source code and then compiling, linking, and executing the resulting 
code. When one of these objects is created, OpenGL returns a unique identifier for it. This 
identifier can be used to manipulate the object and to set or query the parameters of the 
object. 

The first step toward utilizing programmable graphics hardware is to create a shader object. 
This creates an OpenGL-managed data structure that can store the shader's source code. The 
command to create a shader is 

 
After a shader object is created, strings that define the shader's source code must be provided. 
The source code for a shader is provided as an array of strings. The command for defining a 
shader's source code is 

GLuint glCreateShader(GLenum shaderType) 

Creates an empty shader object and returns a non-zero value by which it 
can be referenced. A shader object maintains the source code strings that 
define a shader. shaderType specifies the type of shader to be created. Two 
types of shaders are supported. A shader of type GL_VERTEX_SHADER is 
a shader that runs on the programmable vertex processor; it replaces the 
fixed functionality vertex processing in OpenGL. A shader of type 
GL_FRAGMENT_SHADER is a shader that runs on the programmable 
fragment processor; it replaces the fixed functionality fragment 
processing in OpenGL. 

When created, a shader object's GL_SHADER_TYPE parameter is set to 
either GL_VERTEX_SHADER or GL_FRAGMENT_SHADER, depending on 
the value of shaderType. 

void glShaderSource(GLuint shader,  
                    GLsizei count, 
                    const GLchar **string, 
                    const GLint *length) 

Sets the source code in shader to the source code in the array of strings 
specified by string. Any source code previously stored in the shader object 
is completely replaced. The number of strings in the array is specified by 
count. If length is NULL, then each string is assumed to be null terminated. 
If length is a value other than NULL, it points to an array containing a 
string length for each of the corresponding elements of string. Each 
element in the length array can contain the length of the corresponding 
string (the null character is not counted as part of the string length) or a 
value less than 0 to indicate that the string is null terminated. The source 



 

 
The multiple strings interface provides a number of benefits, including 

A way to organize common pieces of source code (for instance, the varying variable 
definitions that are shared between a vertex shader and a fragment shader) 

A way to share prefix strings (analogous to header files) between shaders 

A way to share #define values to control the compilation process 

A way to include user-defined or third-party library functions 

code strings are not scanned or parsed at this time; they are simply 
copied into the specified shader object. An application can modify or free 
its copy of the source code strings immediately after the function returns. 

  



7.3. Compiling Shader Objects 
After the source code strings have been loaded into a shader object, the source code must be 
compiled to check its validity. The result of compilation remains as part of the shader object 
until another compilation operation occurs or until the shader object itself is deleted. The 
command to compile a shader object is 

 
The OpenGL Shading Language has compilation rules that are slightly different depending on 
the type of shader being compiled, and so the compilation takes into consideration whether the 
shader is a vertex shader or a fragment shader. 

Information about the compile operation can be obtained by calling glGetShaderInfoLog (described 
in Section 7.6) with shader, but the information log should not be used as an indication of 
whether the compilation was successful. If the shader object was compiled successfully, either 
the information log is an empty string or it contains information about the compile operation. If 
the shader object was not compiled successfully, the information log contains information about 
any lexical, grammatical, or semantic errors that occurred, along with warning messages and 
any other information the compiler deems pertinent. 

void glCompileShader(GLuint shader) 

Compiles the source code strings that have been stored in the shader 
object specified by shader. 

The compilation status is stored as part of the shader object's state. This 
value is set to GL_TRUE if the shader was compiled without errors and is 
ready for use, and GL_FALSE otherwise. It can be queried by calling 
glGetShader with arguments shader and GL_COMPILE_STATUS. 

A shader will fail to compile if it is lexically, grammatically, or 
semantically incorrect. Whether or not the compilation was successful, 
information about the compilation can be obtained from the shader 
object's information log with glGetShaderInfoLog. 



7.4. Linking and Using Shaders 
Each shader object is compiled independently. To create a program, applications need a 
mechanism for specifying a list of shader objects to be linked. You can specify the list of 
shaders objects to be linked by creating a program object and attaching to it all the shader 
objects needed to create the program. 

To create a program object, use the following command: 

 
After the program object has been defined, shader objects can be attached to it. Attaching 
simply means creating a reference to the shader object so that it will be included when an 
attempt to link a program object is made. This is the application's way of describing the recipe 
for creating a program. The command to attach a shader object to a program object is 

 
There is no inherent limit on the number of shader objects that can be attached to a program 
object. All operations that can be performed on a shader object are valid whether or not the 
shader object is attached to a program object. It is permissible to attach a shader object to a 
program object before source code has been loaded into the shader object or before the shader 
object has been compiled. It is also permissible to attach a shader object to more than one 
program object. In other words, glAttachShader simply specifies the set of shader objects to be 
linked. 

To create a valid program, all the shader objects attached to a program object must be 
compiled and the program object itself must be linked. The link operation assigns locations for 
uniform variables, initializes user-defined uniform variables, resolves references between 
independently compiled shader objects, and checks to make sure the vertex and fragment 
shaders are compatible with one another. To link a program object, use the command 

GLuint glCreateProgram(void) 

Creates an empty program object and returns a non-zero value by which 
it can be referenced. A program object is an object to which shader 
objects can be attached. This provides a mechanism to specify the shader 
objects that will be linked to create a program. It also provides a means 
for checking the compatibility between shaders that will be used to create 
a program (for instance, checking the compatibility between a vertex 
shader and a fragment shader). When no longer needed as part of a 
program object, shader objects can be detached. 

 
void glAttachShader(GLuint program, 
                    GLuint shader) 

Attaches the shader object specified by shader to the program object 
specified by program. This indicates that shader will be included in link 
operations that are performed on program. 

void glLinkProgram(GLuint program) 

Links the program object specified by program. If any shader objects of 
type GL_VERTEX_SHADER are attached to program, they are used to 
create an executable that will run on the programmable vertex processor. 



 
Linking of a program object can fail for a number of reasons. 

The number of active attribute variables supported by the implementation has been 
exceeded. 

The number of active uniform variables supported by the implementation has been 
exceeded. 

The main function is missing for the vertex shader or the fragment shader. 

A varying variable actually used in the fragment shader is not declared with the same 
type (or is not declared at all) in the vertex shader. 

A reference to a function or variable name is unresolved. 

A shared global is declared with two different types or two different initial values. 

One or more of the attached shader objects has not been successfully compiled. 

Binding a generic attribute matrix caused some rows of the matrix to fall outside the 

If any shader objects of type GL_FRAGMENT_SHADER are attached to 
program, they are used to create an executable that will run on the 
programmable fragment processor. 

The status of the link operation is stored as part of the program object's 
state. This value is set to GL_TRUE if the program object was linked 
without errors and is ready for use and set to GL_FALSE otherwise. It can 
be queried by calling glGetProgram with arguments program and 
GL_LINK_STATUS. 

As a result of a successful link operation, all active user-defined uniform 
variables (see Section 7.8) belonging to program are initialized to 0, and 
each of the program object's active uniform variables is assigned a 
location that can be queried with glGetUniformLocation. Also, any active 
user-defined attribute variables (see Section 7.7) that have not been 
bound to a generic vertex attribute index are bound to one at this time. 

If program contains shader objects of type GL_VERTEX_SHADER but it does 
not contain shader objects of type GL_FRAGMENT_SHADER, the vertex 
shader is linked to the implicit interface for fixed functionality fragment 
processing. Similarly, if program contains shader objects of type 
GL_FRAGMENT_SHADER but it does not contain shader objects of type 
GL_VERTEX_SHADER, the fragment shader is linked to the implicit 
interface for fixed functionality vertex processing. 

glLinkProgram also installs the generated executables as part of the current 
rendering state if the link operation was successful and the specified 
program object is already currently in use as a result of a previous call to 
glUseProgram. If the program object currently in use is relinked 
unsuccessfully, its link status is set to GL_FALSE, but the previously 
generated executables and associated state remain part of the current 
state until a subsequent call to glUseProgram removes them. After they are 
removed, they cannot be made part of current state until the program 
object has been successfully relinked. 



allowed maximum of GL_MAX_VERTEX_ATTRIBS. 

Not enough contiguous vertex attribute slots could be found to bind attribute matrices. 

The program object's information log is updated at the time of the link operation. If the link 
operation is successful, a program is generated. It may contain an executable for the vertex 
processor, an executable for the fragment processor, or both. Whether the link operation 
succeeds or fails, the information and executables from the previous link operation will be lost. 
After the link operation, applications are free to modify attached shader objects, compile 
attached shader objects, detach shader objects, and attach additional shader objects. None of 
these operations affect the information log or the program that is part of the program object 
until the next link operation on the program object. 

Information about the link operation can be obtained by calling glGetProgramInfoLog (described in 
Section 7.6) with program. If the program object was linked successfully, the information log is 
either an empty string or contains information about the link operation. If the program object 
was not linked successfully, the information log contains information about any link errors that 
occurred, along with warning messages and any other information the linker chooses to 
provide. 

When the link operation has completed successfully, the program it contains can be installed as 
part of the current rendering state. The command to install the program as part of the 
rendering state is 

 
Successfully installing an executable on a programmable processor causes the corresponding 
fixed functionality of OpenGL to be disabled. Specifically, if an executable is installed on the 
vertex processor, the OpenGL fixed functionality is disabled as described in Section 4.1. 
Similarly, if an executable is installed on the fragment processor, the OpenGL fixed functionality 
is disabled as described in Section 4.2. 

While a program object is in use, applications are free to modify attached shader objects, 
compile attached shader objects, attach additional shader objects, detach shader objects, 
delete any shader objects attached, or delete the program object itself. None of these 
operations affect the executables that are part of the current state. However, relinking the 
program object that is currently in use installs the program as part of the current rendering 

void glUseProgram(GLuint program) 

Installs the program object specified by program as part of current 
rendering state. 

A program object contains an executable that will run on the vertex 
processor if it contains one or more shader objects of type 
GL_VERTEX_SHADER that have been successfully compiled and linked. 
Similarly, a program object contains an executable that will run on the 
fragment processor if it contains one or more shader objects of subtype 
GL_FRAGMENT_SHADER that have been successfully compiled and linked. 

If program contains shader objects of type GL_VERTEX_SHADER but it does 
not contain shader objects of type GL_FRAGMENT_SHADER, an 
executable is installed on the vertex processor but fixed functionality is 
used for fragment processing. Similarly, if program contains shader objects 
of type GL_FRAGMENT_SHADER but it does not contain shader objects of 
type GL_VERTEX_SHADER, an executable is installed on the fragment 
processor but fixed functionality is used for vertex processing. If program is 
0, the programmable processors are disabled, and fixed functionality is 
used for both vertex and fragment processing. 

 

state if the link operation was successful. While a program object is in use, the state that 
controls the disabled fixed functionality can also be updated with the normal OpenGL calls. 



7.5. Cleaning Up 
Objects should be deleted when they are no longer needed, and deletion can be accomplished 
with the following commands 

 

 
When a shader object no longer needs to be attached to a program object, it can be detached 
with the command 

 
A programming tip that might be useful in keeping things orderly is to delete shader objects as 
soon as they have been attached to a program object. They won't be deleted at this time, but 

void glDeleteShader(GLuint shader) 

Frees the memory and invalidates the name associated with the shader 
object specified by shader. This command effectively undoes the effects of 
a call to glCreateShader. 

If a shader object to be deleted is attached to a program object, it will be 
flagged for deletion, but it will not be deleted until it is no longer attached 
to any program object for any rendering context (i.e., it must be 
detached from wherever it was attached before it can be deleted). A 
value of 0 for shader is silently ignored. 

To determine whether a shader object has been flagged for deletion, call 
glGetShader with arguments shader and GL_DELETE_STATUS. 

void glDeleteProgram(GLuint program) 

Frees the memory and invalidates the name associated with the program 
object specified by program. This command effectively undoes the effects 
of a call to glCreateProgram. 

If a program object is in use as part of a current rendering state, it will be 
flagged for deletion, but it will not be deleted until it is no longer part of 
current state for any rendering context. If a program object to be deleted 
has shader objects attached to it, those shader objects are automatically 
detached but not deleted unless they have already been flagged for 
deletion by a previous call to glDeleteShader. 

To determine whether a program object has been flagged for deletion, 
call glGetProgram with arguments program and GL_DELETE_STATUS. 

void glDetachShader(GLuint program, GLuint shader) 

Detaches the shader object specified by shader from the program object 
specified by program. This command undoes the effect of the command 
glAttachShader. 

If shader has already been flagged for deletion by a call to glDeleteShader and 
it is not attached to any other program object, it is deleted after it has 
been detached. 



 

they will be flagged for deletion when they are no longer referenced. To clean up later, the 
application only needs to delete the program object. All the attached shader objects will be 
automatically detached, and, because they are flagged for deletion, they will be automatically 
deleted at that time as well. 



7.6. Query Functions 
The OpenGL Shading Language API contains several functions for querying object state. To 
obtain information about a shader object, use the following command: 

 
A similar function is provided for querying the state of a program object: the status of an 
operation on a program object, the number of attached shader objects, the number of active 
attributes (see Section 7.7), the number of active uniform variables (see Section 7.8), or the 
length of any of the strings maintained by a program object. The command to obtain 
information about a program object is 

void glGetShaderiv(GLuint shader, 
                                    GLenum pname, 
                                    GLint *params) 

Returns in params the value of a parameter for a specific shader object. This 
function returns information about a shader object. Permitted parameters 
and their meanings are described in Table 7.1. In this table, the value for 
pname is shown on the left, and the operation performed is shown on the 
right.  

 

Table 7.1. Queriable shader object parameters 

Parameter Operation 

GL_SHADER_TYPE params returns a value of either 
GL_VERTEX_SHADER or 
GL_FRAGMENT_SHADER, depending on 
whether shader is the name of a vertex 
shader object or a fragment shader 
object. 

GL_DELETE_STATUS params returns GL_TRUE if shader is 
currently flagged for deletion, and 
GL_FALSE otherwise. 

GL_COMPILE_STATUS params returns GL_TRUE if the last 
compile operation on shader was 
successful, and GL_FALSE otherwise. 

GL_INFO_LOG_LENGTH params returns the number of characters 
in the information log for shader, including 
the null termination character. If the 
object has no information log, a value of 
0 is returned. 

GL_SHADER_SOURCE_LENGTH params returns the length of the 
concatenation of the source strings that 
make up the shader source for shader, 
including the null termination character. 
If no source code exists, 0 is returned. 

void glGetProgramiv(GLuint program, 



                                      GLenum pname, 
                                      GLint *params) 

Returns in params the value of a parameter for a particular program object. 
This function returns information about a program object. Permitted 
parameters and their meanings are described in Table 7.2. In this table, 
the value for pname is shown on the left, and the operation performed is 
shown on the right.  

 

Table 7.2. Queriable program object parameters 

Parameter Operation 

GL_DELETE_STATUS params returns GL_TRUE if program 
is currently flagged for deletion, 
and GL_FALSE otherwise. 

GL_LINK_STATUS params returns GL_TRUE if the last 
link operation on program was 
successful, and GL_FALSE 
otherwise. 

GL_VALIDATE_STATUS params returns GL_TRUE if the last 
validation operation on program 
was successful, and GL_FALSE 
otherwise. 

GL_INFO_LOG_LENGTH params returns the number of 
characters in the information log 
for program, including the null 
termination character. If the 
object has no information log, a 
value of 0 is returned. 

GL_ATTACHED_SHADERS params returns the number of 
shader objects attached to 
program. 

GL_ACTIVE_ATTRIBUTES params returns the number of 
active attribute variables for 
program. 

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH params returns the length of the 
longest active attribute variable 
name for program, including the 
null termination character. If no 
active attribute variables exist, 0 
is returned. 

GL_ACTIVE_UNIFORMS params returns the number of 
active uniform variables for 
program. 

GL_ACTIVE_UNIFORM_MAX_LENGTH params returns the length of the 
longest active uniform variable 
name for program, including the 
null termination character. If no 
active uniform variables exist, 0 
is returned. 



 
The command to obtain the current shader string from a shader object is 

 
Information about the compilation operation is stored in the information log for a shader object. 
Similarly, information about the link and validation operations is stored in the information log 
for a program object. The information log is a string that contains diagnostic messages and 
warnings. The information log may contain information useful during application development 
even if the compilation or link operation was successful. The information log is typically only 
useful during application development, and an application should not expect different OpenGL 
implementations to produce identical descriptions of error. To obtain the information log for a 
shader object, call 

 
To obtain the information log for a program object, call 

void glGetShaderSource(GLuint shader 
                                              GLsizei bufSize, 
                                              GLsizei *length, 
                                              GLchar *source) 

Returns a concatenation of the source code strings from the shader object 
specified by shader. The source code strings for a shader object are the 
result of a previous call to glShaderSource. The string returned by the 
function is null terminated. 

glGetShaderSource returns in source as much of the source code string as it 
can, up to a maximum of bufSize characters. The number of characters 
actually returned, excluding the null termination character, is specified by 
length. If the length of the returned string is not required, a value of NULL 
can be passed in the length argument. The size of the buffer required to 
store the returned source code string can be obtained by calling 
glGetShader with the value GL_SHADER_SOURCE_LENGTH. 

void glGetShaderInfoLog(GLuint shader, 
                                               GLsizei maxLength, 
                                               GLsizei *length, 
                                               GLchar *infoLog) 

Returns the information log for the specified shader object. The 
information log for a shader object is modified when the shader is 
compiled. The string that is returned is null terminated. 

glGetShaderInfoLog returns in infoLog as much of the information log as it 
can, up to a maximum of maxLength characters. The number of characters 
actually returned, excluding the null termination character, is specified by 
length. If the length of the returned string is not required, a value of NULL 
can be passed in the length argument. The size of the buffer required to 
store the returned information log can be obtained by calling glGetShader 
with the value GL_INFO_LOG_LENGTH. 

The information log for a shader object is a string that may contain 
diagnostic messages, warning messages, and other information about the 
last compile operation. When a shader object is created, its information 
log is a string of length 0. 

void glGetProgramInfoLog(GLuint program, 



 
The way the API is set up, you first need to perform a query to find out the length of the the 
information log (number of characters in the string). After allocating a buffer of the appropriate 
size, you can call glGetShaderInfoLog or glGetProgramInfoLog to put the information log string into 
the allocated buffer. You can then print it if you want to do so. Listing 7.2 shows a C function 
that does all this for a shader object. The code for obtaining the information log for a program 
object is almost identical. 

Listing 7.2. C function to print the information log for an object 

You can obtain the program object that is currently in use by calling glGet with the symbolic 

                                                  GLsizei maxLength, 
                                                  GLsizei *length, 
                                                  GLchar *infoLog) 

Returns the information log for the specified program object. The 
information log for a program object is modified when the program object 
is linked or validated. The string that is returned is null terminated. 

glGetProgramInfoLog returns in infoLog as much of the information log as it 
can, up to a maximum of maxLength characters. The number of characters 
actually returned, excluding the null termination character, is specified by 
length. If the length of the returned string is not required, a value of NULL 
can be passed in the length argument. The size of the buffer required to 
store the returned information log can be obtained by calling glGetProgram 
with the value GL_INFO_LOG_LENGTH. 

The information log for a program object is an empty string, a string 
containing information about the last link operation, or a string containing 
information about the last validation operation. It may contain diagnostic 
messages, warning messages, and other information. When a program 
object is created, its information log is a string of length 0. 

void printShaderInfoLog(GLuint shader) 
{ 
    int infologLen = 0; 
    int charsWritten  = 0; 
    GLchar *infoLog; 
 
    glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infologLen); 
    printOpenGLError();  // Check for OpenGL errors 
   
    if (infologLen > 0) 
    {  
        infoLog = (GLchar*) malloc(infologLen); 
        if (infoLog == NULL) 
        { 
            printf("ERROR: Could not allocate InfoLog buffer\n"); 
            exit(1); 
        } 
        glGetShaderInfoLog(shader, infologLen, &charsWritten, infoLog); 
        printf("InfoLog:\n%s\n\n", infoLog); 
        free(infoLog); 
    } 
    printOpenGLError(); // Check for OpenGL errors 
} 

 



 

constant GL_CURRENT_PROGRAM. 

The command to query a list of shader objects attached to a particular program object is 

 
Two new functions have been added to determine whether an object is a shader object or a 
program object. These functions may be useful if you have to process an object (for instance, to 
print its information log) without knowing whether it is a valid shader or program object. These 
two functions are defined as 

 

 

void glGetAttachedShaders(GLuint program, 
                                                    GLsizei maxCount, 
                                                    GLsizei *count, 
                                                    GLuint *shaders) 

Returns the handles of the shader objects attached to program. It returns 
in shaders as many of the handles of these shader objects as it can, up to a 
maximum of maxCount. The number of handles actually returned is 
specified by count. If the number of handles actually returned is not 
required (for instance, if it has just been obtained with glGetProgram), a 
value of NULL may be passed for count. If no shader objects are attached 
to program, a value of 0 is returned in count. The actual number of attached 
shaders can be obtained by calling glGetProgram with the value 
GL_ATTACHED_SHADERS. 

GLboolean glIsShader(GLuint shader) 

Returns GL_TRUE if shader is the name of a shader object. If shader is zero 
or a non-zero value that is not the name of a shader object, glIsShader 
returns GL_FALSE. 

GLboolean glIsProgram(GLuint program) 

Returns GL_TRUE if program is the name of a program object. If program is 
zero or a non-zero value that is not the name of a program object, 
glIsProgram returns GL_FALSE. 



7.7. Specifying Vertex Attributes 
One way you can pass vertex data to OpenGL is by calling glBegin, followed by some sequence of 
glColor/glNormal/glVertex/etc. A call to glEnd terminates this method of specifying vertex data. 

These calls continue to work in the OpenGL programmable environment. As before, a call to 
glVertex indicates that the data for an individual vertex is complete and should be processed. 
However, if a valid vertex shader has been installed with glUseProgram, the vertex data is 
processed by that vertex shader instead of by the usual fixed functionality of OpenGL. A vertex 
shader can use the following built-in variables to access the standard types of vertex data 
passed to OpenGL: 

attribute vec4 gl_Color; 
attribute vec4 gl_SecondaryColor; 
attribute vec3 gl_Normal; 
attribute vec4 gl_Vertex; 
attribute vec4 gl_MultiTexCoord0; 
attribute vec4 gl_MultiTexCoord1; 
attribute vec4 gl_MultiTexCoord2; 
. . . 
attribute vec4 gl_FogCoord; 

 
OpenGL's vertex-at-a-time interface is simple and powerful, but on today's systems it is 
definitely not the highest-performance way of transferring vertex data to the graphics 
accelerator. Whenever possible, applications should use the vertex array interface instead. This 
interface allows you to store vertex data in arrays and set pointers to those arrays. Instead of 
sending one vertex at a time to OpenGL, you can send a whole set of primitives at a time. With 
vertex buffer objects, it is even possible that vertex arrays are stored in memory on the 
graphics board to exact maximum performance. 

The vertex array interface also works the same way in the OpenGL programmable environment 
as it did previously. When a vertex array is sent to OpenGL, the vertex data in the vertex array 
is processed one vertex at a time, just like the vertex-at-a-time interface. If a vertex shader is 
active, each vertex is processed by the vertex shader rather than by the fixed functionality of 
OpenGL. 

However, the brave new world of programmability means that applications no longer need to be 
limited to the standard attributes defined by OpenGL. There are many additional per-vertex 
attributes that applications might like to pass into a vertex shader. It is easy to imagine that 
applications will want to specify per-vertex data such as tangents, temperature, pressure, and 
who knows what else. How do we allow applications to pass nontraditional attributes to OpenGL 
and operate on them in vertex shaders? 

The answer is that OpenGL provides a small number of generic locations for passing in vertex 
attributes. Each location is numbered and has room to store up to four floating-point 
components (i.e., it is a vec4). An implementation that supports 16 attribute locations will have 
them numbered from 0 to 15. An application can pass a vertex attribute into any of the generic 
numbered slots by using one of the following functions: 

void glVertexAttrib{1|2|3|4}{s|f|d}(GLuint index, TYPE v)  
void glVertexAttrib{1|2|3}{s|f|d}v(GLuint index, const TYPE *v)  
void glVertexAttrib4{b|s|i|f|d|ub|us|ui}v(GLuint index, const TYPE *v) 

Sets the generic vertex attribute specified by index to the value specified 
by v. This command can have up to three suffixes that differentiate 



 
This set of commands has a certain set of rules for converting data to the floating-point internal 
representation specified by OpenGL. Floats and doubles are mapped into OpenGL internal 
floating-point values as you would expect, and integer values are converted to floats by a 
decimal point added to the right of the value provided. Thus, a value of 27 for a byte, int, short, 
unsigned byte, unsigned int, or unsigned short becomes a value of 27.0 for computation within 
OpenGL. 

Another set of entry points supports the passing of normalized values as generic vertex 
attributes: 

 
N in a command name indicates that, for data types other than float or double, the arguments 
will be linearly mapped to a normalized range in the same way as data provided to the integer 
variants of glColor or glNormalthat is, for signed integer variants of the functions, the most 
positive, representable value maps to 1.0, and the most negative representable value maps to 
1.0. For the unsigned integer variants, the largest representable value maps to 1.0, and the 
smallest representable value maps to 0. 

Attribute variables are allowed to be of type mat2, mat3, or mat4. Attributes of these types 
can be loaded with the glVertexAttrib entry points. Matrices must be loaded into successive 
generic attribute slots in column major order, with one column of the matrix in each generic 
attribute slot. Thus, to load a mat4 attribute, you would load the first column in generic 
attribute slot i, the second in slot i + 1, the third in slot i + 2, and the fourth in slot i + 3. 

With one exception, generic vertex attributes are just thatgeneric. They pass additional color 
values, tangents, binormals, depth values, or anything. The exception is that the generic vertex 
attribute with index 0 indicates the completion of a vertex just like a call to glVertex. 

A glVertex2, glVertex3, or glVertex4 command is completely equivalent to the corresponding 
glVertexAttrib command with an index argument of 0. There are no current values for generic 
vertex attribute 0 (an error is generated if you attempt to query its current value). This is the 
only generic vertex attribute with this property; calls to set other standard vertex attributes can 
be freely mixed with calls to set any of the other generic vertex attributes. You are also free to 
mix calls to glVertex and glVertexAttrib with index 0. 

variations of the parameters accepted. The first suffix can be 1, 2, 3, or 4 
to specify whether v contains 1, 2, 3, or 4 components. If the second and 
third components are not provided, they are assumed to be 0, and if the 
fourth component is not provided, it is assumed to be 1. The second 
suffix indicates the data type of v and may specify byte (b), short (s), int 
(i), float (f), double (d), unsigned byte (ub), unsigned short (us), or 
unsigned int (ui). The third suffix is an optional v meaning that v is a 
pointer to an array of values of the specified data type. 

void glVertexAttrib4Nub(GLuint index, TYPE v)  
void glVertexAttrib4N{b|s|i|f|d|ub|us|ui}v(GLuint index, const TYPE *v) 

Sets the generic vertex attribute specified by index to the normalized value 
specified by v. In addition to N (to indicate normalized values), this 
command can have two suffixes that differentiate variations of the 
parameters accepted. The first suffix indicates the data type of v and 
specifies byte (b), short (s), int (i), float (f), double (d), unsigned byte 
(ub), unsigned short (us), or unsigned int (ui). The second suffix is an 
optional v meaning that v is a pointer to an array of values of the 
specified data type. 



The vertex array API has been similarly extended to allow generic vertex attributes to be 
specified as vertex arrays. The following call establishes the vertex array pointer for a generic 
vertex attribute: 

 
After the vertex array information has been specified for a generic vertex attribute array, the 
array needs to be enabled. When enabled, the generic vertex attribute data in the specified 
array is provided along with other enabled vertex array data when vertex array drawing 
commands such as glDrawArrays are called. To enable or disable a generic vertex attribute array, 
use the commands 

 
This solves the question of how generic vertex data is passed into OpenGL, but how do we 
access that data from within a vertex shader? We don't want to refer to these numbered 
locations in our shader, because this approach is not very descriptive and is prone to errors. 
The OpenGL Shading Language API provides two ways for associating generic vertex indices 
with vertex shader attribute variables. 

The first way is to let the linker assign the bindings automatically. In this case, the application 
would need to query OpenGL after linking to determine the generic vertex indices that were 
assigned and then would use these indices when passing the attributes to OpenGL. 

The second way is for the application to choose the index value of the generic vertex attribute 
to be used and explicitly bind it to a specific attribute variable in the vertex shader by using the 

void glVertexAttribPointer(GLuint index, 
                                                 GLint size, 
                                                 GLenum type, 
                                                 GLboolean normalized, 
                                                 GLsizei stride, 
                                                 const GLvoid *pointer) 

Specifies the location and data format of an array of generic vertex 
attribute values to use when rendering. The generic vertex attribute array 
to be specified is indicated by index. size specifies the number of 
components per attribute and must be 1, 2, 3, or 4. type specifies the data 
type of each component (GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, 
GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, or 
GL_DOUBLE). stride specifies the byte stride from one attribute to the 
next, allowing attribute values to be intermixed with other attribute 
values or stored in a separate array. A value of 0 for stride means that the 
values are stored sequentially in memory with no gaps between 
successive elements. If set to GL_TRUE, normalize specifies that values 
stored in an integer format are to be mapped to the range [1.0,1.0] (for 
signed values) or [0.0,1.0] (for unsigned values) when they are accessed 
and converted to floating point. Otherwise, values are converted to floats 
directly without normalization. pointer is the memory address of the first 
generic vertex attribute in the vertex array. 

void glEnableVertexAttribArray(GLuint index)  
void glDisableVertexAttribArray(GLuint index) 

Enables or disables the generic vertex attribute array specified by index. 
By default, all client-side capabilities are disabled, including all generic 
vertex attribute arrays. If enabled, the values in the generic vertex 
attribute array are accessed and used for rendering when calls are made 
to vertex array commands such as glArrayElement, glDrawArrays, 
glDrawElements, glDrawRangeElements, glMultiDrawArrays, or glMultiDrawElements. 



following function before linking occurs: 

 
glBindAttribLocation can be called before any vertex shader objects are attached to the specified 
program object. It is also permissible to bind an attribute variable name that is never used in a 
vertex shader to a generic attribute index. 

Applications are allowed to bind more than one vertex shader attribute name to the same 
generic vertex attribute index. This is called ATTRIBUTE ALIASING, and it is allowed only if just one 
of the aliased attributes is active in the executable program or if no path through the shader 
consumes more than one attribute of a set of attributes aliased to the same location. Another 
way of saying this is that more than one attribute name may be bound to a generic attribute 
index if, in the end, only one name is used to access the generic attribute in the vertex shader. 
The compiler and linker are allowed to assume that no aliasing is done and are free to employ 
optimizations that work only in the absence of aliasing. OpenGL implementations are not 
required to do error checking to detect attribute aliasing. Because there is no way to bind 
standard attributes, it is not possible to alias generic attributes with conventional ones. 

The binding between an attribute variable name and a generic attribute index can be specified 
at any time with glBindAttribLocation. Attribute bindings do not go into effect until glLinkProgram is 
called, so any attribute variables that need to be bound explicitly for a particular use of a 
shader should be bound before the link operation occurs. After a program object has been 
linked successfully, the index values for attribute variables remain fixed (and their values can 
be queried) until the next link command occurs. To query the attribute binding for a named 
vertex shader attribute variable, use glGetAttribLocation. It returns the binding that actually went 
into effect the last time glLinkProgram was called for the specified program object. Attribute 
bindings that have been specified since the last link operation are not returned by 
glGetAttribLocation. 

void glBindAttribLocation(GLuint program, 
                                                GLuint index, 
                                                const GLchar *name) 

Associates a user-defined attribute variable in the program object 
specified by program with a generic vertex attribute index. The name of the 
user-defined attribute variable is passed as a null terminated string in 
name. If name was bound previously, that information is lost. Thus, you 
cannot bind one user-defined attribute variable to multiple indices, but 
you can bind multiple user-defined attribute variables to the same index. 
The generic vertex attribute index to be bound to this variable is specified 
by index. When program is made part of current state, values provided 
through the generic vertex attribute index modify the value of the user-
defined attribute variable specified by name. 

If name refers to a matrix attribute variable, index refers to the first column 
of the matrix. Other matrix columns are then automatically bound to 
locations index+1 for a matrix of type mat2; index+1 and index+2 for a matrix 
of type mat3; and index+1, index+2, and index+3 for a matrix of type mat4. 

Applications are not allowed to bind any of the standard OpenGL vertex 
attributes with this command because they are bound automatically when 
needed. Any attribute binding that occurs after the program object has 
been linked does not take effect until the next time the program object is 
linked. 

GLint glGetAttribLocation(GLuint program, 
                                                 const GLchar *name) 



 
Using these functions, we can create a vertex shader that contains a user-defined attribute 
variable named Opacity that is used directly in the lighting calculations. We can decide that we 
want to pass per-vertex opacity values in generic attribute location 1 and set up the proper 
binding with the following line of code: 

glBindAttribLocation(myProgram, 1, "Opacity"); 

 
Subsequently, we can call glVertexAttrib to pass an opacity value at every vertex: 

glVertexAttrib1f(1, opacity); 

 
The glVertexAttrib calls are all designed for use between glBegin and glEnd. As such, they offer 
replacements for the standard OpenGL calls such as glColor, glNormal, and so on. But as we have 
already pointed out, vertex arrays should be used if graphics performance is a concern. 

The jargon in this section can get a little confusing, so let's look at a diagram to make sure we 
have things straight. Figure 7.1 illustrates how commands to set standard vertex attributes 
modify the values of built-in attribute variables defined by the OpenGL Shading Language. The 
mappings between commands to set standard attributes (color, normal, vertex, etc.) and the 
built-in attribute variables (gl_Color, gl_Normal, gl_Vertex, etc.) are done automatically, and they are 
done in a way that doesn't conflict with the use of any generic attribute location that will be 
used. Each of these calls except glVertex also sets the current state for that attribute. (The value 
provided in a call to glVertex is never saved as part of current state.) The value for a built-in 
attribute variable is automatically updated when a call is made to set the value of the 
corresponding standard vertex attribute. 

Figure 7.1. Mapping of standard vertex attribute commands to built-in 
attribute variables 

[View full size image] 

Queries the previously linked program object specified by program for the 
attribute variable specified by name and returns the index of the generic 
vertex attribute that is bound to that attribute variable. If name is a matrix 
attribute variable, the index of the first column of the matrix is returned. 
If the named attribute variable is not an active attribute in the specified 
program object or if name starts with the reserved prefix "gl_", a value of 1 
is returned. 



 

 
Now let's look at the case of generic vertex attributes as illustrated in Figure 7.2. A user-defined 
attribute variable must be bound to a generic vertex attribute index. This binding can be done 
with glBindAttribLocation, or it can happen implicitly at link time. 

Figure 7.2. Mapping of generic vertex attribute commands to user-
defined attribute variables 

 

 
Let's assume we have a vertex shader that uses three user-defined attribute variables: Opacity, 
Binormal, and MyData. These are shown on the right side of Figure 7.2. These user-defined 
attribute variables can each be bound to a generic vertex attribute index as follows: 

glBindAttribLocation(myProgram, 1, "Opacity"); 
glBindAttribLocation(myProgram, 2, "Binormal"); 
glBindAttribLocation(myProgram, 3, "MyData"); 

 
This sets up the mapping so that values written into generic vertex attribute locations 1, 2, and 
3 will modify the values of the attribute variables Opacity, Binormal, and MyData in the vertex 
shader. Generic vertex attribute 0 can be bound to a user-defined attribute variable, or its value 
can be obtained through the built-in attribute variable gl_Vertex. The diagram shows that generic 



vertex attribute index N is not currently bound to any user-defined attribute variable. 

As mentioned, each of the generic attribute locations has enough room for four floating-point 
components. Applications are permitted to store 1, 2, 3, or 4 components in each location. A 
vertex shader may access a single location by using a user-defined attribute variable that is a 
float, a vec2, a vec3, or a vec4. It may access two consecutive locations by using a user-
defined attribute variable that is a mat2, three using a mat3, and four using a mat4. 

The bindings between generic attribute index values and user-defined attribute variables (i.e., 
the arrows on the right side of Figure 7.2) are part of the state maintained within a program 
object, whereas the contents of the attribute array itself is considered current attribute state 
(except for the generic vertex attribute with index 0). The application can provide a different 
program object and specify different names and mappings for attribute variables in the vertex 
shader, and if no calls have been made to update the attribute values in the interim, the 
attribute variables in the new vertex shader get the values left behind by the previous one. 

Attribute variables that can be accessed when a vertex shader is executed are called ACTIVE 

ATTRIBUTES. To obtain information about an active attribute, use the following command: 

void glGetActiveAttrib(GLuint program, 
                                         GLuint index, 
                                         GLsizei bufSize, 
                                         GLsizei *length, 
                                         GLint *size, 
                                         GLenum *type, 
                                         GLchar *name) 

Returns information about an active attribute variable in the program 
object specified by program. The number of active attributes in a program 
object can be obtained by calling glGetProgram with the value 
GL_ACTIVE_ATTRIBUTES. A value of 0 for index causes information about 
the first active attribute variable to be returned. Permissible values for 
index range from 0 to the number of active attributes minus 1. 

A vertex shader can use built-in attribute variables, user-defined attribute 
variables, or both. Built-in attribute variables have a prefix of "gl_" and 
reference conventional OpenGL vertex attributes (e.g., gl_Vertex, gl_Normal, 
etc.; see Section 4.1.1 for a complete list.) User-defined attribute 
variables have arbitrary names and obtain their values through numbered 
generic vertex attributes. An attribute variable (either built-in or user-
defined) is considered active if it is determined during the link operation 
that it can be accessed during program execution. Therefore, program 
should have previously been the target of a call to glLinkProgram, but it is 
not necessary for it to have been linked successfully. 

The size of the character buffer needed to store the longest attribute 
variable name in program can be obtained by calling glGetProgram with the 
value GL_ACTIVE_ATTRIBUTE_MAX_LENGTH. This value should be used 
to allocate a buffer of sufficient size to store the returned attribute name. 
The size of this character buffer is passed in bufSize, and a pointer to this 
character buffer is passed in name. 

glGetActiveAttrib returns the name of the attribute variable indicated by 
index, storing it in the character buffer specified by name. The string 
returned is null terminated. The actual number of characters written into 
this buffer is returned in length, and this count does not include the null 
termination character. If the length of the returned string is not required, 
a value of NULL can be passed in the length argument. 



 
The glGetActiveAttrib command can be useful in an environment in which shader development 
occurs separately from application development. If some attribute-naming conventions are 
agreed to between the shader writers and the application developers, the latter could query the 
program object at runtime to determine the attributes that are actually needed and could pass 
those down. This approach can provide more flexibility in the shader development process. 

To query the state of a particular generic vertex attribute, call one of the following commands: 

The type argument returns a pointer to the attribute variable's data type. 
The symbolic constants GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, 
GL_FLOAT_VEC4, GL_FLOAT_MAT2, GL_FLOAT_MAT3, and 
GL_FLOAT_MAT4 may be returned. The size argument returns the size of 
the attribute in units of the type returned in type. 

The list of active attribute variables may include both built-in attribute 
variables (which begin with the prefix "gl_") as well as user-defined 
attribute variable names. 

This function returns as much information as it can about the specified 
active attribute variable. If no information is available, length is 0 and name 
is an empty string. This situation could occur if this function is called after 
a link operation that failed. If an error occurs, the return values length, size, 
type, and name are unmodified. 

void glGetVertexAttribfv(GLuint index, 
                                             GLenum pname, 
                                             GLfloat *params) 
void glGetVertexAttribiv(GLuint index, 
                                             GLenum pname, 
                                             GLint *params) 
void glGetVertexAttribdv(GLuint index, 
                                             GLenum pname, 
                                             GLdouble *params) 

Returns in params the value of a generic vertex attribute parameter. The 
generic vertex attribute to be queried is specified by index, and the 
parameter to be queried is specified by pname. Parameters and return 
values are summarized in Table 7.3. All the parameters except 
GL_CURRENT_VERTEX_ATTRIB represent client-side state.  

Table 7.3. Generic vertex attribute parameters 

Parameter Operation 

GL_VERTEX_ATTRIB_ARRAY_ENABLED params returns a single value 
that is non-zero (true) if the 
vertex attribute array for 
index is enabled and 0 (false) 
if it is disabled. The initial 
value is GL_FALSE. 

GL_VERTEX_ATTRIB_ARRAY_SIZE params returns a single value, 
the size of the vertex 
attribute array for index. The 
size is the number of values 
for each element of the 
vertex attribute array, and it 



 

 

is 1, 2, 3, or 4. The initial 
value is 4. 

GL_VERTEX_ATTRIB_ARRAY_STRIDE params returns a single value, 
the array stride (number of 
bytes between successive 
elements) for the vertex 
attribute array for index. A 
value of 0 indicates that the 
array elements are stored 
sequentially in memory. The 
initial value is 0. 

GL_VERTEX_ATTRIB_ARRAY_TYPE params returns a single value, 
a symbolic constant 
indicating the array type for 
the vertex attribute array for 
index. Possible values are 
GL_BYTE, 
GL_UNSIGNED_BYTE, 
GL_SHORT, 
GL_UNSIGNED_SHORT, 
GL_INT, GL_UNSIGNED_INT, 
GL_FLOAT, and GL_DOUBLE. 
The initial value is 
GL_FLOAT. 

GL_VERTEX_ATTRIB_ARRAY_NORMALIZED params returns a single value 
that is nonzero (true) if 
fixed-point data types for the 
vertex attribute array 
indicated by index are 
normalized when they are 
converted to floating point 
and 0 (false) otherwise. The 
initial value is GL_FALSE. 

GL_CURRENT_VERTEX_ATTRIB params returns four values 
that represent the current 
value for the generic vertex 
attribute specified by index. 
Generic vertex attribute 0 is 
unique in that it has no 
current state, so an error is 
generated if index is 0. The 
initial value for all other 
generic vertex attributes is 
(0, 0, 0, 1). 

void glGetVertexAttribPointerv(GLuint index, 
                                                          GLenum pname, 
                                                          GLvoid **pointer) 

Returns pointer information. index is the generic vertex attribute to be 
queried, pname is a symbolic constant specifying the pointer to be 



 
 

returned, and params is a pointer to a location in which to place the 
returned data. The only accepted value for pname is 
GL_VERTEX_ATTRIB_ARRAY_POINTER. This causes params to return a 
single value that is a pointer to the vertex attribute array for the generic 
vertex attribute specified by index. 



7.8. Specifying Uniform Variables 
As described in the previous section, attribute variables provide frequently modified data to the 
vertex shader. Less frequently changing data can be specified using uniform variables. Uniform 
variables are declared within a shader and can be loaded directly by the application. This lets 
applications provide any type of arbitrary data to a shader. Applications can modify these 
values as often as every primitive in order to modify the behavior of the shader (although 
performance may suffer if this is done). Typically, uniform variables are used to supply state 
that stays constant for many primitives. 

The OpenGL Shading Language also defines a number of built-in variables that track OpenGL 
state. Applications can continue using OpenGL to manage state through existing OpenGL calls 
and can use these built-in uniform variables in custom shaders. Of course, if you want 
something that isn't already supported directly by OpenGL, it is a simple matter to define your 
own uniform variable and supply the value to your shader. 

When a program object is made current, built-in uniform variables that track OpenGL state are 
initialized to the current value of that OpenGL state. Subsequent calls that modify an OpenGL 
state value cause the built-in uniform variable that tracks that state value to be updated as 
well. 

The basic model for specifying uniform variables is different from the model for specifying 
attribute variables. As discussed in the preceding section, for attribute variables, the application 
can specify the attribute location before linking occurs. In contrast, the locations of uniform 
variables cannot be specified by the application. Instead, they are always determined by 
OpenGL at link time. As a result, applications always need to query the uniform location after 
linking occurs. 

To update the value of a user-defined uniform variable, an application needs to determine its 
location and then specify its value. The locations of uniform variables are assigned at link time 
and do not change until the next link operation occurs. Each time linking occurs, the locations of 
uniform variables may change, and so the application must query them again before setting 
them. The locations of the user-defined uniform variables in a program object can be queried 
with the following command: 

 
GLint glGetUniformLocation(GLuint program, 
                                                      const GLchar *name) 

Returns an integer that represents the location of a specific uniform 
variable within a program object. name must be a null terminated string 
that contains no white space. name must be an active uniform variable 
name in program that is not a structure, an array of structures, or a 
subcomponent of a vector or a matrix. This function returns 1 if name does 
not correspond to an active uniform variable in program or if name starts 
with the reserved prefix "gl_". 

Uniform variables that are structures or arrays of structures can be 
queried with glGetUniformLocation for each field within the structure. The 
array element operator "[]" and the structure field operator "." can be 
used in name to select elements within an array or fields within a 
structure. The result of using these operators is not allowed to be another 
structure, an array of structures, or a subcomponent of a vector or a 
matrix. Except if the last part of name indicates a uniform variable array, 
the location of the first element of an array can be retrieved with the 



 
Loading of user-defined uniform values is only possible for the program object that is currently 
in use. All user-defined uniform variables are initialized to 0 when a program object is 
successfully linked. User-defined uniform values are part of the state of a program object. Their 
values can be modified only when the program object is part of current rendering state, but the 
values of uniform variables are preserved as the program object is swapped in and out of 
current state. The following commands load uniform variables into the program object that is 
currently in use: 

 

name of the array or with the name appended by "[0]". 

The actual locations assigned to uniform variables are not known until the 
program object is linked successfully. After linking has occurred, the 
command glGetUniformLocation can obtain the location of a uniform 
variable. This location value can then be passed to glUniform to set the 
value of the uniform variable or to glGetUniform in order to query the 
current value of the uniform variable. After a program object has been 
linked successfully, the index values for uniform variables remain fixed 
until the next link command occurs. Uniform variable locations and values 
can only be queried after a link if the link was successful. 

void glUniform{1|2|3|4}{f|i}(GLint location, TYPE v) 

Sets the user-defined uniform variable or uniform variable array specified 
by location to the value specified by v. The suffix 1, 2, 3, or 4 indicates 
whether v contains 1, 2, 3, or 4 components. This value should match the 
number of components in the data type of the specified uniform variable 
(e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2, etc.). The suffix f 
indicates that floating-point values are being passed, and the suffix i 
indicates that integer values are being passed; this type should also 
match the data type of the specified uniform variable. The i variants of 
this function should be used to provide values for uniform variables 
defined as int, ivec2, ivec3, and ivec4, or arrays of these. The f 
variants should be used to provide values for uniform variables of type 
float, vec2, vec3, or vec4, or arrays of these. Either the i or the f 
variants can be used to provide values for uniform variables of type bool, 
bvec2, bvec3, and bvec4 or arrays of these. The uniform variable is set 
to false if the input value is 0 or 0.0f, and it is set to true otherwise. 

void glUniform{1|2|3|4}{f|i}v(GLint location, 
                                                    GLuint count, 
                                                    const TYPE v) 

Sets the user-defined uniform variable or uniform variable array specified 
by location to the values specified by v. These commands pass a count and 
a pointer to the values to be loaded into a uniform variable or a uniform 
variable array. A count of 1 should be used for modifying the value of a 
single uniform variable, and a count of 1 or greater can be used to modify 
an array. The number specified in the name of the command specifies the 
number of components for each element in v, and it should match the 
number of components in the data type of the specified uniform variable 
(e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2, etc.). The v in the 
command name indicates that a pointer to a vector of values is being 
passed. The f and i suffixes are defined in the same way as for the 
nonvector variants of glUniform. 



 

 
glUniform1i and glUniform1iv are the only two functions that can be used to load uniform variables 
defined as sampler types (see Section 7.9). Attempting to load a sampler with any other 
function results in an error. 

Errors can also be generated by glUniform for any of the following reasons: 

If there is no current program object 

If location is an invalid uniform variable location for the current program object 

If the number of values specified by count would exceed the declared extent of the 
indicated uniform variable or uniform variable array 

Other than the preceding exceptions noted, if the type and size of the uniform variable as 
defined in the shader do not match the type and size specified in the name of the 
command used to load its value 

In all of these cases, the indicated uniform variable will not be modified. 

When the location of a user-defined uniform variable has been determined, the following 
command can be used to query its current value: 

For uniform variable arrays, each element of the array is considered to be 
of the type indicated in the name of the command (e.g., glUniform3f or 
glUniform3fv can be used to load a uniform variable array of type vec3). 
The number of elements of the uniform variable array to be modified is 
specified by count. 

void glUniformMatrix{2|3|4}fv(GLint location, 
                                                       GLuint count, 
                                                       GLboolean transpose, 
                                                       const GLfloat *v) 

Sets the user-defined uniform matrix variable or uniform matrix array 
variable specified by location to the values specified by v. The number in 
the command name is interpreted as the dimensionality of the matrix. 
The number 2 indicates a 2 x 2 matrix (i.e., 4 values), the number 3 
indicates a 3 x 3 matrix (i.e., 9 values), and the number 4 indicates a 4 x 
4 matrix (i.e., 16 values). If transpose is GL_FALSE, each matrix is assumed 
to be supplied in column major order. If transpose is GL_TRUE, each 
matrix is assumed to be supplied in row major order. The count argument 
specifies the number of matrices to be passed. A count of 1 should be 
used for modifying the value of a single matrix, and a count greater than 
1 can be used to modify an array of matrices. 

void glGetUniformfv(GLuint program, 
                                      GLint location, 
                                      GLfloat *params) 
void glGetUniformiv(GLuint program, 
                                      GLint location, 
                                      GLint *params) 

Return in params the value(s) of the specified uniform variable. The type of 
the uniform variable specified by location determines the number of values 



 
The location of a uniform variable cannot be used for anything other than specifying or querying 
that particular uniform variable. Say you declare a uniform variable as a structure that has 
three fields in succession that are defined as floats. If you call glGetUniformLocation to determine 
that the first of those three floats is at location n, do not assume that the next one is at location 
n + 1. It is possible to query the location of the ith element in an array. That value can then be 
passed to glUniform to load one or more values into the array, starting at the ith element of the 
array. It is not possible to take i and add an integer N and use the result to try to modify 
element i + N in the array. The location of array element i + N should be queried specifically 
before any attempt to set its value. These location values do not necessarily represent real 
memory locations. Applications that assume otherwise will not work. 

For example, consider the following structure defined within a shader: 

uniform struct 
{ 
    struct 
    { 
        float a; 
        float b[10]; 
    } c[2]; 
    vec2 d; 
} e; 

 
and consider the API calls that attempt to determine locations within that structure: 

loc1 = glGetUniformLocation(progObj, "e.d");         // is valid 
loc2 = glGetUniformLocation(progObj, "e.c[0]");      // is not valid 
loc3 = glGetUniformLocation(progObj, "e.c[0].b") ;   // is valid 
loc4 = glGetUniformLocation(progObj, "e.c[0].b[2]"); // is valid 

 
The location loc2 cannot be retrieved because e.c[0] references a structure. 

Now consider the commands to set parts of the uniform variable: 

glUniform2f(loc1, 1.0f, 2.0f);     // is valid 
glUniform2i(loc1, 1, 2);           // is not valid 

returned. If the uniform variable is defined in the shader as a bool, int, 
or float, a single value is returned. If it is defined as a vec2, ivec2, or 
bvec2, two values are returned. If it is defined as a vec3, ivec3, or 
bvec3, three values are returned, and so on. To query values stored in 
uniform variables declared as arrays, call glGetUniform for each element of 
the array. To query values stored in uniform variables declared as 
structures, call glGetUniform for each field in the structure. The values for 
uniform variables declared as a matrix are returned in column major 
order. 

The locations assigned to uniform variables are not known until the 
program object is linked. After linking has occurred, the command 
glGetUniformLocation can obtain the location of a uniform variable. This 
location value can then be passed to glGetUniform to query the current 
value of the uniform variable. After a program object has been linked 
successfully, the index values for uniform variables remain fixed until the 
next link command occurs. The uniform variable values can only be 
queried after a link if the link was successful. 



glUniform1f(loc1, 1.0f);           // is not valid 
glUniform1fv(loc3, 10, floatPtr);  // is valid 
glUniform1fv(loc4, 10, floatPtr);  // is not valid 
glUniform1fv(loc4, 8, floatPtr);   // is valid 

 
The second command in the preceding list is invalid because loc1 references a uniform variable 
of type vec2, not ivec2. The third command is invalid because loc1 references a vec2, not a 
float. The fifth command in the preceding list is invalid because it attempts to set values that 
will exceed the length of the array. 

Uniform variables (either built in or user defined) that can be accessed when a shader is 
executed are called ACTIVE UNIFORMS. You can think of this as though the process of compiling and 
linking is capable of deactivating uniform variables that are declared but never used. This 
provides more flexibility in coding stylemodular code can define lots of uniform variables, and 
those that can be determined to be unused are typically optimized away. 

To obtain the list of active uniform variables from a program object, use glGetActiveUniform. This 
command can be used by an application to query the uniform variables in a program object and 
set up user interface elements to allow direct manipulation of all the user-defined uniform 
values. 

void glGetActiveUniform(GLuint program, 
                                              GLuint index, 
                                              GLsizei bufSize, 
                                              GLsizei *length, 
                                              GLint *size, 
                                              GLenum *type, 
                                              GLchar *name) 

Returns information about an active uniform variable in the program 
object specified by program. The number of active uniform variables can 
be obtained by calling glGetProgram with the value GL_ACTIVE_UNIFORMS. 
A value of 0 for index selects the first active uniform variable. Permissible 
values for index range from 0 to the number of active uniform variables 
minus 1. 

Shaders may use built-in uniform variables, user-defined uniform 
variables, or both. Built-in uniform variables have a prefix of "gl_" and 
reference existing OpenGL state or values derived from such state (e.g., 
gl_Fog, gl_ModelViewMatrix, etc., see Section 4.3 for a complete list.) User-
defined uniform variables have arbitrary names and obtain their values 
from the application through calls to glUniform. A uniform variable (either 
built in or user defined) is considered active if it is determined during the 
link operation that it can be accessed during program execution. 
Therefore, program should have previously been the target of a call to 
glLinkProgram, but it is not necessary for it to have been linked 
successfully. 

The size of the character buffer required to store the longest uniform 
variable name in program can be obtained by calling glGetProgram with the 
value GL_ACTIVE_UNIFORM_MAX_LENGTH. This value should be used to 
allocate a buffer of sufficient size to store the returned uniform variable 
name. The size of this character buffer is passed in bufSize, and a pointer 
to this character buffer is passed in name. 

glGetActiveUniform returns the name of the uniform variable indicated by 
index, storing it in the character buffer specified by name. The string 



 

 
Using glGetActiveUniform, the application developer can programmatically query the uniform 
variables actually used in a shader and automatically create a user interface that allows the end 
user to modify those uniform variables. If among the shader writers there were some 
convention concerning the names of uniform variables, the user interface could be even more 
specific. For instance, any uniform variable name that ended with "Color" would be edited with 
the color selection tool. This function can also be useful when mixing and matching a set of 
vertex and fragment shaders designed to play well with each other, using a subset of known 
uniform variables. It can be much safer and less tedious to programmatically determine which 
uniform variables to send down than to hardcode all the combinations. 

returned is null terminated. The actual number of characters written into 
this buffer is returned in length, and this count does not include the null 
termination character. If the length of the returned string is not required, 
a value of NULL can be passed in the length argument. 

The type argument returns a pointer to the uniform variable's data type. 
One of the following symbolic constants may be returned: GL_FLOAT, 
GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4, GL_INT, 
GL_INT_VEC2, GL_INT_VEC3, GL_INT_VEC4, GL_BOOL, GL_BOOL_VEC2, 
GL_BOOL_VEC3, GL_BOOL_VEC4, GL_FLOAT_MAT2, GL_FLOAT_MAT3, 
GL_FLOAT_MAT4, GL_SAMPLER_1D, GL_SAMPLER_2D, GL_SAMPLER_3D, 
GL_SAMPLER_CUBE, GL_SAMPLER_1D_SHADOW, or 
GL_SAMPLER_2D_SHADOW. 

If one or more elements of an array are active, the name of the array is 
returned in name, the type is returned in type, and the size parameter 
returns the highest array element index used, plus one, as determined by 
the compiler and linker. Only one active uniform variable will be reported 
for a uniform array. 

Uniform variables that are declared as structures or arrays of structures 
are not returned directly by this function. Instead, each of these uniform 
variables is reduced to its fundamental components containing the "." and 
"[]" operators such that each of the names is valid as an argument to 
glGetUniformLocation. Each of these reduced uniform variables is counted as 
one active uniform variable and is assigned an index. A valid name 
cannot be a structure, an array of structures, or a subcomponent of a 
vector or matrix. 

The size of the uniform variable is returned in size. Uniform variables other 
than arrays have a size of 1. Structures and arrays of structures are 
reduced as described earlier, such that each of the names returned will be 
a data type in the earlier list. If this reduction results in an array, the size 
returned is as described for uniform arrays; otherwise, the size returned 
is 1. 

The list of active uniform variables may include both built-in uniform 
variables (which begin with the prefix "gl_") as well as user-defined 
uniform variable names. 

This function returns as much information as it can about the specified 
active uniform variable. If no information is available, length is 0, and name 
is an empty string. This situation could occur if this function is called after 
a link operation that failed. If an error occurs, the return values length, size, 
type, and name are unmodified. 

  



7.9. Samplers 
glUniform1i and glUniform1iv load uniform variables defined as sampler types (i.e., uniform 
variables of type sampler1D, sampler2D, sample3D, samplerCube, sampler1DShadow, 
or sampler2DShadow). They may be declared within either vertex shaders or fragment 
shaders. 

The value contained in a sampler is used within a shader to access a particular texture map. 
The value loaded into the sampler by the application should be the number of the texture unit 
to be used to access the texture. For vertex shaders, this value should be less than the 
implementationdependent constant GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, which can be 
queried with glGet. For fragment shaders, this value should be less than the implementation-
dependent constant GL_MAX_TEXTURE_IMAGE_UNITS. 

The suffix on the sampler type indicates the texture type to be accessed: 1D, 2D, 3D, cube 
map, 1D shadow, or 2D shadow. In OpenGL, a texture object of each of the first four texture 
types can be bound to a single texture unit, and this suffix allows the desired texture object to 
be chosen. A 1D shadow sampler is used to access the 1D texture when depth comparisons are 
enabled, and a 2D shadow sampler is used to access the 2D texture when depth comparisons 
are enabled. If two uniform variables of different sampler types contain the same value, an 
error is generated when the next rendering command is issued. Attempting to load a sampler 
with any command other than glUniform1i or glUniform1iv results in an error being generated. 

From within a shader, samplers should be considered an opaque data type. The current API 
provides a way of specifying an integer representing the texture image unit to be used. In the 
future, the API may be extended to allow a sampler to refer directly to a texture object. 

Samplers that can be accessed when a program is executed are called ACTIVE SAMPLERS. The link 
operation fails if it determines that the number of active samplers exceeds the maximum 
allowable limits. The number of active samplers permitted on the vertex processor is specified 
by GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS, the number of active samplers permitted on the 
fragment processor is specified by GL_MAX_TEXTURE_IMAGE_UNITS, and the number of active 
samplers permitted on both processors combined is GL_COMBINED_TEXTURE_IMAGE_UNITS. 

More detail on using samplers within a shader is provided in Section 10.1. 

  



7.10. Multiple Render Targets 
Another feature added to OpenGL in version 2.0 was the ability to render into multiple buffers 
simultaneously. The OpenGL Shading Language makes provisions for this capability by including 
a fragment shader output variable defined as an array called gl_FragData. The size of this array is 
implementation dependent, but must be at least 1. The elements of this array are defined to be 
of type vec4. 

With this capability, applications can develop fragment shaders that compute multiple values for 
each fragment and store them in offscreen memory. These values can be accessed during a 
future rendering pass. Among other things, this lets applications implement complex multipass 
algorithms and use the graphics hardware for general-purpose computation. 

To set up OpenGL for rendering into multiple target buffers, use 

void glDrawBuffers(GLsizei n, 
                                     const GLenum *bufs) 

Defines an array of buffers into which fragment color values or fragment 
data will be written. If no fragment shader is active, rendering operations 
generate only one fragment color per fragment and it is written into each 
of the buffers specified by bufs. If a fragment shader is active and it writes a 
value to the output variable gl_FragColor, then that value is written into each 
of the buffers specified by bufs. If a fragment shader is active and it writes a 
value to one or more elements of the output array variable gl_FragData[], 
then the value of gl_FragData[0] is written into the first buffer specified by 
bufs, the value of gl_FragData[1] is written into the second buffer specified by 
bufs, and so on up to gl_FragData[n-1]. The draw buffer used for gl_FragData[n] 
and beyond is implicitly set to be GL_NONE. 

The symbolic constants contained in bufs are defined in Table 7.4. Except 
for GL_NONE, none of the symbolic constants may appear more than once 
in bufs. The maximum number of draw buffers supported is implementation 
dependent and can be queried by calling glGet with the argument 
GL_MAX_DRAW_BUFFERS. The number of auxiliary buffers can be queried 
by calling glGet with the argument GL_AUX_BUFFERS.  

Table 7.4. Buffer names for use with the glDrawBuffers 
call 

Parameter Operation 

GL_NONE The fragment color/data value is not 
written into any color buffer. 

GL_FRONT_LEFT The fragment color/data value is written 
into the front-left color buffer. 

GL_FRONT_RIGHT The fragment color/data value is written 
into the front-right color buffer. 

GL_BACK_LEFT The fragment color/data value is written 
into the back-left color buffer. 

GL_BACK_RIGHT The fragment color/data value is written 
into the back-right color buffer. 



 

 
An error is generated if glDrawBuffers specifies a buffer that does not exist in the current GL 
context. If more than one buffer is selected for drawing, blending and logical operations are 
computed and applied independently for each element of gl_FragData and its corresponding 
buffer. Furthermore, the alpha value (i.e., the fourth component) of gl_FragData[0] is used to 
determine the result of the alpha test. Operations such as scissor, depth, and stencil tests (if 
enabled) may cause the entire fragment (including all of the values in the gl_FragData array) to 
be discarded without any updates to the framebuffer. 

 

GL_AUXi The fragment color/data value is written 
into auxiliary buffer i. 



7.11. Development Aids 
A situation that can be difficult to diagnose is one in which a program may fail to execute 
because of the value of a sampler variable. These variables can be changed anytime between 
linking and program execution. To ensure robust behavior, OpenGL implementations must do 
some runtime checking just before the shader is executed (i.e., when a rendering operation is 
about to occur). At this point, the only way to report an error is to set the OpenGL error flag, 
and this is not usually something that applications check at this performance-critical juncture. 

To provide more information when these situations occur, the OpenGL Shading Language API 
defines a new function that can be called to perform this runtime check explicitly and provide 
diagnostic information. 

 
Because the operations described in this section can severely hinder performance, they should 
be used only during application development and removed before shipment of the production 
version of the application. 

void glValidateProgram(GLuint program) 

Checks whether the executables contained in program can execute given 
the current OpenGL state. The information generated by the validation 
process is stored in program's information log. The validation information 
may consist of an empty string, or it may be a string containing 
information about how the current program object interacts with the rest 
of current OpenGL state. This function provides a way for OpenGL 
implementors to convey more information about why the current program 
is inefficient, suboptimal, failing to execute, and so on. 

The status of the validation operation is stored as part of the program 
object's state. This value is set to GL_TRUE if the validation succeeded 
and GL_FALSE otherwise. It can be queried by calling glGetProgram with 
arguments program and GL_VALIDATE_STATUS. If validation is successful, 
program is guaranteed to execute given the current state. Otherwise, 
program is guaranteed to not execute. 

This function is typically useful only during application development. The 
informational string stored in the information log is completely 
implementation-dependent. Therefore, an application should not expect 
different OpenGL implementations to produce identical information 
strings. 



7.12. Implementation-Dependent API Values 
Some of the features we've described in previous sections have implementation-dependent 
limits. All of the implementation-dependent values in the OpenGL Shading Language API are 
defined in the list that follows, and all of them can be queried with glGet. 

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITSDefines the total number of hardware 
units that can be used to access texture maps from the vertex processor and the 
fragment processor combined. The minimum legal value is 2. 

GL_MAX_DRAW_BUFFERSDefines the maximum number of buffers that can be 
simultaneously written into from within a fragment shader using the special output 
variable gl_FragData. This constant effectively defines the size of the gl_FragData array. 
The minimum legal value is 1. 

GL_MAX_FRAGMENT_UNIFORM_COMPONENTSDefines the number of components 
(i.e., floating-point values) that are available for fragment shader uniform variables. 
The minimum legal value is 64. 

GL_MAX_TEXTURE_COORDSDefines the number of texture coordinate sets that are 
available. The minimum legal value is 2. 

GL_MAX_TEXTURE_IMAGE_UNITSDefines the total number of hardware units that 
can be used to access texture maps from the fragment processor. The minimum 
legal value is 2. 

GL_MAX_VARYING_FLOATSDefines the number of floating-point variables available 
for varying variables. The minimum legal value is 32. 

GL_MAX_VERTEX_ATTRIBSDefines the number of active vertex attributes that are 
available. The minimum legal value is 16. 

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITSDefines the number of hardware units 
that can be used to access texture maps from the vertex processor. The minimum 
legal value is 0. 

GL_MAX_VERTEX_UNIFORM_COMPONENTSDefines the number of components (i.e., 
floating-point values) that are available for vertex shader uniform variables. The 
minimum legal value is 512. 



7.13. Application Code for Brick Shaders 
Each shader is going to be a little bit different. Each vertex shader may use a different set of 
attribute variables or different uniform variables, attribute variables may be bound to different 
generic vertex attribute index values, and so on. One of the demo programs whose source code 
is available for download from the 3Dlabs Web site is called ogl2brick. It is a small, clear example 
of how to create and use a vertex shader and a fragment shader. The code in ogl2brick was 
derived from an earlier demo program called ogl2demo, written primarily by Barthold Lichtenbelt 
with contributions from several others. In ogl2brick an "install" function installs the brick shaders 
that were presented in Chapter 6. We discuss that shader installation function, but first we 
define a simple function that make it a little easier to set the values of uniform variables. 

GLint getUniLoc(GLuint program, const GLchar *name) 
{ 
    GLint loc; 
     
    loc = glGetUniformLocation(program, name); 
 
    if (loc == -1) 
        printf("No such uniform named \"%s\"\n", name); 
 
    printOpenGLError();  // Check for OpenGL errors 
    return loc; 
} 

 
Shaders are passed to OpenGL as strings. For our shader installation function, we assume that 
each of the shaders has been defined as a single string, and pointers to those strings are 
passed to the following function. This function does all the work to load, compile, link, and 
install our brick shaders. The function definition and local variables for this function are declared 
as follows: 

int installBrickShaders(const GLchar *brickVertex, 
                        const GLchar *brickFragment) 
{ 
    GLuint brickVS, brickFS, brickProg;   // handles to objects 
    GLint  vertCompiled, fragCompiled;    // status values 
    GLint  linked; 

 
The argument brickVertex contains a pointer to the string containing the source code for the brick 
vertex shader, and the argument brickFragment contains a pointer to the source code for the brick 
fragment shader. Next, we declare variables to refer to three OpenGL objects: a shader object 
that stores and compiles the brick vertex shader, a second shader object that stores and 
compiles the brick fragment shader, and a program object to which the shader objects will be 
attached. Flags to indicate the status of the compile and link operations are defined next. 

The first step is to create two empty shader objects, one for the vertex shader and one for the 
fragment shader: 

brickVS = glCreateShader(GL_VERTEX_SHADER); 
brickFS = glCreateShader(GL_FRAGMENT_SHADER); 

 
Source code can be loaded into the shader objects after they have been created. The shader 
objects are empty, and we have a single null terminated string containing the source code for 
each shader, so we can call glShaderSource as follows: 



glShaderSource(brickVS, 1, &brickVertex, NULL); 
glShaderSource(brickFS, 1, &brickFragment, NULL); 

 
The shaders are now ready to be compiled. For each shader, we call glCompileShader and then call 
glGetShader to see what transpired. glCompileShader sets the shader object's GL_COMPILE_STATUS 
parameter to GL_TRUE if it succeeded and GL_FALSE otherwise. Regardless of whether the 
compilation succeeded or failed, we print the information log for the shader. If the compilation 
was unsuccessful, this log will have information about the compilation errors. If the compilation 
was successful, this log may still have useful information that would help us improve the shader 
in some way. You would typically check the info log only during application development or 
after running a shader for the first time on a new platform. The function exits if the compilation 
of either shader fails. 

glCompileShader(brickVS); 
printOpenGLError();  // Check for OpenGL errors 
glGetShaderiv(brickVS, GL_COMPILE_STATUS, &vertCompiled); 
printShaderInfoLog(brickVS); 
 
glCompileShader(brickFS); 
printOpenGLError();  // Check for OpenGL errors 
glGetShaderiv(brickFS, GL_COMPILE_STATUS, &fragCompiled); 
printShaderInfoLog(brickFS); 
 
if (!vertCompiled || !fragCompiled) 
    return 0; 

 
This section of code uses the printShaderInfoLog function that we defined previously. 

At this point, the shaders have been compiled successfully, and we're almost ready to try them 
out. First, the shader objects need to be attached to a program object so that they can be 
linked. 

brickProg = glCreateProgram(); 
glAttachShader(brickProg, brickVS); 
glAttachShader(brickProg, brickFS); 

 
The program object is linked with glLinkProgram. Again, we look at the information log of the 
program object regardless of whether the link succeeded or failed. There may be useful 
information for us if we've never tried this shader before. 

glLinkProgram(brickProg); 
printOpenGLError();  // Check for OpenGL errors 
glGetProgramiv(brickProg, GL_LINK_STATUS, &linked); 
printProgramInfoLog(brickProg); 
 
if (!linked) 
    return 0; 

 
If we make it to the end of this code, we have a valid program that can become part of current 
state simply by calling glUseProgram: 

glUseProgram(brickProg); 

 
Before returning from this function, we also want to initialize the values of the uniform variables 



used in the two shaders. To obtain the location that was assigned by the linker, we query the 
uniform variable by name, using the getUniLoc function defined previously. Then we use that 
location to immediately set the initial value of the uniform variable. 

glUniform3f(getUniLoc(brickProg, "BrickColor"), 1.0, 0.3, 0.2); 
glUniform3f(getUniLoc(brickProg, "MortarColor"), 0.85, 0.86, 0.84); 
glUniform2f(getUniLoc(brickProg, "BrickSize"), 0.30, 0.15); 
glUniform2f(getUniLoc(brickProg, "BrickPct"), 0.90, 0.85); 
glUniform3f(getUniLoc(brickProg, "LightPosition"), 0.0, 0.0, 4.0); 
 
return 1; 
} 

 
When this function returns, the application is ready to draw geometry that will be rendered with 
our brick shaders. The result of rendering some simple objects with this application code and 
the shaders described in Chapter 6 is shown in Figure 6.6. The complete C function is shown in 
Listing 7.3. 

Listing 7.3. C function for installing brick shaders 

int installBrickShaders(const GLchar *brickVertex, 
                        const GLchar *brickFragment) 
{ 
    GLuint brickVS, brickFS, brickProg;   // handles to objects 
    GLint  vertCompiled, fragCompiled;    // status values 
    GLint  linked; 
 
// Create a vertex shader object and a fragment shader object 
 
brickVS = glCreateShader(GL_VERTEX_SHADER); 
brickFS = glCreateShader(GL_FRAGMENT_SHADER); 
 
// Load source code strings into shaders 
 
glShaderSource(brickVS, 1, &brickVertex, NULL); 
glShaderSource(brickFS, 1, &brickFragment, NULL); 
 
// Compile the brick vertex shader and print out 
// the compiler log file. 
 
glCompileShader(brickVS); 
printOpenGLError();  // Check for OpenGL errors 
glGetShaderiv(brickVS, GL_COMPILE_STATUS, &vertCompiled); 
printShaderInfoLog(brickVS); 
 
// Compile the brick fragment shader and print out 
// the compiler log file. 
 
glCompileShader(brickFS); 
printOpenGLError();  // Check for OpenGL errors 
glGetShaderiv(brickFS, GL_COMPILE_STATUS, &fragCompiled); 
printShaderInfoLog(brickFS); 
 
if (!vertCompiled || !fragCompiled) 
    return 0; 
 
// Create a program object and attach the two compiled shaders 
 
brickProg = glCreateProgram(); 
glAttachShader(brickProg, brickVS); 



 

glAttachShader(brickProg, brickFS); 
 
// Link the program object and print out the info log 
 
glLinkProgram(brickProg); 
printOpenGLError();  // Check for OpenGL errors 
glGetProgramiv(brickProg, GL_LINK_STATUS, &linked); 
printProgramInfoLog(brickProg); 
 
if (!linked) 
    return 0; 
 
// Install program object as part of current state 
 
glUseProgram(brickProg); 
 
// Set up initial uniform values 
 
   glUniform3f(getUniLoc(brickProg, "BrickColor"), 1.0, 0.3, 0.2); 
   glUniform3f(getUniLoc(brickProg, "MortarColor"), 0.85, 0.86, 0.84); 
   glUniform2f(getUniLoc(brickProg, "BrickSize"), 0.30, 0.15); 
   glUniform2f(getUniLoc(brickProg, "BrickPct"), 0.90, 0.85); 
   glUniform3f(getUniLoc(brickProg, "LightPosition"), 0.0, 0.0, 4.0); 
 
   return 1; 
} 

 



7.14. Summary 
The set of function calls added to OpenGL to create and manipulate shaders is actually quite 
small. The interface mimics the software development process followed by a C/C++ 
programmer. To install and use OpenGL shaders, do the following: 

User-defined attribute variables can be explicitly associated with a generic vertex attribute 
index with glBindAttribLocation, or such associations can be assigned implicitly at link time and 
queried with glGetAttribLocation. Generic vertex attribute values can then be supplied by the 
application a vertex at a time with one of the variants of glVertexAttrib or as vertex arrays by 
using glVertexAttribPointer and glEnableVertexArrayPointer in conjunction with standard OpenGL 
commands to draw vertex arrays. 

A number of query functions obtain information about shader and program objects. 

1.  Create one or more (empty) shader objects with glCreateShader. 
 

2.  Provide source code for these shaders with glShaderSource. 
 

3.  Compile each of the shaders with glCompileShader. 
 

4.  Create a program object with glCreateProgram. 
 

5.  Attach all the shader objects to the program object with glAttachShader. 
 

6.  Link the program object with glLinkProgram. 
 

7.  Install the executable program as part of OpenGL's current state with glUseProgram. 
 

8.  If the shaders use user-defined uniform variables, query the locations of these variables 
with glGetUniformLocation and then set their values with glUniform. 
 



7.15. Further Information 
Reference pages for the OpenGL Shading Language API can be found in Appendix B. Source 
code for the example in this chapter can be found at the 3Dlabs developers Web site. More 
complex source code examples and a variety of shaders can be found there as well. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com. 

2. Ebert, David S., John Hart, Bill Mark, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, 
and Steven Worley, Texturing and Modeling: A Procedural Approach, Third Edition, 
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1.10, 3Dlabs, April 2004. http://www.opengl.org/documentation/spec.html 
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OpenGL Programming Guide, Fifth Edition: The Official Guide to Learning OpenGL, Version 
2, Addison-Wesley, Reading, Massachusetts, 2005. 

5. OpenGL Architecture Review Board, OpenGL Reference Manual, Fourth Edition: The 
Official Reference to OpenGL, Version 1.4, Editor: Dave Shreiner, Addison-Wesley, 
Reading, Massachusetts, 2004. 

6. Segal, Mark, and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 
2.0), Editor (v1.1): Chris Frazier, (v1.21.5): Jon Leech, (v2.0): Jon Leech and Pat Brown, 
Sept. 2004. http://www.opengl.org/documentation/spec.html 



Chapter 8. Shader Development 
At the time of this writing, shader development tools for the OpenGL Shading Language are in 
their infancy. Although some tools for shader development do exist (notably, ATI's 
RenderMonkey), tools for debugging or profiling shaders are only starting to emerge. This 
situation is expected to improve rapidly as hardware and software companies develop tools for 
use in shader development. 

This chapter sets forth some ideas on the shader development process and describes the tools 
that are currently available. Both general software development techniques and techniques that 
are unique to shader development are discussed. In all likelihood, we will soon see software 
developers step into the void with products to assist shader development, and a whole 
ecosystem of tools for shader development will eventually arise. 



8.1. General Principles 
Shader development can be thought of as another form of software engineering; therefore, 
existing software engineering principles and practices should be brought into play when you are 
developing shaders. Spend some time designing the shader before writing any code. The design 
should aim to keep things as simple as possible while still getting the job done. If the shader is 
part of a larger shader development effort, take care to design the shader for reliability and 
reuse. 

In short, you should treat shader development the same as you would any other software 
development tasks, allocating appropriate amounts of time for design, implementation, testing, 
and documentation. 

Here are a few more useful thoughts for developing shaders. Consider these to be friendly 
advice and not mandates. There will be situations in which some of these shader development 
suggestions make sense and others in which they do not. 

8.1.1. Understand the Problem 

It is worth reminding yourself periodically that you will be most successful at developing 
shaders if you understand the problem before you write any of the shader code. The first step is 
to make sure you understand the rendering algorithm you plan on implementing. If your aim is 
to develop a shader for bump-mapping, make sure you understand the necessary mathematics 
before plunging into coding. It is usually easier to think things through with a pencil and paper 
and get the details straight in your mind before you begin to write code. 

Because the tools for developing shaders are currently less powerful than those for developing 
code intended to run on the CPU, you might consider implementing a simulation of your 
algorithm on the CPU before coding it in the OpenGL Shading Language. Doing this will let you 
use the powerful debugging tools available for typical software development, single-step 
through source code, set breakpoints, and really watch your code in action. Of course, tools 
should soon be available to let you do these things directly on the graphics hardware as well. 

8.1.2. Add Complexity Progressively 

Many shaders depend on a combination of details to achieve the desired effect. Develop your 
shader in such a way that you implement and test the largest and most important details first 
and add progressive complexity after the basic shader is working. For instance, you may want 
to develop a shader that combines effects from noise with values read from several texture 
maps and then performs some unique lighting effects. You can approach this task in a couple of 
different ways. One way would be to get your unique lighting effects working first with a simple 
shading model. After testing this part of the shader, you can add the effects from reading the 
texture maps and thoroughly test again. After this, you can add the noise effects, again, testing 
as you proceed. 

In this way, you have reduced a large development task into several smaller ones. After a task 
has been successfully completed and tested, move on to the next task. 

8.1.3. Test and Iterate 

Sometimes it is impossible to visualize ahead of time the effect a shader will have. This is 
particularly true when you are dealing with mathematical functions that are complex or hard to 
visualize, such as noise. In this case, you may want to parameterize your algorithm and modify 
the parameters systematically. You can take notes as you modify the parameters and observe 



 

the effect. These observations will be useful comments in the shader source, providing insight 
for someone who might come along later and want to tweak the shader in a different direction. 

After you have found a set of parameters that gives you the desired effect, you can consider 
simplifying the shader by removing some of the "tweakable" parameters and replacing them 
with constants. This may make your shader less flexible, but it may make it easier for someone 
coming along later to understand. 

8.1.4. Strive for Simplicity 

There's a lot to be said for simplicity. Simple shaders are easier to understand and easier to 
maintain. There's often more than one algorithm for achieving the effect you want. Have you 
chosen the simplest one? There's often more than one way to implement a particular algorithm. 
Have you chosen the language features that let you express the algorithm in the simplest way 
possible? 

8.1.5. Exploit Modularity 

The OpenGL Shading Language and its API support modular shaders, so take advantage of this 
capability. Use the principle of "divide and conquer" to develop small, simple modules that are 
designed to work together. Your lighting modules might all be interchangeable and offer 
support for standard light source types as well as custom lighting modules. You may also have 
fog modules that offer a variety of fog effects. If you do things right, you can mix and match 
any of your lighting modules with any of your fog modules. You can apply this principle to other 
aspects of shader computation, both for vertex shaders and for fragment shaders. 

  



8.2. Performance Considerations 
After you have done all the right things from a software engineering standpoint, your shader 
may or may not have acceptable performance. Here are some ideas for eking out better 
performance from your carefully crafted shader. 

8.2.1. Consider Computational Frequency 

Shading computations can occur in three areas: on the CPU, on the vertex processor, and on 
the fragment processor. It is tempting to put most of your shader computation in the fragment 
shader because this is executed for every pixel that is drawn, and you will, therefore, get the 
highest-quality image. But if performance is a concern, you may be able to identify 
computations that can be done with acceptable quality per vertex instead of per fragment. By 
moving the computation to the vertex shader, you can make your fragment shader faster. In 
some cases, there may be no visible difference between doing the computation in the vertex 
shader versus doing it in the fragment shader. This might be the case with fog computations, 
for example. 

One way to think about the problem is to implement rapidly changing characteristics in the 
fragment shader and to implement characteristics that don't change as rapidly in the vertex 
shader. For instance, diffuse lighting effects change slowly over a surface and so can usually be 
computed with sufficient quality in the vertex shader. Specular lighting effects might need to be 
implemented in the fragment shader to achieve high quality. If a particular value changes 
linearly across an object's surface, you can get the same result by computing the value per 
vertex and using a varying variable to interpolate it as you would by computing the value at 
each fragment. In this case, you may as well have the vertex shader do the computation. 
Unless you are rendering very small triangles, your fragment shader will execute far more times 
than your vertex shader will, so it is more efficient to do the computation in the vertex shader. 

Similarly, you may be able to find computations that can be done once on the CPU and remain 
constant for a great many executions of your vertex shader or fragment shader. You can often 
save shader instruction space or improve shader performance (or both) by precomputing values 
in your application code and passing them to your shader as uniform variables. Sometimes you 
can spot these things by analyzing your shader code. If you pass length in as a uniform variable 
and your shader always computes sqrt(length), you're better off doing the computation once on 
the host CPU and passing that value to your shader rather than computing the value for every 
execution of your shader. If your shader needs both length and sqrt(length), you can pass both 
values in as uniform variables. 

Deciding where to perform computation also involves knowing where the computational 
bottleneck occurs for a particular rendering operation. You just need to speed up the slowest 
part of the system to see an improvement in performance. Conversely, you shouldn't spend 
time improving the performance of something that isn't a bottleneck, because you won't see the 
gain in performance anyway. 

8.2.2. Analyze Your Algorithm 

You can often make your shader more efficient just by understanding the math it uses. For 
instance, you might want to limit the range of the variable finalcolor to [0,1]. But if you know 
that you are only adding values to compute this variable and the values that you're adding are 
always positive, there's really no need to check the result against 0. An instruction like min
(finalcolor, 1.0) clamps the result at 1.0, and this instruction likely has higher performance than 
an instruction like clamp(finalcolor, 0.0, 1.0) because it needs only to compare values against one 
number instead of two. If you define the valid range of all the variables in your shader, you can 
more easily see the boundary conditions that you need to handle. 



 

8.2.3. Use the Built-in Functions 

Whenever possible, use the built-in functions to implement the effect that you're trying to 
achieve. Built-in functions are intended to be implemented in an optimal way by the graphics 
hardware vendor. If your shader hand-codes the same effect as a built-in function, there's little 
chance that it will be faster than the built-in function but a good chance that it will be slower. 

8.2.4. Use Vectors 

The OpenGL Shading Language lets you express vector computations naturally, and underlying 
graphics hardware is often built to operate simultaneously on a vector of values. Therefore, you 
should take advantage of this and use vectors for calculations whenever possible. On the other 
hand, you shouldn't use vectors that are bigger than the computations require. Such use can 
waste registers, hardware interpolators (in the case of varying variables), processing 
bandwidth, or memory bandwidth. 

8.2.5. Use Textures to Encode Complex Functions 

Because fragment processing is now programmable, textures can be used for a lot more than 
just image data. You might want to consider storing a complex function in a texture and doing a 
single lookup rather than a complex computation within the fragment shader. This is illustrated 
in Chapter 15, in which we encode a noise function as a 3D texture. This approach takes 
advantage of the specialized high-performance hardware that performs texture access, and it 
can also take advantage of texture filtering hardware to interpolate between values encoded in 
the texture. 

8.2.6. Review the Information Logs 

One of the main ways that an OpenGL implementation can provide feedback to an application 
developer is through the shader object and program object information logs (see Section 7.6). 
During shader development, you should review the messages in the information logs for 
compiler and linker errors, but you should also review them to see if they include any 
performance or functionality warnings or other descriptive messages. These information logs 
are one of the primary ways for OpenGL implementations to convey implementation-dependent 
information about performance, resource limitations, and so on. 



8.3. Shader Debugging 
Shader development tools are in their infancy, so debugging shaders can be a difficult task. 
Here are a few practical tips that may be helpful as you try to debug your shaders. 

8.3.1. Use the Vertex Shader Output 

To determine whether vertex shader code is behaving as expected, you can use conditionals to 
test intermediate values to see if a value is something unexpected. If it is, you can modify one 
of the shader's output values so that a visually distinct change occurs. For instance, if you think 
that the value foo should never be greater than 5.0, you can set the color values that are being 
passed to the fragment shader to black or pink or neon green if the value of foo exceeds 5.0. If 
that's not distinctive enough and you've already computed the transformed homogeneous 
position, you can do something like this: 

if (foo > 5.0) 
     gl_Position += 1.0; 

 
This code adds 1 to each component of the transformed position for which foo was greater than 
5. When it is executed, you should see the object shift on the screen. With this approach, you 
can systematically check your assumptions about the intermediate values being generated by 
the vertex shader. 

8.3.2. Use the Fragment Shader Output 

Fragment shaders can produce a fragment color, a fragment depth, or an array of fragment 
data values. You can use the discard keyword to prevent the computed fragment value from 
updating the frame buffer. The depth value may not be helpful during debugging, but you can 
either color-code your fragment colors or use the discard keyword to discard fragments with 
certain qualities. These techniques provide you with visual feedback about what's going on 
within the shader. 

For instance, if you're not quite sure if your 2D texture coordinates span the whole range from 
0 to 1.0, you could put an if test in the shader and discard fragments with certain qualities. You 
can discard all the fragments for which both s and t texture coordinates are greater than 0.5 or 
for which either coordinate is greater than 0.99, and so on. The model will be drawn with 
"missing" pixels where fragments were discarded. The discard keyword is quite useful because 
it can appear anywhere in a fragment shader. You can put the discard statement near the 
beginning of a complex fragment shader and gradually move it down in the code as you verify 
that things are working properly. 

Similarly, you can assign values to gl_FragColor that convey debugging information. If you have a 
mathematical function in your shader that is expected to range from [0,1] and average 0.5, you 
can assign solid green to gl_FragColor if the value is less than 0, solid red if it is between 0 and 
0.5, solid blue if it is between 0.5 and 1.0, and solid white if it is greater than 1.0. This kind of 
debugging information can quickly tell you whether a certain computation is going astray. 

8.3.3. Use Simple Geometry 

For debugging texture computations, it may be useful to render a single large rectangle with 
identity matrices for the modeling, viewing, and projection matrices and to look carefully at 
what is occurring. Use a distinct texture image, for example, color bars or a grayscale ramp, so 
that you can visually verify that the texturing operation is occurring as you expect it to. 



8.4. Shader Development Tools 
In coming years, we should see some exciting advances in the area of tools for shader 
development. This section describes shader development tools available at the time of this 
writing. 

8.4.1. RenderMonkey 

As the era of programmable graphics hardware has unfolded, we've learned that there is more 
to developing shaders than just developing the code for the shaders themselves. Shaders can 
be highly customized to the point that they may work as intended only on a single model. 
Shader source code, textures, geometry, and initial values for uniform variables are all 
important parts of a production-quality shader. Shader development tools must capture all the 
essential elements of a shader and allow these elements to easily be modified and maintained. 

Another factor in shader development is that the person writing the shader is not necessarily 
the same person developing the application code that deploys the shader. Often, an artist will 
be employed to design textures and to contribute to or even to control the shader development 
process. The collaboration between the artist and programmer is an important one for 
entertainment-based applications and must be supported by shader development tools. 

An integrated development environment (IDE) allows programmers and artists to develop and 
experiment with shaders outside the environment of the application. This reduces the 
complexity of the shader development task and encourages rapid prototyping and 
experimentation. Finished shaders are a form of intellectual property, and maintenance, 
portability, and easy deployment to a variety of platforms are essential to maximizing the 
benefit of this type of company asset. The idea behind an IDE is that all the essential elements 
of the finished shader can be encapsulated, managed, shared, and exported for use in the final 
application. 

ATI first released an IDE called RenderMonkey in 2002. In its initial release, RenderMonkey 
supported shader development for DirectX vertex shaders and pixel shaders. However, 
RenderMonkey was architected in such a way that it could easily be extended to support other 
shader programming languages. In 2004, ATI and 3Dlabs collaborated to produce a version of 
RenderMonkey that contains support for high-level shader development in OpenGL with the 
OpenGL Shading Language in addition to the support for DirectX shader development. The 
RenderMonkey IDE is currently available for free from both companies' Web sites 
(http://developer.3dlabs.com and http://www.ati.com/developer). 

RenderMonkey was designed for extensibility. At its core is a flexible framework that allows 
easy incorporation of shading languages. It is an environment that is language agnostic, 
allowing any high-level shading language to be supported by means of plug-ins. It currently 
supports the pixel shaders and vertex shaders defined in Microsoft's DirectX 8.1 and 9.0, the 
High-Level Shader Language (HLSL) defined in DirectX 9.0, and the OpenGL Shading Language. 

In RenderMonkey, the encapsulation of all the information necessary to re-create a shading 
effect is called an effect workspace. An effect workspace consists of effects group nodes, 
variable nodes, and stream mapping nodes. Each effects group is made up of one or more 
effect nodes, and each effect node is made up of one or more rendering passes. Each rendering 
pass may contain rendering state, source code for a vertex shader and a fragment shader, 
geometry, and textures. All the effect data is organized into a tree hierarchy that is visible in 
the workspace viewer. 

Effects group nodes collect related effects into a single container. This is sometimes handy for 
taming the complexity of dealing with lots of different effects. You might also use an effects 



group as a container for several similar effects with different performance characteristics (for 
instance, "best quality," "fast," and "fastest"). The criteria for grouping things within effects 
groups is entirely up to you. 

Effect nodes encompass all the information needed to implement a real-time visual effect. The 
effect may be composed of multiple passes. Starting state is inherited from a default effect to 
provide a known starting state for all effects. The default effect can store effect data that is 
common to all shading effects. 

Pass nodes define a drawing operation (i.e., a rendering pass). Each pass inherits data from 
previous passes within the effect, and the first pass inherits from the default effect. A typical 
pass contains a vertex shader and fragment shader pair, a render state block, textures, 
geometry, and nodes of other types (for example, variable nodes). Different geometry can be 
used in each pass to render things like fur. 

Variable nodes define the parameters that are available from within a shader. For the OpenGL 
Shading Language, variable nodes are the mechanisms for defining uniform variables. Intuitive 
names and types can be assigned to variable nodes, and the contents of a variable node can be 
manipulated with a GUI widget. 

RenderMonkey is built completely out of plug-ins. Source code for some plug-ins is available, 
and you are encouraged to write your own plug-ins to perform tasks necessary for your work 
flow or to support importing and exporting your data with proprietary formats. Existing 
RenderMonkey modules are listed here. 

Shader editorsThese are modeled on the interface of Microsoft's Visual Studio to provide 
an intuitive interface; they support editing of vertex and fragment shaders; syntax 
coloring; creation of OpenGL, HLSL, and assembly language shaders. 

Variable editorsShader parameters can be edited with GUI widgets that "know" the 
underlying data type for editing; editors exist for colors, vectors, matrices, scalars; 
custom widgets can be created. 

Artist editorShader parameters relevant to the art designer can be presented in an artist-
friendly fashion so that they can be viewed and modified; programmers can select which 
parameters are artist-editable; changes can be seen in real time. 

PreviewersThese allow real-time viewing of the shading effect; changes to the shader 
source code or its parameters are immediately reflected in the preview window; view 
settings are customizable; views (front, back, side, etc.) are preset; DirectX 9.0 and 
OpenGL Shading Language/OpenGL previews are available. 

ExporterEverything required to recreate a shading effect is encapsulated and written into 
a single XML file. 

ImporterEverything required to recreate a shading effect is read back from an XML file. 

The XML file format was chosen as the basis for encapsulating shader information in 
RenderMonkey because it is an industry standard, it has a user-readable file format, it is user 
extensible, and it works with the many free parsers that are available. It is relatively easy to 
adapt an existing XML parser for your own use or to write a new one. The XML file that 
encapsulates a shader effect contains all shader source code, all render states, all models, and 
all texture information. This makes it straightforward to create, manage, and share shader 
assets. 

8.4.2. OpenGL Shading Language Compiler Front End 



 

In June 2003, 3Dlabs released an open source version of its lexical analyzer, parser, and 
semantic checker (i.e., an OpenGL Shading Language COMPILER FRONT END). This code reads an 
OpenGL shader and turns it into a token stream. This process is called LEXICAL ANALYSIS. The 
token stream is then processed to ensure that the program consists of valid statements. This 
process is referred to as SYNTACTIC ANALYSIS, or parsing. SEMANTIC ANALYSIS is then performed to 
determine whether the shader conforms to the semantic rules defined or implied by the OpenGL 
Shading Language specification. The result of this processing is turned into a high-level 
representation of the original source code. This high-level intermediate language (HIL) is a 
binary representation of the original source code that can be further processed by a target-
specific back end to provide machine code for a particular type of graphics hardware. 

It is anticipated that individual hardware vendors will implement the back end needed for their 
particular hardware. The compiler back end will typically include intellectual property and 
hardware-specific information that is proprietary to the graphics hardware vendor. It is not 
anticipated that 3Dlabs or other hardware vendors will make public the source code for their 
compiler back ends. 

Still, the compiler front end provided by 3Dlabs has been, and will continue to be, a useful tool 
for the development of the OpenGL Shading Language, and it will be useful for other 
organizations that want to develop an OpenGL Shading Language compiler or tools for shader 
development. As the language specification was nearing completion, the compiler front end was 
being developed. Except for the preprocessor (which was derived from another open source 
preprocessor), it was implemented from scratch with the publicly available system utilities flex 
and bison. It was not derived from existing code. This made it a clean way to double-check the 
specification and discover language flaws before the specification was released. Indeed, a 
number of such flaws were discovered through this effort, and, as a result, the specification was 
improved before its release. 

Because of its clean implementation, the OpenGL Shading Language compiler front end also 
serves as additional technical documentation about the language. The specification should be 
your first stop, but if you really want to know the details of what's allowed in the language and 
what's not, studying the compiler front end will provide a definitive answer. 

OpenGL implementors that base their compiler on the compiler front end from 3Dlabs will also 
be doing a big favor to their end users: The semantics of the OpenGL Shading Language will be 
checked in the same way for all implementations that use this front end. This will benefit 
developers as they encounter consistent error-checking between different implementations. 

Although few readers of this book will likely end up developing an OpenGL Shading Language 
compiler, this resource is nevertheless a useful one to know about. The source code for the 
compiler front end is available for download at the 3Dlabs Web site 
(http://developer.3dlabs.com). 

Using the GLSL compiler front end, 3Dlabs has also written a tool called GLSLvalidate. This tool 
reads a file containing a shader and uses the compiler front-end to parse it. Errors are reported 
in the output window. This tool can be executed on any platform; an OpenGL 2.0 driver is not 
required. This tool is provided as open source by 3Dlabs. 

Another tool from 3Dlabs, GLSLParserTest, determines whether your OpenGL implementation 
properly supports the OpenGL Shading Language specification. It attempts to compile some 200 
shaders and compares the results against the reference compiler. Some shaders should compile 
and some should not. Results are printed, and the information log for any shader can be 
examined. Again, this tool is provided as open source (see http://developer.3dlabs.com). 



8.5. Scene Graphs 
by Mike Weiblen 

A SCENE GRAPH is a hierarchical data structure containing a description of a scene to be rendered. 
Rather than explicitly coding a scene to be rendered as OpenGL API calls, an application builds 
a scene graph, then calls the scene graph rendering engine to do the actual rendering by 
traversing the data structure. In this way, a scene graph allows a developer to focus on what to 
draw, rather than on the details of how to draw. In typical terminology, the term scene graph is 
often used to describe the toolkit for both the data structure itself and the rendering engine that 
traverses the data structure to render the scene. 

Scene graphs make it possible for a developer of visualization applications to leverage the 
performance of OpenGL without necessarily being an expert in all the details of OpenGL; the 
scene graph itself encapsulates OpenGL best practices. Because a scene graph is a toolkit layer 
on top of OpenGL, it raises the programming abstractions closer to the application domain. 

As a tree, a scene graph consists of nodes that have one or more children. Since OpenGL state 
often has a hierarchical nature (such as the model-view matrix stack), that state can easily be 
mapped to nodes in the tree. 

Some of the attributes and benefits of scene graphs: 

Encapsulation of best practices for rendering OpenGL, such as optimized GL state control; 
optimized internal data representations; and minimal geometry sent for rendering based 
on camera visibility. 

Implementation of sophisticated rendering architectures for performance, for example, 
pervasive multithreading, multi-CPU, multigraphics pipe, or synchronized multisystem 
clustering. 

Definition of the output viewports: For complex display systems such as multiprojector 
domes, the scene graph can provide support for nonlinear distortion compensation. 

Hierarchical in-memory representation, for example, a tree of nodes with child nodes or a 
directed acyclic graph (DAG). 

OpenGL state control: By associating GL state with nodes in the graph, the scene graph 
renderer collects those state requests and applies them efficiently to the OpenGL pipeline. 
The scene graph can implement a form of lazy state application, by which it avoids forcing 
state changes down the pipe if no geometry actually requires it for rendering. State can 
be inherited from parents down to children. 

View culling, by which the spatial position of scene graph nodes are tested against the 
position of a camera's view volume; only if a node will actually contribute to visible pixels 
will its geometry be sent to the pipe for rendering. (There is no reason to send vertices to 
the pipe for geometry that is behind the eyepoint.) 

Instancing of assets: one model of a tire can be referenced four times on a single car; a 
single car can be instanced many times to create a parking lot full of cars. 

The typical application code for a scene graph-based rendering application is conceptually not 
much more than 



 

at startup, build the scenegraph (loading files from disc, etc) 
do forever 
{ 
    update the camera position and other time-varying 
    entities in the scene (such as vehicles or particle effects) 
 
    draw the scene 
} 

 
Although a scene graph allows a visualization developer to focus on what to draw rather than 
on the details of how to draw it, that does not mean the developer is isolated from direct 
OpenGL control: not at allthe developer could define custom rendering methods. But for many 
common rendering tasks, the scene graph renderer already provides a complete solution and 
acts as a reusable toolkit for leveraging that capability. As expected from a well-designed 
toolkit, there are no inviolate rules; if you as the developer really need to do something out of 
the ordinary, the toolkit provides the avenues necessary. 

The palette of nodes available for constructing the scene graph provides ways to apply 
attributes to be inherited by the children of that node. Here are some examples (certainly not 
an exhaustive list) of scene graph nodes. 

Parent nodeMultiple child nodes can be attached. 

Transform nodesThe children are transformed by the parent's transformation matrix. 

Switch nodesOnly one child of the parent will be rendered, governed by a switching 
condition. 

Level-of-detail node (a specialized switch node)Only one child is rendered, according to 
the distance of the node from the camera. 

Billboard nodeIts children are automatically oriented toward the camera. 

Light nodeOther nodes in the scene are illuminated by lights at the position and with the 
attributes contained here. 

By helping the developer focus on "what" rather than "how," a scene graph can simplify the use 
of shaders. For example, using the hierarchical nature of a scene graph, a developer can 
compose a scene that has a shader with default values for uniform variables near the root of 
the scene graph, so it affects much of the scene. Alternative values for uniform variables 
attached at lower nodes can specialize the shader for a particular piece of geometry. The scene 
graph rendering engine can take over the tasks of determining if or when to compile or link the 
components of the shader and when to actually send updates for uniform variables to the 
pipeline, depending on visibility. 

Several OpenGL scene graph products are currently available. OpenGL Performer 
(http://www.sgi.com/products/software/performer/), a commercial product available from SGI, 
has recently included support for OpenGL 2.0 and the OpenGL Shading Language. 
OpenSceneGraph (or OSG, http://www.openscenegraph.org/) is an open source project that 
also has recently included support for OpenGL 2.0 and the OpenGL Shading Language. OpenSG 
(http://www.opensg.org) is another open source OpenGL scene graph. Depending on your 
application, any one of these could save you a great deal of time and application development 
effort. 



8.6. Summary 
Writing shaders is similar in many ways to other software engineering tasks. A good dose of 
common sense can go a long way. Software engineering principles should be applied just as for 
any other software engineering task. This is especially true in these early generations of 
programmable graphics hardware. Shader development is more challenging because early 
OpenGL Shading Language implementations might be incomplete in some ways, compilers will 
be immature, performance characteristics may differ widely between vendors, and tools to aid 
shader development are in their infancy. RenderMonkey is one shader development tool that is 
available now; hopefully others will rapidly follow. 

On the other hand, writing shaders for programmable graphics hardware presents some unique 
challenges. Good decisions need to be made about how to split the computation between the 
CPU, the vertex processor, and the fragment processor. It is useful to have a solid foundation in 
mathematics and computer graphics before attempting to write shaders. Thorough knowledge 
of how OpenGL works is also a key asset, and having some understanding of the underlying 
graphics hardware can be helpful. It often pays to collaborate with an artist when developing a 
shader. This can help you develop a shader that is parameterized in such a way that it can be 
put to a variety of uses in the final application. 



8.7. Further Information 
Numerous books describe sound software engineering principles and practices. Two that 
describe tactics specific to developing shaders are Texturing and Modeling: A Procedural 
Approach by Ebert et al. (2002) and Advanced RenderMan: Creating CGI for Motion Pictures by 
Apodaca and Gritz (1999). Some of the shader development discussion in these books is 
specific to RenderMan, but many of the principles are also relevant to developing shaders with 
the OpenGL Shading Language. 

For performance tuning, the best advice I have right now is to become good friends with the 
developer relations staff at your favorite graphics hardware company (or companies). These are 
the people that can provide you with additional insight or information about the underlying 
graphics hardware architecture and the relative performance of various aspects of the 
hardware. Until we go through another generation or two of programmable graphics hardware 
development (and perhaps even longer), performance differences between various hardware 
architectures will depend on the trade-offs made by the hardware architects and the driver 
developers. Scour the Web sites of these companies, attend their presentations at trade shows, 
and ask lots of questions. 

The ATI developer Web site contains a number of presentations on RenderMonkey. The 
RenderMonkey IDE and documentation can be downloaded from either the ATI Web site or the 
3Dlabs Web site. The 3Dlabs Web site contains the open source GLSL compiler front-end, the 
GLSLvalidate tool, and other useful tools and examples. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com 

2. Apodaca, Anthony A., and Larry Gritz, Advanced RenderMan: Creating CGI for Motion 
Pictures, Morgan Kaufmann Publishers, San Francisco, 1999. 
http://www.renderman.org/RMR/Books/arman/materials.html 

3. ATI developer Web site. http://www.ati.com/developer 

4. Ebert, David S., John Hart, Bill Mark, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, 
and Steven Worley, Texturing and Modeling: A Procedural Approach, Third Edition, 
Morgan Kaufmann Publishers, San Francisco, 2002. 
http://www.texturingandmodeling.com 

5. NVIDIA developer Web site. http://developer.nvidia.com 

6. OpenGL Performer Web site. http://www.sgi.com/products/software/performer/ 

7. OpenSceneGraph Web site. http://www.openscenegraph.org/ 

8. OpenSG Web site. http://www.opensg.org 



Chapter 9. Emulating OpenGL Fixed 
Functionality 
The programmability of OpenGL opens many new possibilities for never-before-seen rendering 
effects. Programmable shaders can provide results that are superior to OpenGL fixed 
functionality, especially in the area of realism. Nevertheless, it can still be instructive to 
examine how some of OpenGL's fixed functionality rendering steps could be implemented with 
OpenGL shaders. While simplistic, these code snippets may be useful as stepping stones to 
bigger and better things. 

This chapter describes OpenGL shader code that mimics the behavior of the OpenGL fixed 
functionality vertex and fragment processing. The shader code snippets are derived from the 
Full OpenGL Pipeline and Pixel Pipeline shaders developed by Dave Baldwin for inclusion in the 
white paper OpenGL 2.0 Shading Language. Further refinement of this shader code occurred for 
the first edition of this book. These code snippets were then verified and finalized with a tool 
called ShaderGen that takes a description of OpenGL's fixed functionality state and 
automatically generates the equivalent shaders. ShaderGen was implemented by Inderaj Bains 
and Joshua Doss and is available from the 3Dlabs Web site. 

The goal of the shader code in this chapter is to faithfully represent OpenGL fixed functionality. 
The code examples in this chapter reference existing OpenGL state wherever possible through 
built-in variables. In your own shaders, feel free to provide these values as user-defined 
uniform variables rather than accessing existing OpenGL state. By doing this, you will be 
prepared to throw off the shackles of the OpenGL state machine and extend your shaders in 
exciting and different new ways. But don't get too enamored with the shaders presented in this 
chapter. In later chapters of this book, we explore a variety of shaders that provide better 
results than those discussed in this chapter. 

  



9.1. Transformation 
The features of the OpenGL Shading Language make it very easy to express transformations 
between the coordinate spaces defined by OpenGL. We've already seen the transformation that 
will be used by almost every vertex shader. The incoming vertex position must be transformed 
into clipping coordinates for use by the fixed functionality stages that occur after vertex 
processing. This is done in one of two ways, either this: 

// Transform vertex to clip space 
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 

 
or this: 

gl_Position = ftransform(); 

 
The only difference between these two methods is that the second case is guaranteed to 
compute the transformed position in exactly the same way as the fixed functionality method. 
Some implementations may have different hardware paths that result in small differences 
between the transformed position as computed by the first method and as computed by fixed 
functionality. This can cause problems in rendering if a multipass algorithm is used to render 
the same geometry more than once. In this case, the second method is preferred because it 
produces the same transformed position as the fixed functionality. 

OpenGL specifies that light positions are transformed by the modelview matrix when they are 
provided to OpenGL. This means that they are stored in eye coordinates. It is often convenient 
to perform lighting computations in eye space, so it is often necessary to transform the 
incoming vertex position into eye coordinates as shown in Listing 9.1. 

Listing 9.1. Computation of eye coordinate position 

This snippet of code computes the homogeneous point in eye space (a vec4) as well as the 
nonhomogeneous point (a vec3). Both values are useful as we shall see. 

To perform lighting calculations in eye space, incoming surface normals must also be 
transformed. A built-in uniform variable is available to access the normal transformation matrix, 
as shown in Listing 9.2. 

Listing 9.2. Transformation of normal 

vec4 ecPosition; 
vec3 ecPosition3;    // in 3 space 
 
// Transform vertex to eye coordinates 
if (NeedEyePosition) 
{ 
    ecPosition  = gl_ModelViewMatrix * gl_Vertex; 
    ecPosition3 = (vec3(ecPosition)) / ecPosition.w; 
} 

 

normal = gl_NormalMatrix * gl_Normal; 

 



 

In many cases, the application may not know anything about the characteristics of the surface 
normals that are being provided. For the lighting computations to work correctly, each incoming 
normal must be normalized so that it is unit length. For OpenGL fixed functionality, 
normalization is a mode in OpenGL that we can control by providing the symbolic constant 
GL_NORMALIZE to glEnable or glDisable. In an OpenGL shader, if normalization is required, we do 
it as shown in Listing 9.3. 

Listing 9.3. Normalization of normal 

Sometimes an application will always be sending normals that are unit length and the 
modelview matrix is always one that does uniform scaling. In this case, rescaling can be used to 
avoid the possibly expensive square root operation that is a necessary part of normalization. If 
the rescaling factor is supplied by the application through the OpenGL API, the normal can be 
rescaled as shown in Listing 9.4. 

Listing 9.4. Normal rescaling 

The rescaling factor is stored as state within OpenGL and can be accessed from within a shader 
by the built-in uniform variable gl_NormalScale. 

Texture coordinates can also be transformed. A texture matrix is defined for each texture 
coordinate set in OpenGL and can be accessed with the built-in uniform matrix array variable 
gl_TextureMatrix. Incoming texture coordinates can be transformed in the same manner as vertex 
positions, as shown in Listing 9.5. 

Listing 9.5. Texture coordinate transformation 

normal = normalize(normal); 

 

normal = normal * gl_NormalScale; 

 

gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0; 

 

  



9.2. Light Sources 
The lighting computations defined by OpenGL are somewhat involved. Let's start by defining a 
function for each of the types of light sources defined by OpenGL: directional lights, point lights, 
and spotlights. We pass in variables that store the total ambient, diffuse, and specular 
contributions from all light sources. These must be initialized to 0 before any of the light source 
computation routines are called. 

9.2.1. Directional Lights 

A directional light is assumed to be at an infinite distance from the objects being lit. According 
to this assumption, all light rays from the light source are parallel when they reach the scene. 
Therefore a single direction vector can be used for every point in the scene. This assumption 
simplifies the math, so the code to implement a directional light source is simpler and typically 
runs faster than the code for other types of lights. Because the light source is assumed to be 
infinitely far away, the direction of maximum highlights is the same for every point in the 
scene. This direction vector can be computed ahead of time for each light source i and stored in 
gl_LightSource[i].halfVector. This type of light source is useful for mimicking the effects of a light 
source like the sun. 

The directional light function shown in Listing 9.6 computes the cosine of the angle between the 
surface normal and the light direction, as well as the cosine of the angle between the surface 
normal and the half angle between the light direction and the viewing direction. The former 
value is multiplied by the light's diffuse color to compute the diffuse component from the light. 
The latter value is raised to the power indicated by gl_FrontMaterial.shininess before being multiplied 
by the light's specular color. 

Listing 9.6. Directional light source computation 

The only way either a diffuse reflection component or a specular reflection component can be 

void DirectionalLight(in int i, 
                      in vec3 normal, 
                      inout vec4 ambient, 
                      inout vec4 diffuse, 
                      inout vec4 specular) 
{ 
     float nDotVP;         // normal . light direction 
     float nDotHV;         // normal . light half vector 
     float pf;             // power factor 
 
     nDotVP = max(0.0, dot(normal, 
                   normalize(vec3(gl_LightSource[i].position)))); 
     nDotHV = max(0.0, dot(normal, vec3(gl_LightSource[i].halfVector))); 
 
     if (nDotVP == 0.0) 
         pf = 0.0; 
     else 
         pf = pow(nDotHV, gl_FrontMaterial.shininess); 
 
     ambient  += gl_LightSource[i].ambient; 
     diffuse  += gl_LightSource[i].diffuse * nDotVP; 
     specular += gl_LightSource[i].specular * pf; 
} 

 



present is if the angle between the light source direction and the surface normal is in the range 
[-90°, 90°]. We determine the angle by examining nDotVP. This value is set to the greater of 0 
and the cosine of the angle between the light source direction and the surface normal. If this 
value ends up being 0, the value that determines the amount of specular reflection is set to 0 
as well. Our directional light function assumes that the vectors of interest are normalized, so 
the dot product between two vectors results in the cosine of the angle between them. 

9.2.2. Point Lights 

Point lights mimic lights that are near the scene or within the scene, such as lamps or ceiling 
lights or street lights. There are two main differences between point lights and directional lights. 
First, with a point light source, the direction of maximum highlights must be computed at each 
vertex rather than with the precomputed value from gl_LightSource[i].halfVector. Second, light 
received at the surface is expected to decrease as the point light source gets farther and farther 
away. This is called ATTENUATION. Each light source has constant, linear, and quadratic 
attenuation factors that are taken into account when the lighting contribution from a point light 
is computed. 

These differences show up in the first few lines of the point light function (see Listing 9.7). The 
first step is to compute the vector from the surface to the light position. We compute this 
distance by using the length function. Next, we normalize VP so that we can use it in a dot 
product operation to compute a proper cosine value. We then compute the attenuation factor 
and the direction of maximum highlights as required. The remaining code is the same as for our 
directional light function except that the ambient, diffuse, and specular terms are multiplied by 
the attenuation factor. 

Listing 9.7. Point light source computation 

void PointLight(in int i, 
                in vec3 eye, 
                in vec3 ecPosition3, 
                in vec3 normal, 
                inout vec4 ambient, 
                inout vec4 diffuse, 
                inout vec4 specular) 
{ 
    float nDotVP;         // normal . light direction 
    float nDotHV;         // normal . light half vector 
    float pf;             // power factor 
    float attenuation;    // computed attenuation factor 
    float d;              // distance from surface to light source 
    vec3  VP;             // direction from surface to light position 
    vec3  halfVector;     // direction of maximum highlights 
 
    // Compute vector from surface to light position 
    VP = vec3(gl_LightSource[i].position) - ecPosition3; 
 
    // Compute distance between surface and light position 
    d = length(VP); 
 
    // Normalize the vector from surface to light position 
    VP = normalize(VP); 
 
    // Compute attenuation 
    attenuation = 1.0 / (gl_LightSource[i].constantAttenuation + 
                         gl_LightSource[i].linearAttenuation * d + 
                         gl_LightSource[i].quadraticAttenuation * d * d);
 
    halfVector = normalize(VP + eye); 
 



One optimization that we could make is to have two point light functions, one that computes 
the attenuation factor and one that does not. If the values for the constant, linear, and 
quadratic attenuation factors are (1, 0, 0) (the default values), we could use the function that 
does not compute attenuation and get better performance. 

9.2.3. Spotlights 

In stage and cinema, spotlights project a strong beam of light that illuminates a well-defined 
area. The illuminated area can be further shaped through the use of flaps or shutters on the 
sides of the light. OpenGL includes light attributes that simulate a simple type of spotlight. 
Whereas point lights are modeled as sending light equally in all directions, OpenGL models 
spotlights as light sources that are restricted to producing a cone of light in a particular 
direction. 

The first and last parts of our spotlight function (see Listing 9.8) look the same as our point 
light function (see Listing 9.7). The differences occur in the middle of the function. A spotlight 
has a focus direction (gl_LightSource[i].spotDirection), and this direction is dotted with the vector 
from the light position to the surface (VP). The resulting cosine value is compared to the 
precomputed cosine cutoff value (gl_LightSource[i].spotCosCutoff) to determine whether the position 
on the surface is inside or outside the spotlight's cone of illumination. If it is outside, the 
spotlight attenuation is set to 0; otherwise, this value is raised to a power specified by 
gl_LightSource[i].spotExponent. The resulting spotlight attenuation factor is multiplied by the 
previously computed attenuation factor to give the overall attenuation factor. The remaining 
lines of code are the same as they were for point lights. 

Listing 9.8. Spotlight computation 

    nDotVP = max(0.0, dot(normal, VP)); 
    nDotHV = max(0.0, dot(normal, halfVector)); 
 
    if (nDotVP == 0.0) 
        pf = 0.0; 
    else 
        pf = pow(nDotHV, gl_FrontMaterial.shininess); 
 
    ambient += gl_LightSource[i].ambient * attenuation; 
    diffuse += gl_LightSource[i].diffuse * nDotVP * attenuation; 
    specular += gl_LightSource[i].specular * pf * attenuation; 
} 

 

void SpotLight(in int i, 
               in vec3 eye, 
               in vec3 ecPosition3, 
               in vec3 normal, 
               inout vec4 ambient, 
               inout vec4 diffuse, 
               inout vec4 specular) 
{ 
    float nDotVP;           // normal . light direction 
    float nDotHV;           // normal . light half vector 
    float pf;               // power factor 
    float spotDot;          // cosine of angle between spotlight 
    float spotAttenuation;  // spotlight attenuation factor 
    float attenuation;      // computed attenuation factor 
    float d;                // distance from surface to light source 
    vec3 VP;                // direction from surface to light position 



 

    vec3 halfVector;        // direction of maximum highlights 
 
    // Compute vector from surface to light position 
    VP = vec3(gl_LightSource[i].position) - ecPosition3; 
 
    // Compute distance between surface and light position 
    d = length(VP); 
 
    // Normalize the vector from surface to light position 
    VP = normalize(VP); 
 
    // Compute attenuation 
    attenuation = 1.0 / (gl_LightSource[i].constantAttenuation + 
                         gl_LightSource[i].linearAttenuation * d + 
                         gl_LightSource[i].quadraticAttenuation * d * d);
 
    // See if point on surface is inside cone of illumination 
    spotDot = dot(-VP, normalize(gl_LightSource[i].spotDirection)); 
 
    if (spotDot < gl_LightSource[i].spotCosCutoff) 
        spotAttenuation = 0.0; // light adds no contribution 
    else 
        spotAttenuation = pow(spotDot, gl_LightSource[i].spotExponent); 
 
    // Combine the spotlight and distance attenuation. 
    attenuation *= spotAttenuation; 
 
    halfVector = normalize(VP + eye); 
 
    nDotVP = max(0.0, dot(normal, VP)); 
    nDotHV = max(0.0, dot(normal, halfVector)); 
 
    if (nDotVP == 0.0) 
        pf = 0.0; 
    else 
        pf = pow(nDotHV, gl_FrontMaterial.shininess); 
 
    ambient  += gl_LightSource[i].ambient * attenuation; 
    diffuse  += gl_LightSource[i].diffuse * nDotVP * attenuation; 
    specular += gl_LightSource[i].specular * pf * attenuation; 
} 

 

  



9.3. Material Properties and Lighting 
OpenGL lighting calculations require knowing the viewing direction in the eye coordinate system 
in order to compute specular reflection terms. By default, the view direction is assumed to be 
parallel to and in the direction of the z axis. OpenGL also has a mode that requires the viewing 
direction to be computed from the origin of the eye coordinate system (local viewer). To 
compute this, we can transform the incoming vertex into eye space by using the current 
modelview matrix. The x, y, and z coordinates of this point are divided by the homogeneous 
coordinate w to get a vec3 value that can be used directly in the lighting calculations. The 
computation of this eye coordinate position (ecPosition3) was illustrated in Section 9.1. To get a 
unit vector corresponding to the viewing direction, we normalize and negate the eye space 
position. Shader code to implement these computations is shown in Listing 9.9. 

Listing 9.9. Local viewer computation 

With the viewing direction calculated, we can initialize the variables that accumulate the 
ambient, diffuse, and specular lighting contributions from all the light sources in the scene. We 
can then call the functions defined in the previous section to compute the contributions from 
each light source. In the code in Listing 9.10, we assume that all lights with an index less than 
the constant NumEnabled Lights are enabled. Directional lights are distinguished by having a 
position parameter with a homogeneous (w) coordinate equal to 0 at the time they were 
provided to OpenGL. (These positions are transformed by the modelview matrix when the light 
is specified, so the w coordinate remains 0 after transformation if the last column of the 
modelview matrix is the typical (0 0 0 1)). Point lights are distinguished by having a spotlight 
cutoff angle equal to 180. 

Listing 9.10. Loop to compute contributions from all enabled light 
sources 

if (LocalViewer) 
    eye = -normalize(ecPosition3); 
else 
    eye = vec3(0.0, 0.0, 1.0); 

 

// Clear the light intensity accumulators 
amb  = vec4(0.0); 
diff = vec4(0.0); 
spec = vec4(0.0); 
 
// Loop through enabled lights, compute contribution from each 
for (i = 0; i < NumEnabledLights; i++) 
{ 
    if (gl_LightSource[i].position.w == 0.0) 
        DirectionalLight(i, normal, amb, diff, spec); 
    else if (gl_LightSource[i].spotCutoff == 180.0) 
        PointLight(i, eye, ecPosition3, normal, amb, diff, spec); 
    else 
        SpotLight(i, eye, ecPosition3, normal, amb, diff, spec); 
} 

 



 

One of the changes made to OpenGL in version 1.2 was to add functionality to compute the 
color at a vertex in two parts: a primary color that contains the combination of the emissive, 
ambient, and diffuse terms as computed by the usual lighting equations; and a secondary color 
that contains just the specular term as computed by the usual lighting equations. If this mode 
is not enabled (the default case), the primary color is computed with the combination of 
emissive, ambient, diffuse, and specular terms. 

Computing the specular contribution separately allows specular highlights to be applied after 
texturing has occurred. The specular value is added to the computed color after texturing has 
occurred, to allow the specular highlights to be the color of the light source rather than the 
color of the surface. Listing 9.11 shows how to compute the surface color (according to OpenGL 
rules) with everything but the specular contribution: 

Listing 9.11. Surface color computation, omitting the specular 
contribution 

The OpenGL Shading Language conveniently provides us a built-in variable 
(gl_FrontLightModelProduct.sceneColor) that contains the emissive material property for front facing 
surfaces plus the product of the ambient material property for front-facing surfaces and the 
global ambient light for the scene (i.e., gl_FrontMaterial.emission + gl_FrontMaterial.ambient * 
gl_LightModel.ambient). We can add this together with the intensity of reflected ambient light and 
the intensity of reflected diffuse light. Next, we can do the appropriate computations, depending 
on whether the separate specular color mode is indicated, as shown in Listing 9.12. 

Listing 9.12. Final surface color computation 

There is no need to perform clamping on the values assigned to gl_Front-SecondaryColor and 
gl_FrontColor because these are automatically clamped by definition. 

color = gl_FrontLightModelProduct.sceneColor + 
            amb * gl_FrontMaterial.ambient + 
            diff * gl_FrontMaterial.diffuse; 

 

if (SeparateSpecular) 
    gl_FrontSecondaryColor = vec4(spec * 
                                  gl_FrontMaterial.specular, 1.0); 
else 
    color += spec * gl_FrontMaterial.specular; 
gl_FrontColor = color; 

 

  



9.4. Two-Sided Lighting 
To mimic OpenGL's two-sided lighting behavior, you need to invert the surface normal and 
perform the same computations as defined in the preceding section, using the back-facing 
material properties. You can probably do it more cleverly than this, but it might look like Listing 
9.13. The functions DirectionalLight, PointLight, and SpotLight that are referenced in this code 
segment are identical to the functions described in Section 9.2 except that the value 
glBackMaterial.shininess is used in the computations instead of the value glFrontMaterial.shininess. 

Listing 9.13. Two-sided lighting computation 

There is no need to perform clamping on the values assigned to gl_BackSecondaryColor and 
gl_BackColor because these are automatically clamped by definition. 

normal = -normal; 
 
// Clear the light intensity accumulators 
amb  = vec4(0.0); 
diff = vec4(0.0); 
spec = vec4(0.0); 
 
// Loop through enabled lights, compute contribution from each 
for (i = 0; i < NumEnabledLights; i++) 
{ 
    if (gl_LightSource[i].position.w == 0.0) 
        DirectionalLight(i, normal, amb, diff, spec); 
    else if (gl_LightSource[i].spotCutoff == 180.0) 
        PointLight(i, eye, ecPosition3, normal, amb, diff, spec); 
    else 
        SpotLight(i, eye, ecPosition3, normal, amb, diff, spec); 
} 
 
color = gl_BackLightModelProduct.sceneColor + 
        amb * gl_BackMaterial.ambient + 
        diff * gl_BackMaterial.diffuse; 
 
if (SeparateSpecular) 
    gl_BackSecondaryColor = vec4(spec * 
                                 gl_BackMaterial.specular, 1.0); 
else 
    color += spec * gl_BackMaterial.specular; 
 
gl_BackColor = color; 

 

  



9.5. No Lighting 
If no enabled lights are in the scene, it is a simple matter to pass the pervertex color and 
secondary color for further processing with the commands shown in Listing 9.14. 

Listing 9.14. Setting final color values with no lighting 

if (SecondaryColor) 
    gl_FrontSecondaryColor = gl_SecondaryColor; 
 
// gl_FrontColor will be clamped automatically by OpenGL 
gl_FrontColor = gl_Color; 

 



9.6. Fog 
In OpenGL, DEPTH-CUING and fog effects are controlled by fog parameters. A fog factor is 
computed according to one of three equations, and this fog factor performs a linear blend 
between the fog color and the computed color for the fragment. The depth value to be used in 
the fog equation can be either the fog coordinate passed in as a standard vertex attribute 
(gl_FogCoord) or the eye-coordinate distance from the eye. In the latter case, it is usually 
sufficient to approximate the depth value as the absolute value of the z-coordinate in eye space 
(i.e., abs(ecPosition.z)). When there is a wide angle of view, this approximation may cause a 
noticeable artifact (too little fog) near the edges. If this is the case, you could compute z as the 
true distance from the eye to the fragment with length(ecPosition). (This method involves a square 
root computation, so the code may run slower as a result.) The choice of which depth value to 
use would normally be done in the vertex shader as follows: 

if (UseFogCoordinate) 
    gl_FogFragCoord = gl_FogCoord; 
else 
    gl_FogFragCoord = abs(ecPosition.z); 

 
A linear computation (which corresponds to the traditional computer graphics operation of 
depth-cuing) can be selected in OpenGL with the symbolic constant GL_LINEAR. For this case, 
the fog factor f is computed with the following equation: 

 

 
start, end, and z are all distances in eye coordinates. start is the distance to the start of the fog 
effect, end is the distance to the end of the effect, and z is the value stored in gl_FogFragCoord. We 
can explicitly provide the start and end positions as uniform variables, or we can access the 
current values in OpenGL state by using the built-in variables gl_Fog.start and gl_Fog.end. The 
shader code to compute the fog factor with the built-in variables for accessing OpenGL state is 
shown in Listing 9.15. 

Listing 9.15. GL_LINEAR fog computation 

Because 1.0 / (gl_Fog.end gl_Fog.start) doesn't depend on any per-vertex or per-fragment state, 
this value is precomputed and made available as the built-in variable gl_Fog.scale. 

We can achieve a more realistic fog effect with an exponential function. With a negative 
exponent value, the exponential function will model the diminishing of the original color as a 
function of distance. A simple exponential fog function can be selected in OpenGL with the 
symbolic constant GL_EXP. The formula corresponding to this fog function is 

f = e(density .z)

 

The z value is computed as described for the previous function, and density is a value that 
represents the density of the fog. density can be provided as a uniform variable, or the built-in 

fog = (gl_Fog.end - gl_FogFragCoord)) * gl_Fog.scale; 

 



variable gl_Fog.density can be used to obtain the current value from OpenGL state. The larger this 
value becomes, the "thicker" the fog becomes. For this function to work as intended, density 
must be greater than or equal to 0. 

The OpenGL Shading Language has a built-in exp (base e) function that we can use to perform 
this calculation. Our OpenGL shader code to compute the preceding equation is shown in Listing 
9.16. 

Listing 9.16. GL_EXP fog computation 

The final fog function defined by OpenGL is selected with the symbolic constant GL_EXP2 and is 
defined as 

f = e(density .z)2

 

This function changes the slope of the exponential decay function by squaring the exponent. 
The OpenGL shader code to implement it is similar to the previous function (see Listing 9.17). 

Listing 9.17. GL_EXP2 fog computation 

OpenGL also requires the final value for the fog factor to be limited to the range [0,1]. We can 
accomplish this with the statement in Listing 9.18. 

Listing 9.18. Clamping the fog factor 

Any of these three fog functions can be computed in either a vertex shader or a fragment 
shader. Unless you have very large polygons in your scene, you probably won't see any 
difference if the fog factor is computed in the vertex shader and passed to the fragment shader 
as a varying variable. This will probably also give you better performance overall, so it's 
generally the preferred approach. In the fragment shader, when the (almost) final color is 
computed, the fog factor can be used to compute a linear blend between the fog color and the 
(almost) final fragment color. The OpenGL shader code in Listing 9.19 does the trick by using 
the fog color saved as part of current OpenGL state. 

Listing 9.19. Applying fog to compute final color value 

fog = exp(-gl_Fog.density * gl_FogFragCoord); 

 

fog = exp(-gl_Fog.density * gl_Fog.density * 
           gl_FogFragCoord * gl_FogFragCoord); 

 

fog = clamp(fog, 0.0, 1.0); 

 

color = mix(vec3(gl_Fog.color), color, fog); 

 

 

The code presented in this section achieves the same results as OpenGL's fixed functionality. 
But with programmability, you are free to use a completely different approach to compute fog 
effects. 

  



9.7. Texture Coordinate Generation 
OpenGL can be set up to compute texture coordinates automatically, based only on the 
incoming vertex positions. Five methods are defined, and each can be useful for certain 
purposes. The texture generation mode specified by GL_OBJECT_LINEAR is useful for cases in 
which a texture is to remain fixed to a geometric model, such as in a terrain modeling 
application. GL_EYE_LINEAR is useful for producing dynamic contour lines on an object. 
Examples of this usage include a scientist studying isosurfaces or a geologist interpreting 
seismic data. GL_SPHERE_MAP can generate texture coordinates for simple environment 
mapping. GL_REFLECTION_MAP and GL_NORMAL_MAP can work in conjunction with cube map 
textures. GL_REFLECTION_MAP passes the reflection vector as the texture coordinate. 
GL_NORMAL_MAP simply passes the computed eye space normal as the texture coordinate. 

A function that generates sphere map coordinates according to the OpenGL specification is 
shown in Listing 9.20. 

Listing 9.20. GL_SPHERE_MAP computation 

A function that generates reflection map coordinates according to the OpenGL specification 
looks almost identical to the function shown in Listing 9.20. The difference is that it returns the 
reflection vector as its result (see Listing 9.21). 

Listing 9.21. GL_REFLECTION_MAP computation 

Listing 9.22 shows the code for selecting between the five texture generation methods and 
computing the appropriate texture coordinate values. 

Listing 9.22. Texture coordinate generation computation 

vec2 SphereMap(in vec3 ecPosition3, in vec3 normal) 
{ 
   float m; 
   vec3 r, u; 
   u = normalize(ecPosition3); 
   r = reflect(u, normal); 
   m = 2.0 * sqrt(r.x * r.x + r.y * r.y + (r.z + 1.0) * (r.z + 1.0)); 
   return vec2(r.x / m + 0.5, r.y / m + 0.5); 
} 

 

vec3 ReflectionMap(in vec3 ecPosition3, in vec3 normal) 
{ 
   float NdotU, m; 
   vec3 u; 
   u = normalize(ecPosition3); 
   return (reflect(u, normal)); 
} 

 

// Compute sphere map coordinates if needed 
if (TexGenSphere) 



 

In this code, we assume that each texture unit less than NumEnabledTexture-Units is enabled. If this 
value is 0, the whole loop is skipped. Otherwise, each texture coordinate that is needed is 
computed in the loop. 

Because the sphere map and reflection computations do not depend on any of the texture unit 
state, they can be performed once and the result is used for all texture units. For the 
GL_OBJECT_LINEAR and GL_EYE_LINEAR methods, there is a plane equation for each 
component of each set of texture coordinates. For the former case, we generate the 
components of gl_TexCoord[0] by multiplying the plane equation coefficients for the specified 
component by the incoming vertex position. For the latter case, we compute the components of 
gl_TexCoord[0] by multiplying the plane equation coefficients by the eye coordinate position of the 
vertex. Depending on what type of texture access is done during fragment processing, it may 
not be necessary to compute the t, p, or q texture component,[1] so these computations could 
be eliminated. 

[1] For historical reasons, the OpenGL texture coordinate components are named s, t, r, and q. Because of the desire to have 
single-letter, component-selection names in the OpenGL Shading Language, components for textures are named s, t, p, and q. 
This lets us avoid using r, which is needed for selecting color components as r, g, b, and a. 

    sphereMap = SphereMap(ecposition3, normal); 
 
// Compute reflection map coordinates if needed 
if (TexGenReflection) 
    reflection = ReflectionMap(ecposition3, normal); 
 
// Compute texture coordinate for each enabled texture unit 
for (i = 0; i < NumEnabledTextureUnits; i++) 
{ 
    if (TexGenObject) 
    { 
        gl_TexCoord[i].s = dot(gl_Vertex, gl_ObjectPlaneS[i]); 
        gl_TexCoord[i].t = dot(gl_Vertex, gl_ObjectPlaneT[i]); 
        gl_TexCoord[i].p = dot(gl_Vertex, gl_ObjectPlaneR[i]); 
        gl_TexCoord[i].q = dot(gl_Vertex, gl_ObjectPlaneQ[i]); 
    } 
 
    if (TexGenEye) 
    { 
        gl_TexCoord[i].s = dot(ecPosition, gl_EyePlaneS[i]); 
        gl_TexCoord[i].t = dot(ecPosition, gl_EyePlaneT[i]); 
        gl_TexCoord[i].p = dot(ecPosition, gl_EyePlaneR[i]); 
        gl_TexCoord[i].q = dot(ecPosition, gl_EyePlaneQ[i]); 
    } 
 
    if (TexGenSphere) 
        gl_TexCoord[i] = vec4(sphereMap, 0.0, 1.0); 
 
    if (TexGenReflection) 
        gl_TexCoord[i] = vec4(reflection, 1.0); 
 
    if (TexGenNormal) 
        gl_TexCoord[i] = vec4(normal, 1.0); 
} 

 



9.8. User Clipping 
To take advantage of OpenGL's user clipping (which remains as fixed functionality between 
vertex processing and fragment processing in programmable OpenGL), a vertex shader must 
transform the incoming vertex position into the same coordinate space as that in which the user 
clip planes are stored. The usual case is that the user clip planes are stored in eye space 
coordinates, so the OpenGL shader code shown in Listing 9.23 can provide the transformed 
vertex position. 

Listing 9.23. User-clipping computation 

gl_ClipVertex = gl_ModelViewMatrix * gl_Vertex; 

 



9.9. Texture Application 
The built-in texture functions read values from texture memory. The values read from texture 
memory are used in a variety of ways. OpenGL fixed functionality includes support for texture 
application formulas enabled with the symbolic constants GL_REPLACE, GL_MODULATE, 
GL_DECAL, GL_BLEND, and GL_ADD. These modes operate differently, depending on the 
format of the texture being accessed. The following code illustrates the case in which an RGBA 
texture is accessed with the sampler tex0. The variable color is initialized to be gl_Color and then 
modified as needed so that it contains the color value that results from texture application. 

GL_REPLACE is the simplest texture application mode of all. It simply replaces the current 
fragment color with the value read from texture memory. See Listing 9.24. 

Listing 9.24. GL_REPLACE computation 

GL_MODULATE causes the incoming fragment color to be multiplied by the value retrieved from 
texture memory. This is a good texture function to use if lighting is computed before texturing 
(e.g., the vertex shader performs the lighting computation, and the fragment shader does the 
texturing). White can be used as the base color for an object rendered with this technique, and 
the texture then provides the diffuse color. This technique is illustrated with the OpenGL shader 
code in Listing 9.25. 

Listing 9.25. GL_MODULATE computation 

GL_DECAL is useful for applying an opaque image to a portion of an object. For instance, you 
might want to apply a number and company logos to the surfaces of a race car or tattoos to the 
skin of a character in a game. When an RGBA texture is accessed, the alpha value at each texel 
linearly interpolates between the incoming fragment's RGB value and the texture's RGB value. 
The incoming fragment's alpha value is used as is. The code for implementing this mode is in 
Listing 9.26. 

Listing 9.26. GL_DECAL computation 

GL_BLEND is the only texture application mode that takes the current texture environment 
color into account. The RGB values read from the texture linearly interpolate between the RGB 
values of the incoming fragment and the texture environment color. We compute the new alpha 
value by multiplying the alpha of the incoming fragment by the alpha read from the texture. 

color = texture2D(tex0, gl_TexCoord[0].xy); 

 

color *= texture2D(tex0, gl_TexCoord[0].xy); 

 

vec4 texture = texture2D(tex0, gl_TexCoord[0].xy); 
vec3 col = mix(color.rgb, texture.rgb, texture.a); 
color = vec4(col, color.a); 

 



 

The OpenGL shader code is shown in Listing 9.27. 

Listing 9.27. GL_BLEND computation 

GL_ADD computes the sum of the incoming fragment color and the value read from the texture. 
The two alpha values are multiplied together to compute the new alpha value. This is the only 
traditional texture application mode for which the resulting values can exceed the range [0,1], 
so we clamp the final result (see Listing 9.28). 

Listing 9.28. GL_ADD computation 

The texture-combine environment mode that was added in OpenGL 1.3 and extended in 
OpenGL 1.4 defines a large number of additional simple ways to perform texture application. A 
variety of new formulas, source values, and operands were defined. The mapping of these 
additional modes into OpenGL shader code is straightforward but tiresome, so it is omitted 
here. 

vec4 texture = texture2D(tex0, gl_TexCoord[0].xy); 
vec3 col = mix(color.rgb, gl_TextureEnvColor[0].rgb, texture.rgb); 
color = vec4(col, color.a * texture.a); 

 

vec4 texture = texture2D(tex0, gl_TexCoord[0].xy); 
color.rgb += texture.rgb; 
color.a   *= texture.a; 
color = clamp(color, 0.0, 1.0); 

 

  



9.10. Summary 
The rendering formulas specified by OpenGL have been reasonable ones to implement in fixed 
functionality hardware for the past decade or so, but they are not necessarily the best ones to 
use in your shaders. We look at better-performing and more realistic shaders for lighting and 
reflection in subsequent chapters. Still, it can be instructive to see how these formulas can be 
expressed in shaders written in the OpenGL Shading Language. The shader examples presented 
in this chapter demonstrate the expression of these fixed functionality rendering formulas, but 
they should not be considered optimal implementations. Take the ideas and the shading code 
illustrated in this chapter and adapt them to your own needs. 



9.11. Further Information 
3Dlabs has made available a nifty tool for comparing fixed functionality behavior with 
equivalent shaders. With this application, called ShaderGen, you can set up OpenGL state and 
view fixed functionality behavior, and then, with a single mouse click, cause the application to 
automatically generate equivalent GLSL shaders. You can then examine, edit, compile, and link 
the generated shaders. You can easily switch between fixed functionality mode and 
programmable shader mode and compare results. Through the graphical user interface, you can 
also modify the state that affects rendering. Full source code for this application is also 
available. 

The OpenGL Programming Guide, Fifth Edition, by the OpenGL Architecture Review Board, Woo, 
Neider, Davis, and Shreiner (2005), contains more complete descriptions of the various 
formulas presented in this chapter. The functionality is defined in the OpenGL specification, The 
OpenGL Graphics System: A Specification, (Version 2.0), by Mark Segal and Kurt Akeley, edited 
by Jon Leech and Pat Brown (2004). Basic graphics concepts like transformation, lighting, fog, 
and texturing are also covered in standard graphics texts such as Introduction to Computer 
Graphics by Foley, van Dam, et al., (1994). 

Real-Time Rendering, by Akenine-Möller and Haines (2002), also contains good descriptions of 
these basic topics. 
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Chapter 10. Stored Texture Shaders 
Texture mapping is a powerful mechanism built into OpenGL. At the time OpenGL was initially 
defined (1992), texture-mapping hardware was just starting to be available on commercial 
products. Nowadays, texture mapping is available on graphics hardware at all price points, even 
entry-level consumer graphics boards. 

When OpenGL 1.0 was defined, texture mapping had a fairly narrow definition. It was simply a 
way to apply an image to the surface of an object. Since then, hardware has become capable of 
doing much more in this area, and researchers have come up with a lot of interesting things to 
do with textures other than just plastering images on surfaces. The scope of texture mapping 
has also been extended in OpenGL. Texture objects were one of the key additions in OpenGL 
1.1. Three-dimensional textures were made part of the standard in OpenGL 1.2. The capability 
of hardware to access two or more textures simultaneously was exposed in OpenGL 1.3, along 
with cube map textures and a framework for supporting compressed textures formats. OpenGL 
1.4 added support for depth textures and shadows, automatic mipmap generation, and another 
texture wrap mode (mirrored repeat). If you need a quick review of how texturing works in 
OpenGL, refer to Section 1.10. 

The programmability introduced with the OpenGL Shading Language allows for a much broader 
definition of texture mapping. With programmable shaders, an application can read values from 
any number of textures and use them in any way that makes sense. This includes supporting 
sophisticated algorithms that use the results of one texture access to define the parameters of 
another texture access. Textures can also store intermediate rendering results; they can serve 
as lookup tables for complex functions; they can store normals, normal perturbation factors, 
gloss values, visibility information, and polynomial coefficients; and do many other things. 
These things could not be done nearly as easily, if at all, in unextended OpenGL, and this 
flexibility means that texture maps are coming closer to being general-purpose memory that 
can be used for arbitrary purposes. (Filtering and wrapping behavior still differentiate texture-
map access from normal memory access operations.) 

This chapter describes several shaders that, at their core, rely on looking up values in texture 
memory and using those values to achieve interesting effects. We start by talking a little bit 
about how textures are accessed from within a shader, and then we look at several examples of 
shaders that access texture memory for various purposes other than just the straightforward 
application of an image to the surface of a 3D object. 

  



10.1. Access to Texture Maps from a Shader 
Applications are required to set up and initialize texturing state properly before executing a 
shader that accesses texture memory. An application must perform the following steps to set 
up a texture for use within a shader: 

If fixed functionality is used, the application must perform two additional steps: enabling the 
desired texture on the texture unit by calling glEnable and setting the texture function for the 
texture unit (modulate, decal, replace, etc.) by calling glTexEnv. (These steps are not required 
when an OpenGL shader is used, because the fixed functionality hierarchy of texture enables is 
ignored and the texture function is expressed within the shader code.) When these steps have 
been completed, the texture is ready for use by an OpenGL shader. 

It is quite straightforward to access textures from within a shader after texture state has been 
set up properly by the application. The OpenGL Shading Language has built-in data types (see 
Section 3.2.4) and built-in functions (see Section 5.7) to accomplish this task. 

A uniform variable of type sampler must be used to access a texture from within a shader. 
Within a shader, a sampler is considered an opaque data type containing a value that can 
access a particular texture. The shader is responsible for declaring such a uniform variable for 
each texture that it wants to access. The application must provide a value for the sampler 
before execution of the shader, as described in Section 7.9. 

The type of the sampler indicates the type of texture that is to be accessed. A variable of type 
sampler1D accesses a 1D texture; a variable of type sampler2D accesses a 2D texture; a 
variable of type sampler3D accesses a 3D texture; a variable of type samplerCube accesses 
a cube map texture; and variables of type samplerShadow1D and samplerShadow2D 
access 1D and 2D depth textures. For instance, if the application intends to use texture unit 4 
to store a 2D texture, the shader must declare a uniform variable of type sampler2D, and the 
application must load a value of 4 into this variable before executing the shader. 

The built-in functions texture1D, texture2D, texture3D, textureCube, shadow1D, and so on, perform 
texture access within a shader. The first argument in each of these built-in functions is a 
sampler, and the type of the sampler must correspond to the name of the function. For 
instance, a sampler of type sampler1D must be the first argument to texture1D, a sampler of 
type sampler2D must be the first argument to texture2D, and so on. Mismatches cause a 
compiler error to occur. 

Each of these built-in texture-access functions also takes a texture coordinate as an argument. 
Hardware uses this texture coordinate to determine which locations in the texture map are to 
be accessed. A 1D texture is accessed with a single floating-point texture coordinate. A 2D 
texture is accessed with a vec2, and a 3D texture is accessed with a vec3. Projective versions 
of the texture access functions are also provided. In these functions, the individual components 
of the texture coordinate are divided by the last component of the texture coordinate, and the 

1.  Select a specific texture unit, and make it active by calling glActiveTexture. 
 

2.  Create a texture object, and bind it to the active texture unit by calling glBindTexture. 
 

3.  Set various parameters (wrapping, filtering, etc.) of the texture object by calling 
glTexParameter. 
 

4.  Define the texture by calling glTexImage. 
 



 

result is used in the texture access operation. 

There are some differences between accessing a texture from a vertex shader and accessing a 
texture from a fragment shader (the OpenGL Shading Language allows both). The level of detail 
to be used for accessing a mipmap texture is calculated by fixed functionality in between the 
vertex processor and the fragment processor. Therefore, this value is known within the 
fragment processor but not within the vertex processor. For this reason, the OpenGL Shading 
Language includes special built-in functions that can be used only in a vertex shader that allows 
the level of detail to be expressed directly as a function argument. The OpenGL Shading 
Language also includes built-in functions that can be used only in a fragment shader that allows 
a level-of-detail bias to be passed in. This bias value is added to the mechanically computed 
level-of-detail value. In this way, a shader writer can add a little extra sharpness or blurriness 
to the texture mapping function, depending on the situation. If any of these functions is used 
with a texture that is not a mipmap texture, the level-of-detail bias value is ignored. 

The built-in functions to access cube maps (textureCube and textureCubeLod) operate in the same 
way as defined for fixed functionality. The texture coordinate that is provided is treated as a 
direction vector that emanates from the center of a cube. This value selects one of the cube 
map's 2D textures, based on the coordinate with the largest magnitude. The other two 
coordinates are divided by the absolute value of this coordinate and scaled and biased to 
calculate a 2D coordinate that will be used to access the chosen face of the cube map. 

The built-in functions to access depth textures (shadow1D, shadow2D, etc.) also operate in the 
same way as defined for fixed functionality. The texture accessed by one of these functions 
must have a base internal format of GL_DEPTH_COMPONENT. The value that is returned when 
this type of texture is accessed depends on the texture-comparison mode, the texture-
comparison function, and the depth texture mode. Each of these values can be set with 
glTexParameter. 

The built-in texture access functions operate according to the current state of the texture unit 
that is being accessed and according to the parameters of the texture object that is bound to 
that texture unit. In other words, the value returned by the built-in texture access functions 
take into consideration the texturing state that has already been established for the texture unit 
and the texture object, including wrap mode, minification filter, magnification filter, border 
color, minimum/maximum level of detail, texture comparison mode, and so on. 

  



10.2. Simple Texturing Example 
With these built-in functions for accessing textures, it's easy to write a simple shader that does 
texture mapping. Our goal is to create a texture-mapped sphere by using a realistic texture of 
the earth's surface. Application code described in this chapter came from ogl2demo, written 
primarily by Barthold Lichtenbelt. Similar code is available in GLSLdemo, written by Philip 
Rideout and available for download from the 3Dlabs Web site. 

To achieve good results, it helps to start with excellent textures. Color Plate 3 shows an 
example of a two-dimensional texture map, a cylindrical projection of the earth's surface, 
including clouds. This image, and other images in this section, were obtained from the NASA 
Web site and were created by Reto Stöckli of the NASA/Goddard Space Flight Center. These 
images of Earth are part of a series of consistently processed data sets (land, sea ice, and 
clouds) from NASA's remote sensing satellite, the Moderate Resolution Imaging 
Spectroradiometer, or MODIS. Data from this satellite was combined with other related data 
sets (topography, land cover, and city lights), all at 1 kilometer resolution. The resulting series 
of images is extremely high resolution (43200 x 21600 pixels). For our purposes, we can get by 
with a much smaller texture, so we use versions that have been sampled down to 2048 x 1024. 

10.2.1. Application Setup 

We assume that the image data has been read into our application and that the image width, 
image height, a pointer to the image data, and a texture name generated by OpenGL can be 
passed to our texture initialization function: 

init2DTexture(GLint texName, GLint texWidth, 
              GLint texHeight, GLubyte *texPtr) 
{ 
    glBindTexture(GL_TEXTURE_2D, texName); 
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); 
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); 
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, texWidth, texHeight, 0, 
                 GL_RGB, GL_UNSIGNED_BYTE, texPtr); 
} 

 
This initialization function creates a texture object named texName. Calls to glTexParameter set the 
wrapping behavior and filtering modes. We've chosen to use repeat as our wrapping behavior 
and to do linear filtering. We specify the data for the texture by calling glTexImage2D (the values 
passed to this function depend on how the image data has been stored in memory). 

When we're ready to use this texture, we can use the following OpenGL calls: 

glActiveTexture(GL_TEXTURE0); 
glBindTexture(GL_TEXTURE_2D, earthTexName); 

 
This sequence of calls sets the active texture unit to texture unit 0, binds our earth texture to 
this texture unit, and makes it active. We need to provide the values for two uniform variables. 
The vertex shader needs to know the light position, and the fragment shader needs to know the 
texture unit that is to be accessed. We define the light position as a vec3 in the vertex shader 
named lightPosition and the texture unit as a sampler2D in the fragment shader named 
EarthTexture. Our application code needs to determine the location of these uniform variables and 
then provide appropriate values. We assume that our shaders have been compiled, linked using 



a program object whose handle is programObj, and installed as part of current state. We can 
make the following calls to initialize the uniform variables: 

lightLoc = glGetUniformLocation(programObj, "LightPosition"); 
glUniform3f(lightLoc, 0.0, 0.0, 4.0); 
texLoc   = glGetUniformLocation(programObj, "EarthTexture"); 
glUniform1i(texLoc, 0); 

 
The light source position is set to a point right in front of the object along the viewing axis. We 
plan to use texture unit 0 for our earth texture, so that is the value loaded into our sampler 
variable. 

The application can now make appropriate OpenGL calls to draw a sphere, and the earth texture 
will be applied. A surface normal, a 2D texture coordinate, and a vertex position must be 
specified for each vertex. 

10.2.2. Vertex Shader 

The vertex shader for our simple texturing example is similar to the simple brick vertex shader 
described in Section 6.2. The main difference is that a texture coordinate is passed in as a 
vertex attribute, and it is passed on as a varying variable with the built-in variable name 
gl_TexCoord[0] (see Listing 10.1). 

Listing 10.1. Vertex shader for simple texturing 

10.2.3. Fragment Shader 

The fragment shader shown in Listing 10.2 applies the earth texture to the incoming geometry. 
So, for instance, if we define a sphere where the s texture coordinates are related to longitude 
(e.g., 0° longitude is s = 0, and 360° longitude is s = 1.0) and t texture coordinates are related 
to latitude (90° south latitude is t = 0.0, and 90° north latitude is t = 1.0), then we can apply 

varying float LightIntensity; 
uniform vec3 LightPosition; 
 
const float specularContribution = 0.1; 
const float diffuseContribution  = 1.0 - specularContribution; 
 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPosition); 
    vec3 reflectVec = reflect(-lightVec, tnorm); 
    vec3 viewVec    = normalize(-ecPosition); 
 
    float spec      = clamp(dot(reflectVec, viewVec), 0.0, 1.0); 
    spec            = pow(spec, 16.0); 
 
    LightIntensity  = diffuseContribution * max(dot(lightVec, tnorm), 0.0)
                       + specularContribution * spec; 
 
    gl_TexCoord[0]  = gl_MultiTexCoord0; 
    gl_Position     = ftransform(); 
} 

 



 

the texture map to the sphere's geometry as shown in Color Plate 6. 

In the following fragment shader, the incoming s and t texture coordinate values (part of the 
built-in varying variable gl_TexCoord0) are used to look up a value from the texture currently 
bound to texture unit 0. The resulting value is multiplied by the light intensity computed by the 
vertex shader and passed as a varying variable. The color is then clamped, and an alpha value 
of 1.0 is added to create the final fragment color, which is sent on for further processing, 
including depth testing. The resulting image as mapped onto a sphere is shown in Color Plate 6. 

Listing 10.2. Fragment shader for simple texture mapping example 

varying float LightIntensity; 
uniform sampler2D EarthTexture; 
 
void main() 
{ 
    vec3 lightColor = vec3(texture2D(EarthTexture, gl_TexCoord[0].st)); 
    gl_FragColor    = vec4(lightColor * LightIntensity, 1.0); 
} 

 

  



10.3. Multitexturing Example 
The resulting image looks pretty good, but with a little more effort we can get it looking even 
better. For one thing, we know that there are lots of manmade lights on our planet, so when it's 
nighttime, major towns and cities can be seen as specks of light, even from space. So we use 
the angle between the light direction and the normal at each surface location to determine 
whether that location is in "daytime" or "nighttime." For points that are in daytime, we access 
the texture map that contains daylight colors and do an appropriate lighting calculation. For 
points in the nighttime region of the planet, we do no lighting and access a texture that shows 
the earth as illuminated at night. The daytime and nighttime textures are shown in Color Plate 4 
and Color Plate 5. 

Another somewhat unrealistic aspect to our simple approach is the reflection of sunlight off the 
surface of oceans and large lakes. Water is a very good reflective surface, and when our 
viewpoint is nearly the same as the reflection angle for the light source, we should see a 
specular reflection. But we know that desert, grass, and trees don't have this same kind of 
reflective property, so how can we get a nice specular highlight on the water but not on the 
land? 

The answer is a technique called a GLOSS MAP. We make a single channel (i.e., grayscale) version 
of our original texture and assign values of 1.0 for areas that represent water and 0 for 
everything else. At each fragment, we read this gloss texture and multiply its value by the 
specular illumination portion of our lighting equation. It's fairly simple to create the gloss map 
in an image editing program. The easiest way to do this is by editing the red channel of the 
cloudless daytime image. In this channel, all the water areas appear black or nearly black 
because they contain very little red information. We use a selection tool to select all the black 
(water) areas and then fill the selected area (water regions) with white. We invert the selection 
and fill the land areas with black. The result is a texture that contains a value of 1.0 (white) for 
areas in which we want a specular highlight, and a value of 0 (black) for areas in which we 
don't. We use this "gloss" value as a multiplier in our specular reflection calculation, so areas 
that represent water include a specular reflection term, and areas that represent land don't. Our 
gloss map is shown in Figure 10.1. 

Figure 10.1. Gloss map used to create specular reflections from water 
surfaces 

 

 
As you saw in Color Plate 4 and Color Plate 5, our daytime and nighttime textures no longer 
include cloud cover. So we store our cloud texture as a single channel (i.e., grayscale) texture 
as shown in Figure 10.2. By doing this, we have more flexibility about how we combine the 
cloud image with the images of the Earth's surface. For daytime views, we want the clouds to 



have diffuse reflection but no specular reflection. Furthermore, clouds obscure the surface, so a 
value of 1.0 for the cloud cover indicates that the earth's surface at that location is completely 
obscured by clouds. For nighttime views, we don't want any light reflecting from the clouds, but 
we do want them to obscure the surface below. For convenience, we've stored our single 
channel cloud image into the red channel of an RGB texture, and we've stored our gloss map as 
the green channel. The blue channel is unused. (Another choice would be to store the gloss 
map as the alpha channel for our daytime image and the cloud texture as the alpha channel in 
our nighttime image.) 

Figure 10.2. Texture map showing cloud cover (Blue Marble image by 
Reto Stöckli, NASA Goddard Space Flight Center) 

 

 
10.3.1. Application Setup 

The setup required for multitexturing is about the same as it was for the simple texturing 
example, except that we need to set up three textures instead of one. We can call the 
init2Dtexture function described in Section 10.2.1 three times, once each for the daytime earth 
texture, the nighttime earth texture, and the cloud/gloss texture. We can activate these 
textures with the following OpenGL calls: 

glActiveTexture(GL_TEXTURE0); 
glBindTexture(GL_TEXTURE_2D, earthDayTexName); 
 
glActiveTexture(GL_TEXTURE1); 
glBindTexture(GL_TEXTURE_2D, earthNightTexName); 
 
glActiveTexture(GL_TEXTURE2); 
glBindTexture(GL_TEXTURE_2D, earthCloudsTexName); 

 
The necessary uniform variables can be initialized as follows: 

lightLoc = glGetUniformLocation(programObj, "LightPosition"); 
glUniform3f(lightLoc, 0.0, 0.0, 4.0); 
texLoc   = glGetUniformLocation(programObj, "EarthDay"); 
glUniform1i(texLoc, 0); 
texLoc   = glGetUniformLocation(programObj, "EarthNight"); 
glUniform1i(texLoc, 1); 
texLoc   = glGetUniformLocation(programObj, "EarthCloudGloss"); 
glUniform1i(texLoc, 2); 

 
The application can now make appropriate OpenGL calls to draw a sphere. A surface normal, a 



2D texture coordinate, and a vertex position must be specified for each vertex. 

10.3.2. Vertex Shader 

The vertex shader for this multitexturing example is similar to the one described for the simple 
texturing example in Section 10.2.2, except that the diffuse and specular factors are computed 
by the vertex shader and passed as separate varying variables to the fragment shader. The 
computed specular value is multiplied by the constant vector (1.0, 0.941, 0.898) to 
approximate the color of sunlight (see Listing 10.3). 

Listing 10.3. Vertex shader for multitexturing 

10.3.3. Fragment Shader 

The fragment shader that performs the desired multitexturing is shown in Listing 10.4. The 
application has loaded the daytime texture in the texture unit specified by EarthDay, the 
nighttime texture into the texture unit specified by EarthNight, and the cloud/gloss texture into 
the texture unit specified by EarthCloudGloss. The lighting computation is done in a vertex shader 
that computes diffuse and specular reflection factors and passes them to the fragment shader 
independently. The texture coordinates supplied by the application are also passed to the 
fragment shader and form the basis of our texture lookup operation. 

In our fragment shader, the first thing we do is access our cloud/gloss texture because its 
values will be used in the computations that follow. Next, we look up the value from our 
daytime texture, multiply it by our diffuse lighting factor, and add to it the specular lighting 
factor multiplied by the gloss value. If the fragment is unobscured by clouds, our computation 
gives us the desired effect of diffuse lighting over the whole surface of the Earth with specular 
highlights from water surfaces. This value is multiplied by 1.0 minus the cloudiness factor. 
Finally, we add the cloud effect by multiplying our cloudiness factor by the diffuse lighting value 
and adding this to our previous result. 

The nighttime calculation is simpler. Here, we just look up the value from our nighttime texture 

varying float Diffuse; 
varying vec3  Specular; 
varying vec2  TexCoord; 
 
uniform vec3 LightPosition; 
 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPosition); 
    vec3 reflectVec = reflect(-lightVec, tnorm); 
    vec3 viewVec    = normalize(-ecPosition); 
 
    float spec      = clamp(dot(reflectVec, viewVec), 0.0, 1.0); 
    spec            = pow(spec, 8.0); 
    Specular        = vec3(spec) * vec3(1.0, 0.941, 0.898) * 0.3; 
 
    Diffuse         = max(dot(lightVec, tnorm), 0.0); 
 
    TexCoord        = gl_MultiTexCoord0.st; 
    gl_Position     = ftransform(); 
} 

 



 

and multiply that result by 1.0 minus the cloudiness factor. Because this fragment will be in 
shadow, the diffuse and specular components are not used. 

With these values computed, we can determine the value to be used for each fragment. The 
key is our diffuse lighting factor, which is greater than zero for areas in sunlight, equal to zero 
for areas in shadow, and near zero for areas near the terminator. The color value ends up being 
the computed daytime value in the sunlit areas, the computed nighttime value in the areas in 
shadow, and a mix of the two values to make a gradual transition near the terminator. 

An alpha value of 1.0 is added to produce our final fragment color. Several views from the final 
shader are shown in Color Plate 7. You can see the nice specular highlight off the Gulf of Mexico 
in the first image. If you look closely at the third (nighttime) image, you can see the clouds 
obscuring the central part of the east coast of the United States and the northwestern part of 
Brazil. 

It is worth pointing out that this shader should not be considered a general-purpose shader 
because it has some built-in assumptions about the type of geometry that will be drawn. It will 
only look "right" when used with a sphere with proper texture coordinates. More can be done to 
make the shader even more realistic. The color of the atmosphere actually varies, depending on 
the viewing position and the position of the sun. It is redder when near the shadow boundary, a 
fact that we often notice near sunrise and sunset. See the references at the end of the chapter 
for more information about achieving realistic effects such as Rayleigh scattering. 

Listing 10.4. "As the world turns" fragment shader 

uniform sampler2D EarthDay; 
uniform sampler2D EarthNight; 
uniform sampler2D EarthCloudGloss; 
 
varying float Diffuse; 
varying vec3  Specular; 
varying vec2  TexCoord; 
 
void main() 
{ 
    // Monochrome cloud cover value will be in clouds.r 
    // Gloss value will be in clouds.g 
    // clouds.b will be unused 
 
    vec2 clouds    = texture2D(EarthCloudGloss, TexCoord).rg; 
    vec3 daytime   = (texture2D(EarthDay, TexCoord).rgb * Diffuse + 
                          Specular * clouds.g) * (1.0 - clouds.r) + 
                          clouds.r * Diffuse; 
    vec3 nighttime = texture2D(EarthNight, TexCoord).rgb * 
                         (1.0 - clouds.r) * 2.0; 
 
    vec3 color = daytime; 
 
    if (Diffuse < 0.1) 
        color = mix(nighttime, daytime, (Diffuse + 0.1) * 5.0); 
 
    gl_FragColor = vec4(color, 1.0); 
} 

 



10.4. Cube Mapping Example 
A technique called ENVIRONMENT MAPPING models reflections in a complex environment without 
resorting to ray-tracing. In this technique, one or more texture maps simulate the 
environment's reflections. This technique is best used for rendering objects that have some 
mirrorlike qualities. 

The fundamental idea behind environment mapping is that we use the reflection vector from the 
surface of an object to look up the reflection color from an "environment" that is stored in a 
texture map. If environment mapping is done properly, the result looks as if the object being 
rendered is shiny and is reflecting its environment. 

There are several ways to do environment mapping, including SPHERE MAPPING and CUBE MAPPING, 
both of which are supported in standard OpenGL. An example cube map is shown in Color Plate 
10. 

In this section, we describe OpenGL shaders that use a cube map to perform environment 
mapping on an object. The object is assumed to have an underlying layer that acts as a diffuse 
reflector. The result from the diffuse portion is combined with the environment reflection to 
produce a final value at each pixel. 

A cube map is a texture that has six 2D textures that are organized to represent the faces of a 
cube. Cube maps are accessed with three texture coordinates that are treated as a direction 
vector emanating from the center of the cube. The cube map faces are differentiated by the 
sign along each of the three major axis directions. Think of the faces this way: The positive and 
negative x faces are the right and left sides of the cube; positive and negative y faces are the 
top and bottom sides of the cube; and positive and negative z faces are the back and front 
sides of the cube. Graphics hardware can use the three texture coordinates as a direction vector 
and automatically select the proper face and return a texel value where the direction vector 
intersects that face of the cube map. 

10.4.1. Application Setup 

The application needs to do very little to set up this shader. We use a simple lighting model, so 
the only lighting state that we need to pass in is a single light source position. We access the 
cube map through texture unit 4. baseColor defines the color of the diffuse underlayer of our 
object, and mixRatio sets the ratio of base color to environment map reflection. Here are the 
definitions for the uniform variables that we use: 

 
After the shaders have been installed and the uniform variables have been provided, the 
application is expected to send a normal and the vertex position for each vertex that is to be 
drawn. The current values for the modelview matrix, the modelview-projection matrix, and the 
normal matrix are all accessed from within the vertex shader. 

10.4.2. Vertex Shader 

Listing 10.5 comprises the vertex shader that is used to do environment mapping with a cube 

LightPos 0.0, 0.0, 4.0 

BaseColor 0.4, 0.4, 1.0 

MixRatio 0.8 

EnvMap 4 



map. 

Listing 10.5. Vertex shader used for environment mapping with a cube 
map 

The goal of this vertex shader is to produce two values that will be interpolated across each 
primitive: a diffuse lighting value and a reflection direction. The reflection direction is used as 
the texture coordinate for accessing the cube map in the fragment shader. 

We compute the transformed position of the vertex in the first line of the program in the usual 
way. We transform and normalize the incoming normal, and then we compute the eye direction, 
based on the current modelview matrix and the incoming vertex value. We pass these two 
values to the built-in function reflect to compute the reflection direction vector. Finally, we 
compute a diffuse lighting value in the same manner that we've done in previous examples. 

10.4.3. Fragment Shader 

Listing 10.6 contains the fragment shader that performs environment mapping with a cube 
map. 

Listing 10.6. Fragment shader for doing environment mapping with a 
cube map 

varying vec3  ReflectDir; 
varying float LightIntensity; 
 
uniform vec3  LightPos; 
 
void main() 
{ 
    gl_Position    = ftransform(); 
    vec3 normal    = normalize(gl_NormalMatrix * gl_Normal); 
    vec4 pos       = gl_ModelViewMatrix * gl_Vertex; 
    vec3 eyeDir    = pos.xyz; 
    ReflectDir     = reflect(eyeDir, normal); 
    LightIntensity = max(dot(normalize(LightPos - eyeDir), normal),0.0); 
} 

 

uniform vec3  BaseColor; 
uniform float MixRatio; 
 
uniform samplerCube EnvMap; 
 
varying vec3  ReflectDir; 
varying float LightIntensity; 
 
void main() 
{ 
    // Look up environment map value in cube map 
 
    vec3 envColor = vec3(textureCube(EnvMap, ReflectDir)); 
 
    // Add lighting to base color and mix 
 
    vec3 base = LightIntensity * BaseColor; 
    envColor  = mix(envColor, base, MixRatio); 



 

The fragment shader for cube map environment mapping does three things. First, the computed 
and interpolated varying variable ReflectDir is used to access our cube map texture and return 
the texel value that is used to simulate the reflection from a shiny surface. Second, the base 
color of the object is modulated by the interpolated light intensity value. Finally, these two 
values are combined in the ratio defined by the uniform variable MixRatio. This uniform variable 
can be modified by the user to make the object vary between completely shiny and completely 
diffuse. 

 
    gl_FragColor = vec4(envColor, 1.0); 
} 

 



10.5. Another Environment Mapping Example 
Another option for environment mapping is to use photographic methods to create a single 2D 
texture map, called an EQUIRECTANGULAR TEXTURE MAP or a LAT-LONG TEXTURE MAP. This type of texture 
can be obtained from a realworld environment by photography techniques, or it can be created 
to represent a synthetic environment. An example is shown in Color Plate 9. 

Whatever means are used to obtain an image, the result is a single image that spans 360° 
horizontally and 180° vertically. The image is also distorted as you move up or down from the 
center of the image. This distortion is done deliberately so that you will see a reasonable 
representation of the environment if you "shrink-wrap" this texture around the object that 
you're rendering. 

The key to using an equirectangular texture as the environment map is to produce a pair of 
angles that index into the texture. We compute an altitude angle by determining the angle 
between the reflection direction and the XZ plane. This altitude angle varies from 90° (reflection 
is straight up) to 90° (reflection is straight down). The sine of this angle varies from 1.0 to 1.0, 
and we use this fact to get a texture coordinate in the range of [0,1]. 

We determine an azimuth angle by projecting the reflection direction onto the XZ plane. The 
azimuth angle varies from 0° to 360°, and this gives us the key to get a second texture 
coordinate in the range of [0,1]. 

The following OpenGL shaders work together to perform environment mapping on an object by 
using an equirectangular texture map. These shaders are derived from a "bumpy/shiner" 
shader pair that was developed with John Kessenich and presented at SIGGRAPH 2002. The 
altitude and azimuth angles are computed to determine s and t values for indexing into our 2D 
environment texture. This texture's wrapping behavior is set so that it wraps in both s and t. 
(This supports a little trick that we do in the fragment shader.) Otherwise, the initial conditions 
are the same as described for the cube map environment mapping example. 

10.5.1. Vertex Shader 

Listing 10.7 comprises the vertex shader that does environment mapping with an 
equirectangular texture map. The only real difference between this shader and the one 
described in Section 10.4.2 is that this one computes Normal and EyeDir and passes them to the 
fragment shader as varying variables so that the reflection vector can be computed in the 
fragment shader. 

Listing 10.7. Vertex shader used for environment mapping 

varying vec3  Normal; 
varying vec3  EyeDir; 
varying float LightIntensity; 
 
uniform vec3  LightPos; 
 
void main() 
{ 
    gl_Position    = ftransform(); 
    Normal         = normalize(gl_NormalMatrix * gl_Normal); 
    vec4 pos       = gl_ModelViewMatrix * gl_Vertex; 
    EyeDir         = pos.xyz; 
    LightIntensity = max(dot(normalize(LightPos - EyeDir), Normal), 0.0);
} 



10.5.2. Fragment Shader 

Listing 10.8 contains the fragment shader that does environment mapping by using an 
equirectangular texture map. 

Listing 10.8. Fragment shader for doing environment mapping with an 
equirectangular texture map 

const vec3 Xunitvec = vec3(1.0, 0.0, 0.0); 
const vec3 Yunitvec = vec3(0.0, 1.0, 0.0); 
 
uniform vec3  BaseColor; 
uniform float MixRatio; 
 
uniform sampler2D EnvMap; // = 4 
 
varying vec3 Normal; 
 
varying vec3  EyeDir; 
varying float LightIntensity; 
 
void main() 
{ 
    // Compute reflection vector 
 
    vec3 reflectDir = reflect(EyeDir, Normal); 
 
    // Compute altitude and azimuth angles 
 
    vec2 index; 
 
    index.t = dot(normalize(reflectDir), Yunitvec); 
    reflectDir.y = 0.0; 
    index.s = dot(normalize(reflectDir), Xunitvec) * 0.5; 
 
    // Translate index values into proper range 
 
    if (reflectDir.z >= 0.0) 
        index = (index + 1.0) * 0.5; 
    else 
    { 
        index.t = (index.t + 1.0) * 0.5; 
        index.s = (-index.s) * 0.5 + 1.0; 
    } 
 
    // if reflectDir.z >= 0.0, s will go from 0.25 to 0.75 
    // if reflectDir.z < 0.0, s will go from 0.75 to 1.25, and 
    // that's OK, because we've set the texture to wrap. 
 
    // Do a lookup into the environment map. 
 
    vec3 envColor = vec3(texture2D(EnvMap, index)); 
 
    // Add lighting to base color and mix 
 
    vec3 base = LightIntensity * BaseColor; 
    envColor = mix(envColor, base, MixRatio); 
 



 

The varying variables Normal and EyeDir are the values generated by the vertex shader and then 
interpolated across the primitive. To get truly precise results, these values should be normalized 
again in the fragment shader. However, for this shader, skipping the normalization gives us a 
little better performance, and the quality is acceptable for certain objects. 

The constants Xunitvec and Yunitvec have been set up with the proper values for computing our 
altitude and azimuth angles. First, we compute our altitude angle by normalizing the reflectionDir 
vector and performing a dot product with the Yunitvec constant. Because both vectors are unit 
vectors, this dot product computation gives us a cosine value for the desired angle that ranges 
from [1,1]. Setting the y component of our reflection vector to 0 causes it to be projected onto 
the XZ plane. We normalize this new vector to get the cosine of our azimuth angle. Again, this 
value ranges from [1,1]. Because the horizontal direction of our environment texture spans 
360°, we multiply by 0.5 so that we get a value that maps into half of our environment map. 
Then we need to do a little more work to determine which half this is. 

If the z portion of our reflection direction is positive, we know that the reflection direction is 
"toward the front" and we use the computed texture map indices directly. The index values are 
scaled and biased so that when we access the environment map texture, we get s values that 
range from [0.25,0.75] and t values that range from [0,1]. 

If z is negative, we do our calculations a little differently. The t value is still computed the same 
way, but the s value is scaled and biased so that it ranges from [0.75,1.25]. We can use these 
values directly because we've set our texture wrap modes to GL_REPEAT. s values between 1.0 
and 1.25 will map to s values from 0 to 0.25 in our actual texture (the trick alluded to earlier). 
In this way, we can properly access the entire environment texture, depending on the reflection 
direction. We could compare s to 1.0 and subtract 1.0 if its value is greater than 1.0, but this 
would end up requiring additional instructions in the machine code and hence the performance 
would be reduced. By using the repeat mode trick, we get the hardware to take care of this for 
free. 

With our index values set, all we need to do is look up the value in the texture map. We 
compute a diffusely lit base color value by multiplying our incoming light intensity by BaseColor. 
We mix this value with our environment map value to create a ceramic effect. We then create a 
vec4 by adding an alpha value of 1.0 and send the final fragment color on for further 
processing. The final result is shown in Color Plate 11A. You can see the branches from the tree 
in the environment on the back and rear of the triceratops. For this example, we used a color of 
(0.4, 0.4, 1.0) (i.e., light blue) and a mix ratio of 0.8 (i.e., 80% diffuse color, 20% environment 
map value). 

An example of environment mapping that assumes a mirrorlike surface and adds procedural 
bumps is shown in Color Plate 11B. 

    gl_FragColor = vec4(envColor, 1.0); 
} 

 

  



10.6. Glyph Bombing 
In this section, we develop a shader that demonstrates a couple of different uses for textures. 
In Texturing and Modeling: A Procedural Approach, Darwyn Peachy described a process called 
TEXTURE BOMBING that creates an irregular texture pattern. The idea is to divide a surface into a 
grid, and then draw a decorative element or image (e.g., a star, a polka dot, or some other 
shape) within each cell. By applying some randomness to the placement, scaling, or rotation of 
each texture element, you can easily create an interesting pattern that is suitable for objects 
such as wallpaper, gift wrap, clothing, and the like. Peachey described a RenderMan shader to 
perform texture bombing, and in GPU Gems, Steve Glanville described a method for texture 
bombing in Cg. 

The basic concept of texture bombing can be taken a bit further. Joshua Doss developed a GLSL 
shader that randomly selects from several collections of related character glyphs. Two textures 
are used for the so-called GLYPH BOMBING shadera single texture that stores character glyphs and 
a texture that stores random values. Let's examine how this shader works. 

10.6.1. Application Setup 

The first step is to create a 2D texture that contains the glyphs that will be used. To set this up, 
you just need to carefully draw characters on a 10 x 10 grid, using a 2D image editing program 
like Photoshop. Each row should have a common theme like the image shown in Figure 10.3. A 
single uniform variable (ColAdjust) is used to select the row to be accessed. Within this row, a 
glyph is chosen at random, and when it is drawn, it can also be optionally scaled and rotated. 
Thus, we can easily choose a pattern from a collection snowflakes, musical symbols, animal 
silhouettes, flower dingbats, and so on. Applying a random color and placing the glyph 
randomly within the cell add even more irregularity and interest to the final result. 

Figure 10.3. Texture map showing a collection of character glyphs that 
are used with the glyph bombing shader 

 

 



The second texture that this shader uses contains random values in the range of [0,1.0] for 
each component. We access this texture to obtain a vec4 containing random numbers and use 
these values to apply randomness to several computations within the fragment shader. 

Just like the brick shader discussed in Chapter 6, this shader needs a frame of reference for 
creating the cells in which we draw our glyphs. In this case, we use the object's texture 
coordinates to establish the reference frame. We can scale the texture coordinates with a 
uniform variable (ScaleFactor) to make the cells larger or smaller. Our glyph texture map contains 
only levels of gray. We use the value obtained from the glyph texture map to linearly 
interpolate between a default object color (ModelColor) and a random color that is generated 
when a glyph is drawn. 

Because we are allowing random offsets and random rotation, we need to take care of some 
complications in our shader. Each of these effects can cause the object we are drawing to 
extend into neighboring cells. 

Let's first consider the case of random offsets. When each glyph is drawn, our shader offsets 
the glyph by adding a value in the range [0,1.0] for each of x and y. This means that the glyph 
can be shifted over and up by some amount, possibly contributing to the contents of pixel 
locations in three neighboring cells to the right and above. Figure 10.4 illustrates the 
possibilities. 

Figure 10.4. Depending on the random offset for a particular cell, a 
glyph may contribute to any one of four cells. 

 

 
Consequently, as we consider how to compute the value at one particular pixel location, we 
must consider the possibility that the glyphs to be drawn in cells to the left and below the 
current cell may be contributing to the fragment. For instance, the spot marked by the x in 



Figure 10.4 might actually have contributions from the glyphs in cells (m, n), (m+1, n), and (m, 
n+1) in addition to the glyph contained in the cell (m+1, n+1). 

Things get even more interesting when we allow for a random angle of rotation. Now the offset 
combined with rotation can cause our glyph to extend into any of nine cells, as shown in Figure 
10.5. For this case, as we render fragments we must consider all eight surrounding cells in 
addition to the cell containing the fragment being rendered. We use a Boolean uniform variable, 
RandomRotate, to determine whether we need to loop over four cells or nine. 

Figure 10.5. Depending on a random offset and a random angle of 
rotation, a glyph may contribute to fragments in any of nine adjacent 

cells 

[View full size image] 

 

 
We use a few additional uniform variables to offer more control over the number of glyphs and 
their placement and to give an even greater appearance of randomness to the final pattern. 
RandomScale is a Boolean value that causes the size of the glyph to be scaled in both x and y by 
random values in the range [0,1.0]. (This has no effect on the cells that are affected, because 
the glyph can only be made smaller by this operation.) Another uniform variable, Percentage, 
indicates the probability that a glyph will be drawn in each cell. Lowering this value increases 
the number of empty cells in the final image. 

We can even include a loop in the shader so that we can apply more than one glyph per cell. 
The number of glyphs drawn per cell is set with SamplesPerCell. Setting this value to increasingly 
higher values will bring any graphics hardware to its knees. If random rotation is enabled, the 



fragment shader will need to iterate over nine cells and within each of these cells loop 
SamplesPerCell times in order to draw all the glyphs. This is a lot of computation at every 
fragment! 

The uniform variables for this shader and their initial values are 

 
10.6.2. Vertex Shader 

Listing 10.9 contains the vertex shader for glyph bombing. The only differences between this 
shader and the vertex shader for bricks discussed in Chapter 6 are that the diffuse factor is 
multiplied by a somewhat arbitrary factor of two and that the scaled texture coordinates are 
passed to the fragment shader to form the frame of reference for defining the cells into which 
glyphs will be drawn. 

Listing 10.9. Vertex shader for doing glyph bombing 

SpecularContribution 0.2 

LightPosition 4.0, 
14.0, 
4.0 

ScaleFactor 10.0 

ModelColor 1.0, 
1.0, 
1.0, 
1.0 

GlyphTex 0 

RandomTex 1 

ColAdjust 0.75 

Percentage 1.0 

SamplesPerCell 1.0 

R01 0.29 

RandomScale false 

RandomRotate false 

uniform float SpecularContribution; 
uniform vec3  LightPosition; 
uniform float ScaleFactor; 
 
varying float LightIntensity; 
varying vec2  TexCoord; 
 
 
 
void main() 
{ 
    vec3  ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3  tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3  lightVec   = normalize(LightPosition - ecPosition); 
    vec3  reflectVec = reflect(-lightVec, tnorm); 
    vec3  viewVec    = normalize(-ecPosition); 
    float diffuse    = max(dot(lightVec, tnorm), 0.0); 
    float spec       = 0.0; 
 



10.6.3. Fragment Shader 

Listing 10.10 contains the fragment shader for glyph bombing. As you can see, this shader 
makes heavy use of looping. The first step is to assign the base color for the fragment, and 
then compute the fragment's cell and position within the cell. As we iterate through the loops, 
the value for color accumulates the color for the current fragment, which may be covered by 
multiple glyphs of different colors. A double for-next loop lets us iterate across four cells if 
RandomRotate is false (0) and across nine cells if it is true (1). This double loop determines 
whether any of the neighboring cells contain a glyph that contributes to the fragment currently 
being computed. 

For each iteration of the inner loop, we need to determine whether the glyph in the neighboring 
cell affects the fragment that is being rendered. This requires that we compute the cell number 
for each neighboring cell as well the offset from the lower-left corner of the neighboring cell to 
the current fragment. 

We use the cell value to compute the initial index value used to access our random number 
texture. This provides the beginning of a repeatable sequence of random numbers used for the 
calculations within that cell. This means that whenever we consider the contents of this cell, we 
always compute the same random glyph, the same random offset, and so on. 

To start the random number sequence in a different location for each of the cells, during each 
loop iteration we compute the index into our random texture by multiplying the current cell 
value by a uniform variable (RO1) that a user can adjust to achieve pleasing results. 

At this point, we enter yet another loop. This loop iterates over the number of samples per cell. 
Within this loop, the first thing we do is access our random number texture to obtain four 
random numbers in the range [0,1.0]. The result of this operation is a variable (random) that we 
use in performing a number of computations that require an element of randomness. To avoid 
using the same random number for each iteration of this loop, we add the third and fourth 
components of the random number to our random texture index. We use this value to access 
the texture in the next iteration of the loop. Now we get to the heart of the glyph bombing 
algorithm. 

If the first component of the random number we've obtained is greater than or equal to 
Percentage, we exit the loop, use the color value computed thus far as the value for the fragment, 
and are done with the computation concerning this particular cell. Otherwise, we must generate 
a value that can index into our glyph texture. The first steps are to use ColAdjust to select the 
row of our glyph texture (index.t) and then select a random glyph within that row (index.s). 
Multiplying by 10 and using the floor function divides the texture into 10 sections in each 
direction. This gives us access to the 100 separate glyphs. 

    if(diffuse > 0.0) 
       { 
          spec = max(dot(reflectVec, viewVec), 0.0); 
          spec = pow(spec, 16.0); 
       } 
 
    float diffusecontribution  = 1.0 - SpecularContribution; 
    LightIntensity = diffusecontribution * diffuse * 2.0 + 
                         SpecularContribution * spec; 
 
    TexCoord = gl_MultiTexCoord0.st * ScaleFactor; 
 
    gl_Position = ftransform(); 
} 

 



The next thing we need to do is compute a value that can access the proper texel in the glyph 
for this particular cell (glyphIndex). Here the offset, rotation, and scaling factors come into play. If 
RandomRotate is true, we generate a random angle of rotation, compute the corresponding 
rotation matrix, and use this matrix to transform the texture coordinates for accessing the 
glyph. This value is then combined with the random offset for the glyph. If we're not doing 
rotation, we just apply the random offset. 

(Interestingly, the fragment shader for drawing glyphs never actually has to add the random 
offsets for drawing glyphs. Instead, the fragment shader assumes that the random offsets have 
been added and computes whether a glyph in a neighboring cell contributes to the current 
fragment by subtracting the random offset and then doing a texture lookup for the glyph in the 
neighboring cell. This is an example of the type of logic that is sometimes needed to convert a 
rendering algorithm into a fragment shader.) 

The next step is to apply random scaling to the texture coordinates. random.r is a value in the 
range [0, 1.0]. If we divide our glyph index by this value, the glyph index values (i.e., the 
coordinates used to access the glyph) get larger. And if the coordinates used to access the 
glyph get larger, the apparent size of the glyph that is drawn gets smaller. By multiplying 
random.r by 0.5 and adding 0.5, we constrain the random scaling to be between 50% and 100% 
of the original size. 

The resulting texture coordinates are clamped to the range [0,1.0], added to the index of the 
glyph that is rendered, divided by 10, and then used to access the glyph texture. All the glyphs 
in our glyph texture have at least one pixel of white along each edge. By clamping the values to 
the range [0,1.0] we effectively say "no contribution for this glyph" whenever the glyph index 
values exceed the range [0,1.0]. If the glyph value obtained is a color other than white, we use 
the resulting texture value to linearly interpolate between the color value computed thus far 
and a random color. Because the glyph texture contains only levels of gray, the comparison is 
only true for texels other than pure white. The mix function gives us a smoothly antialiased edge 
when the glyph is drawn, and it allows us to properly layer multiple glyphs of different colors, 
one on top of the other. 

Listing 10.10. Fragment shader for doing glyph bombing 

#define TWO_PI 6.28318 
 
uniform vec4      ModelColor; 
 
uniform sampler2D GlyphTex; 
uniform sampler2D RandomTex; 
 
uniform float     ColAdjust; 
uniform float     ScaleFactor; 
uniform float     Percentage; 
uniform float     SamplesPerCell; 
uniform float     RO1; 
 
uniform bool      RandomScale; 
uniform bool      RandomRotate; 
 
varying vec2      TexCoord; 
varying float     LightIntensity; 
 
void main() 
{ 
    vec4 color  = ModelColor; 
    vec2 cell   = floor(TexCoord); 
    vec2 offset = TexCoord - cell; 
 
    for (int i = -1; i <= int (RandomRotate); i++) 



This particular shader was designed for flexibility in operation, not performance. Consequently, 
there are enormous opportunities for making it run faster. There are two texture accesses per 

    { 
        for (int j = -1; j <= int (RandomRotate); j++) 
        { 
            vec2 currentCell   = cell + vec2(float(i), float(j)); 
            vec2 currentOffset = offset - vec2(float(i), float(j)); 
         
            vec2 randomUV = currentCell * vec2(RO1); 
         
            for (int k = 0; k < int (SamplesPerCell); k++) 
            { 
                vec4 random = texture2D(RandomTex, randomUV); 
                randomUV   += random.ba; 
             
                if (random.r < Percentage) 
                { 
                    vec2 glyphIndex; 
                    mat2 rotator; 
                    vec2 index; 
                    float rotationAngle, cosRot, sinRot; 
                 
                    index.s = floor(random.b * 10.0); 
                    index.t = floor(ColAdjust * 10.0); 
                 
                    if (RandomRotate) 
                    { 
                       rotationAngle = TWO_PI * random.g; 
                        cosRot = cos(rotationAngle); 
                        sinRot = sin(rotationAngle); 
                        rotator[0] = vec2(cosRot, sinRot); 
                        rotator[1] = vec2(-sinRot, cosRot); 
                        glyphIndex = -rotator * 
                            (currentOffset - random.rg); 
                    } 
                    else 
                    { 
                        glyphIndex = currentOffset - random.rg; 
                    } 
 
                    if (RandomScale) 
                        glyphIndex /= vec2(0.5 * random.r + 0.5); 
 
                    glyphIndex = 
                        (clamp(glyphIndex, 0.0, 1.0) + index) * 0.1; 
 
                    vec4 image = texture2D(GlyphTex, glyphIndex); 
 
                    if (image.r != 1.0) 
                        color.rgb = mix(random.rgb * 0.7, color.rgb, 
                                            image.r); 
                } 
            } 
        } 
    } 
 
    gl_FragColor    = color * LightIntensity; 
 
} 

 



 

iteration of the innermost loop, so enabling rotation and having five samples per cell implies 90 
texture accesses per fragment. Still, there are times when some of the techniques 
demonstrated by this shader come in handy. Some images that demonstrate the flexibility of 
this shader are shown in Figure 10.6, Figure 10.7, and Color Plate 8. 

Figure 10.6. Normal glyph bombing, glyph bombing with random 
scaling, with random rotation, and with both random scaling and 

rotation. 

 

 
Figure 10.7. Glyph bombing with 2, 3, 4, and 5 glyphs per cell 

 

 

  



10.7. Summary 
This chapter discussed several shaders that rely on information stored in texture maps. The 
programmability of OpenGL opens up all sorts of new uses for texture memory. In the first 
example, we used two typical color images as texture maps, and we also used one texture as 
an opacity map and another as a gloss map. In the second example, we accessed a cube map 
from within a shader. In the third example, we used a typical color image as a texture, but the 
shader accessed it in a unique manner. In the final example, we used one texture to store small 
images for rendering and another texture to store random numbers that added irregularity and 
interest to the final result. 

In examples later in this book, you'll see how textures can be used to store normal maps, noise 
functions, and polynomial coefficients. There is really no end to the possibilities for creating 
unique effects with stored textures when your mind is free to think of texture memory as 
storage for things other than color images. 



10.8. Further Information 
The basics of OpenGL texture mapping are explained in much more detail in the OpenGL 
Programming Guide, Fifth Edition (2005), by Shreiner, Neider, Davis, and Woo, from Addison-
Wesley. 

More information about the Earth images used in Section 10.2 can be found at the NASA Web 
site at http://earthobservatory.nasa.gov/Newsroom/BlueMarble. 

Papers regarding the realistic rendering of planets include Jim Blinn's 1982 SIGGRAPH paper 
Light Reflection Functions for Simulation of Clouds and Dusty Surfaces, the 1993 SIGGRAPH 
paper Display of the Earth Taking into Account Atmospheric Scattering, by Nishita, et al., and 
the 2002 paper Physically-based Simulation: A Survey of the Modelling and Rendering of the 
Earth's Atmosphere by Jaroslav Sloup. 

Mipmapping was first described by Lance Williams in his classic 1983 paper Pyramidal 
Parametrics. A good overview of environment mapping techniques is available in the paper 
Environment Maps and Their Applications by Wolfgang Heidrich. This paper was part of the 
course notes for SIGGRAPH 2000 Course 27, entitled Procedural Shading on Graphics Hardware.
This material, and a thorough treatment of reflectance and lighting models, can be found in the 
book Real-Time Shading, by Marc Olano, et al. (2002). 

Texture bombing is described by Darwyn Peachey in Texturing and Modeling: A Procedural 
Approach, Third Edition. The book GPU Gems also has a chapter by Steve Glanville on this topic.
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Chapter 11. Procedural Texture Shaders 
The fact that we have a full-featured, high-level programming language to express the 
processing at each fragment means that we can algorithmically compute a pattern on an 
object's surface. We can use this new freedom to create a wide variety of rendering effects that 
wouldn't be possible otherwise. 

In the previous chapter, we discussed shaders that achieve their primary effect by reading 
values from texture memory. This chapter focuses on shaders that do interesting things 
primarily by means of an algorithm defined by the shader. The results from such a shader are 
synthesized according to the algorithm rather than being based primarily on precomputed 
values such as a digitized painting or photograph. This type of shader is sometimes called a 
PROCEDURAL TEXTURE SHADER, and the process of applying such a shader is called PROCEDURAL 

TEXTURING. Often the texture coordinate or the object coordinate position at each point on the 
object is the only piece of information needed to shade the object with a shader that is entirely 
procedural. 

In principle, procedural texture shaders can accomplish many of the same tasks as shaders that 
access stored textures. In practice, there are times when it is more convenient or feasible to 
use a procedural texture shader and times when it is more convenient or feasible to use a 
stored texture shader. When deciding whether to write a procedural texture shader or one that 
uses stored textures, keep in mind some of the main advantages of procedural texture shaders. 

Textures generated procedurally have very low memory requirements compared with 
stored textures. The only representation of the texture is in the algorithm defined by the 
code in the procedural texture shader. This representation is extremely compact 
compared with the size of stored 2D textures. Typically, it is a couple of orders of 
magnitude smaller (e.g., a few kilobytes for the code in a procedural shader versus a few 
hundred kilobytes or more for a high-quality 2D texture). This means procedural texture 
shaders require far less memory on the graphics accelerator. Procedural texture shaders 
have an even greater advantage when the desire is to have a 3D (solid) texture applied to 
an object (a few kilobytes versus tens of megabytes or more for a stored 3D texture). 

Textures generated by procedural texture shaders have no fixed area or resolution. They 
can be applied to objects of any scale with precise results because they are defined 
algorithmically rather than with sampled data, as in the case of stored textures. There are 
no decisions to be made about how to map a 2D image onto a 3D surface patch that is 
larger or smaller than the texture, and there are no seams or unwanted replication. As 
your viewpoint gets closer and closer to a surface rendered with a procedural texture 
shader, you won't see reduced detail or sampling artifacts like you might with a shader 
that uses a stored texture. 

Procedural texture shaders can be written to parameterize key aspects of the algorithm. 
These parameters can easily be changed, allowing a single shader to produce an 
interesting variety of effects. Very little can be done to alter the effect from a stored 
texture after it has been created. 

Some of the disadvantages of using procedural shaders rather than stored textures are as 
follows. 

Procedural texture shaders require the algorithm to be encoded in a program. Not 
everyone has the technical skills needed to write such a program, whereas it is fairly 
straightforward to create a 2D or 3D texture with limited technical skills. 



 

Performing the algorithm embodied by a procedural texture shader at each location on an 
object can be a lot slower than accessing a stored texture. 

Procedural texture shaders can have serious aliasing artifacts that can be difficult to 
overcome. Today's graphics hardware has built-in capabilities for antialiasing stored 
textures (e.g., filtering methods and mipmaps). 

Because of differences in arithmetic precision and differences in implementations of built-
in functions such as noise, procedural texture shaders could produce somewhat different 
results on different platforms. 

The ultimate choice of whether to use a procedural shader or a stored texture shader should be 
made pragmatically. Things that would be artwork in the real world (paintings, billboards, 
anything with writing, etc.) are good candidates for rendering with stored textures. Objects that 
are extremely important to the final "look" of the image (character faces, costumes, important 
props) can also be rendered with stored textures because this presents the easiest route for an 
artist to be involved. Things that are relatively unimportant to the final image and yet cover a 
lot of area are good candidates for rendering with a procedural shader (walls, floors, ground). 

Often, a hybrid approach is the right answer. A golf ball might be rendered with a base color, a 
hand-painted texture map that contains scuff marks, a texture map containing a logo, and a 
procedurally generated dimple pattern. Stored textures can also control or constrain procedural 
effects. If our golf ball needs grass stains on certain parts of its surface and it is important to 
achieve and reproduce just the right look, an artist could paint a gray scale map that would 
direct the shader to locations where grass smudges should be applied on the surface (for 
instance, black portions of the grayscale map) and where they should not be applied (white 
portions of the grayscale map). The shader can read this CONTROL TEXTURE and use it to blend 
between a grass-smudged representation of the surface and a pristine surface. 

All that said, let's turn our attention to a few examples of shaders that are entirely procedural. 

  



11.1. Regular Patterns 
In Chapter 6, we examined a procedural shader for rendering bricks. Our first example in this 
chapter is another simple one. We try to construct a shader that renders stripes on an object. A 
variety of man-made objects can be rendered with such a shader: children's toys, wallpaper, 
wrapping paper, flags, fabrics, and so on. 

The object in Figure 11.1 is a partial torus rendered with a stripe shader. The stripe shader and 
the application in which it is shown were both developed in 2002 by LightWork Design, a 
company that develops software to provide photorealistic views of objects created with 
commercial CAD/CAM packages. The application developed by LightWork Design contains a 
graphical user interface that allows the user to interactively modify the shader's parameters. 
The various shaders that are available are accessible on the upper-right portion of the user 
interface, and the modifiable parameters for the current shader are accessible in the lower-right 
portion of the user interface. In this case, you can see that the parameters for the stripe shader 
include the stripe color (blue), the background color (orange), the stripe scale (how many 
stripes there will be), and the stripe width (the ratio of stripe to background; in this case, it is 
0.5 to make blue and orange stripes of equal width). 

Figure 11.1. Closeup of a partial torus rendered with the stripe shader 
described in Section 11.1. (Courtesy of LightWork Design) 

[View full size image] 

 

 
For our stripe shader to work properly, the application needs to send down only the geometry 
(vertex values) and the texture coordinate at each vertex. The key to drawing the stripe color 
or the background color is the t texture coordinate at each fragment (the s texture coordinate is 
not used at all). The application must also supply values that the vertex shader uses to perform 
a lighting computation. And the aforementioned stripe color, background color, scale, and stripe 
width must be passed to the fragment shader so that our procedural stripe computation can be 



performed at each fragment. 

11.1.1. Stripes Vertex Shader 

The vertex shader for our stripe effect is shown in Listing 11.1. 

Listing 11.1. Vertex shader for drawing stripes 

There are some nice features to this particular shader. Nothing in it really makes it specific to 
drawing stripes. It provides a good example of how we might do the lighting calculation in a 
general way that would be compatible with a variety of fragment shaders. 

As we mentioned, the values for doing the lighting computation (LightPosition, LightColor, EyePosition, 
Specular, Ambient, and Kd) are all passed in by the application as uniform variables. The purpose of 
this shader is to compute DiffuseColor and SpecularColor, two varying variables that will be 
interpolated across each primitive and made available to the fragment shader at each fragment 
location. These values are computed in the typical way. A small optimization is that Ambient is 
added to the value computed for the diffuse reflection so that we send one less value to the 
fragment shader as a varying variable. The incoming texture coordinate is passed down to the 
fragment shader as the built-in varying variable gl_TexCoord[0], and the vertex position is 
transformed in the usual way. 

11.1.2. Stripes Fragment Shader 

The fragment shader contains the algorithm for drawing procedural stripes. It is shown in 
Listing 11.2. 

uniform vec3  LightPosition; 
uniform vec3  LightColor; 
uniform vec3  EyePosition; 
uniform vec3  Specular; 
uniform vec3  Ambient; 
uniform float Kd; 
 
varying vec3  DiffuseColor; 
varying vec3  SpecularColor; 
 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPosition); 
    vec3 viewVec    = normalize(EyePosition - ecPosition); 
    vec3 hvec       = normalize(viewVec + lightVec); 
 
    float spec = clamp(dot(hvec, tnorm), 0.0, 1.0); 
    spec = pow(spec, 16.0); 
 
    DiffuseColor    = LightColor * vec3(Kd * dot(lightVec, tnorm)); 
    DiffuseColor    = clamp(Ambient + DiffuseColor, 0.0, 1.0); 
    SpecularColor   = clamp((LightColor * Specular * spec), 0.0, 1.0); 
 
    gl_TexCoord[0]  = gl_MultiTexCoord0; 
    gl_Position     = ftransform(); 
} 

 



Listing 11.2. Fragment shader for drawing stripes 

The application provides one other uniform variable, called Fuzz. This value controls the smooth 
transitions (i.e., antialiasing) between stripe color and background color. With a Scale value of 
10.0, a reasonable value for Fuzz is 0.1. It can be adjusted as the object changes size to prevent 
excessive blurriness at high magnification levels. It shouldn't really be set to a value higher 
than 0.5 (maximum blurriness of stripe edges). 

The first step in this shader is to multiply the incoming t texture coordinate by the stripe scale 
factor and take the fractional part. This computation gives the position of the fragment within 
the stripe pattern. The larger the value of Scale, the more stripes we have as a result of this 
calculation. The resulting value for the local variable scaledT ranges from [0,1). 

We'd like to have nicely antialiased transitions between the stripe colors. One way to do this 
would be to use smoothstep in the transition from StripeColor to BackColor, and use it again in the 
transition from BackColor to StripeColor. But this shader uses the fact that these transitions are 
symmetric to combine the two transitions into one. 

So, to get our desired transition, we use scaledT to compute two other values, frac1 and frac2. 
These two values tell us where we are in relation to the two transitions between BackColor and 
StripeColor. For frac1, if scaledT/Fuzz is greater than 1, that indicates that this point is not in the 
transition zone, so we clamp the value to 1. If scaledT is less than Fuzz, scaledT/Fuzz specifies the 
fragment's relative distance into the transition zone for one side of the stripe. We compute a 
similar value for the other edge of the stripe by subtracting Width from scaledT, dividing by Fuzz, 
clamping the result, and storing it in frac2. 

These values represent the amount of fuzz (blurriness) to be applied. At one edge of the stripe, 
frac2 is 0 and frac1 is the relative distance into the transition zone. At the other edge of the 
stripe, frac1 is 1 and frac2 is the relative distance into the transition zone. Our next line of code 
(frac1 = frac1 * (1.0 - frac2)) produces a value that can be used to do a proper linear blend 
between BackColor and StripeColor. But we'd actually like to perform a transition that is smoother 
than a linear blend. The next line of code performs a Hermite interpolation in the same way as 

uniform vec3  StripeColor; 
uniform vec3  BackColor; 
uniform float Width; 
uniform float Fuzz; 
uniform float Scale; 
 
varying vec3  DiffuseColor; 
varying vec3  SpecularColor; 
 
void main() 
{ 
    float scaledT = fract(gl_TexCoord[0].t * Scale); 
 
    float frac1 = clamp(scaledT / Fuzz, 0.0, 1.0); 
    float frac2 = clamp((scaledT - Width) / Fuzz, 0.0, 1.0); 
 
    frac1 = frac1 * (1.0 - frac2); 
    frac1 = frac1 * frac1 * (3.0 - (2.0 * frac1)); 
 
    vec3 finalColor = mix(BackColor, StripeColor, frac1); 
    finalColor = finalColor * DiffuseColor + SpecularColor; 
 
    gl_FragColor = vec4(finalColor, 1.0); 
} 

 



 

the smoothstep function. The final value for frac1 performs the blend between BackColor and 
StripeColor. 

The result of this effort is a smoothly "fuzzed" boundary in the transition region between the 
stripe colors. Without this fuzzing effect, we would have abrupt transitions between the stripe 
colors that would flash and pop as the object is moved on the screen. The fuzzing of the 
transition region eliminates those artifacts. A closeup view of the fuzzed boundary is shown in 
Figure 11.2. (More information about antialiasing procedural shaders can be found in Chapter 
17.) 

Figure 11.2. Extreme closeup view of one of the stripes that shows the 
effect of the "fuzz" calculation from the stripe shader. (Courtesy of 

LightWork Design) 

[View full size image] 

 

 
Now all that remains to be done is to apply the diffuse and specular lighting effects computed 
by the vertex shader and supply an alpha value of 1.0 to produce our final fragment color. By 
modifying the five basic parameters of our fragment shader, we can create a fairly interesting 
number of variations of our stripe pattern, using the exact same shader. 



11.2. Toy Ball 
Programmability is the key to procedurally defining all sorts of texture patterns. This next 
shader takes things a bit further by shading a sphere with a procedurally defined star pattern 
and a procedurally defined stripe. The author of this shader, Bill Licea-Kane, was inspired to 
create a ball like the one featured in one of Pixar's early short animations, Luxo Jr. This shader 
is quite specialized. As Bill will tell you, "It shades any surface as long as it's a sphere." The 
reason is that the fragment shader exploits the following property of the sphere: The surface 
normal for any point on the surface points in the same direction as the vector from the center 
of the sphere to that point on the surface. This property is used to analytically compute the 
surface normal used in the shading calculations within the fragment shader. 

The key to this shader is that the star pattern is defined by the coefficients for five half-spaces 
that define the star shape. These coefficients were chosen to make the star pattern an 
appropriate size for the ball. Points on the sphere are classified as "in" or "out," relative to each 
half space. Locations in the very center of the star pattern are "in" with respect to all five half-
spaces. Locations in the points of the star are "in" with respect to four of the five half-spaces. 
All other locations are "in" with respect to three or fewer half-spaces. 

Fragments that are in the stripe pattern are simpler to compute. After we have classified each 
location on the surface as "star," "stripe," or "other," we can color each fragment appropriately. 
The color computations are applied in an order that ensures a reasonable result even if the ball 
is viewed from far away. A surface normal is calculated analytically (i.e., exactly) within the 
fragment shader. A lighting computation that includes a specular highlight calculation is also 
applied at every fragment. 

11.2.1. Application Setup 

The application only needs to provide vertex positions for this shader to work properly. Both 
colors and normals are computed algorithmically in the fragment shader. The only catch is that 
for this shader to work properly, the vertices must define a sphere. The sphere can be of 
arbitrary size because the fragment shader performs all the necessary computations, based on 
the known geometry of a sphere. 

A number of parameters to this shader are specified with uniform variables. The values that 
produce the images shown in the remainder of this section are summarized in Listing 11.3. 

Listing 11.3. Values for uniform variables used by the toy ball shader 

LightDir          0.57735, 0.57735, 0.57735, 0.0 
HVector           0.32506, 0.32506, 0.88808, 0.0 
BallCenter        0.0, 0.0, 0.0, 1.0 
SpecularColor     0.4, 0.4, 0.4, 60.0 
 
Red               0.6, 0.0, 0.0, 1.0 
Blue              0.0, 0.3, 0.6, 1.0 
Yellow            0.6, 0.5, 0.0, 1.0 
 
HalfSpace0        1.0, 0.0, 0.0, 0.2 
HalfSpace1         0.309016994,  0.951056516, 0.0, 0.2 
HalfSpace2        -0.809016994,  0.587785252, 0.0, 0.2 
HalfSpace3        -0.809016994,  -0.587785252, 0.0, 0.2 
HalfSpace4         0.309016994,  -0.951056516, 0.0, 0.2 
 
InOrOutInit       -3.0 



11.2.2. Vertex Shader 

The fragment shader is the workhorse for this shader duo, so the vertex shader needs only to 
compute the ball's center position in eye coordinates, the eye-coordinate position of the vertex, 
and the clip space position at each vertex. The application could provide the ball's center 
position in eye coordinates, but our vertex shader doesn't have much to do, and doing it this 
way means the application doesn't have to keep track of the modelview matrix. This value could 
easily be computed in the fragment shader, but the fragment shader will likely have a little 
better performance if we leave the computation in the vertex shader and pass the result as a 
varying variable (see Listing 11.4). 

Listing 11.4. Vertex shader for drawing a toy ball 

11.2.3. Fragment Shader 

The toy ball fragment shader is a little bit longer than some of the previous examples, so we 
build it up a few lines of code at a time and illustrate some intermediate results. Here are the 
definitions for the local variables that are used in the toy ball fragment shader: 

vec4 normal;         // Analytically computed normal 
vec4 p;              // Point in shader space 
vec4 surfColor;      // Computed color of the surface 
float intensity;     // Computed light intensity 
vec4 distance;       // Computed distance values 
float inorout;       // Counter for computing star pattern 

 
The first thing we do is turn the surface location that we're shading into a point on a sphere 
with a radius of 1.0. We can do this with the normalize function: 

p.xyz = normalize(ECposition.xyz - ECballCenter.xyz); 
p.w   = 1.0; 

 
We don't want to include the w coordinate in the computation, so we use the component 
selector .xyz to select the first three components of ECposition and ECballCenter. This normalized 
vector is stored in the first three components of p. With this computation, p represents a point 
on the sphere with radius 1, so all three components of p are in the range [1,1]. The w 

StripeWidth       0.3 
FWidth            0.005 

 

varying vec4 ECposition;    // surface position in eye coordinates 
varying vec4 ECballCenter;  // ball center in eye coordinates 
uniform vec4 BallCenter;    // ball center in modeling coordinates 
 
void main() 
{ 
    ECposition   = gl_ModelViewMatrix * gl_Vertex; 
    ECballCenter = gl_ModelViewMatrix * BallCenter; 
    gl_Position  = ftransform(); 
} 

 



coordinate isn't really pertinent to our computations at this point, but to make subsequent 
calculations work properly, we initialize it to a value of 1.0. 

Next, we perform our half-space computations. We initialize a counter called inorout to a value of 
3. We increment the counter each time the surface location is "in" with respect to a half-space. 
Because five half-spaces are defined, the final counter value will be in the range [3,2]. Values 
of 1 or 2 signify that the fragment is within the star pattern. Values of 0 or less signify that the 
fragment is outside the star pattern. 

inorout = InOrOutInit;    // initialize inorout to -3 

 
We could have defined the half-spaces as an array of five vec4 values, done our "in" or "out" 
computations and stored the results in an array of five float values. But we can take a little 
better advantage of the parallel nature of the underlying graphics hardware if we do things a bit 
differently. You'll see how in a minute. First, we compute the distance between p and the first 
four half-spaces by using the built-in dot product function: 

distance[0] = dot(p, HalfSpace0); 
distance[1] = dot(p, HalfSpace1); 
distance[2] = dot(p, HalfSpace2); 
distance[3] = dot(p, HalfSpace3); 

 
The results of these half-space distance calculations are visualized in (A)(D) of Figure 11.3. 
Surface locations that are "in" with respect to the half-space are shaded in gray, and points that 
are "out" are shaded in black. 

Figure 11.3. Visualizing the results of the half-space distance 
calculations (Courtesy of ATI Research, Inc.) 

 

 
You may have been wondering why our counter was defined as a float instead of an int. We're 
going to use the counter value as the basis for a smoothly antialiased transition between the 
color of the star pattern and the color of the rest of the ball's surface. To this end, we use the 
smoothstep function to set the distance to 0 if the computed distance is less than FWidth, to 1 if 
the computed distance is greater than FWidth, and to a smoothly interpolated value between 0 
and 1 if the computed distance is in between those two values. By defining distance as a vec4, 
we can perform the smooth step computation on four values in parallel. smoothstep implies a 
divide operation, and because FWidth is a float, only one divide operation is necessary. This 
makes it all very efficient. 

distance = smoothstep(-FWidth, FWidth, distance); 

 
Now we can quickly add the values in distance by performing a dot product between distance and a 
vec4 containing all 1s: 

inorout += dot(distance, vec4(1.0)); 



 
Because we initialized inorout to 3, we add the result of the dot product to the previous value of 
inorout. This variable now contains a value in the range [3,1], and we have one more half-space 
distance to compute. We compute the distance to the fifth half-space, and we do the 
computation to determine whether we're "in" or "out" of the stripe around the ball. We call the 
smoothstep function to do the same operation on these two values as was performed on the 
previous four half-space distances. We update the inorout counter by adding the result from the 
distance computation with the final half-space. The distance computation with respect to the 
fifth half-space is illustrated in (E) of Figure 11.3. 

distance.x = dot(p, HalfSpace4); 
distance.y = StripeWidth - abs(p.z); 
distance = smoothstep(-FWidth, FWidth, distance); 
inorout += distance.x; 

 
(In this case, we're performing a smooth step operation on a vec4, and we only really care 
about two of the components. The performance will probably be fine on a graphics device 
designed to process vec4 values in parallel, but it might be somewhat inefficient on a graphics 
device with a scalar architecture. In the latter case, however, the OpenGL Shading Language 
compiler may very well be smart enough to realize that the results of the third and fourth 
components were never consumed later in the program, so it might optimize away the 
instructions for computing those two values.) 

The value for inorout is now in the range [3,2]. This intermediate result is illustrated in Figure 
11.4 (A). By clamping the value of inorout to the range [0,1], we obtain the result shown in 
Figure 11.4 (B). 

Figure 11.4. Intermediate results from "in" or "out" computation. 
Surface points that are "in" with respect to all five half-planes are 
shown in white, and points that are "in" with respect to four half-
planes are shown in gray (A). The value of inorout is clamped to the 
range [0,1] to produce the result shown in (B). (Courtesy of ATI 

Research, Inc.) 

 

 
inorout = clamp(inorout, 0.0, 1.0); 

 
At this point, we can compute the surface color for the fragment. We use the computed value of 
inorout to perform a linear blend between yellow and red to define the star pattern. If we were to 
stop here, the result would look like Color Plate 13A. If we take the results of this calculation 
and do a linear blend with the color of the stripe, we get the result shown in Color Plate 13B. 
Because we used smoothstep, the values of inorout and distance.y provide a nicely antialiased edge at 
the border between colors. 

surfColor = mix(Yellow, Red, inorout); 



surfColor = mix(surfColor, Blue, distance.y); 

 
The result at this stage is flat and unrealistic. Performing a lighting calculation will fix this. The 
first step is to analytically compute the normal for this fragment, which we can do because we 
know the eye-coordinate position of the center of the ball (it's provided in the varying variable 
ECballCenter) and we know the eye-coordinate position of the fragment (it's passed in the varying 
variable ECposition). (This approach could have been used with the earth shader discussed in 
Section 10.2 to avoid passing the surface normal as a varying variable and using the 
interpolated results.) As a matter of fact, we've already computed this value and stored it in p: 

// normal = point on surface for sphere at (0,0,0) 
normal = p; 

 
The diffuse part of the lighting equation is computed with these three lines of code: 

intensity  = 0.2; // ambient 
intensity += 0.8 * clamp(dot(LightDir, normal), 0.0, 1.0); 
surfColor *= intensity; 

 
The result of diffuse-only lighting is shown in Color Plate 13C. The final step is to add a specular 
contribution with these three lines of code: 

intensity  = clamp(dot(HVector, normal), 0.0, 1.0); 
intensity  = pow(intensity, SpecularColor.a); 
surfColor += SpecularColor * intensity; 

 
Notice in Color Plate 13D that the specular highlight is perfect! Because the surface normal at 
each fragment is computed exactly, there is no misshapen specular highlight caused by 
tesselation facets like we're used to seeing. The resulting value is written to gl_FragColor and sent 
on for final processing before ultimately being written into the frame buffer. 

gl_FragColor = surfColor; 

 
Voila! Your very own toy ball, created completely out of thin air! The complete listing of the toy 
ball fragment shader is shown in Listing 11.5. 

Listing 11.5. Fragment shader for drawing a toy ball 

varying vec4  ECposition;   // surface position in eye coordinates 
varying vec4  ECballCenter; // ball center in eye coordinates 
 
uniform vec4  LightDir;      // light direction, should be normalized 
uniform vec4  HVector;       // reflection vector for infinite light 
 
uniform vec4  SpecularColor; 
uniform vec4  Red, Yellow, Blue; 
 
uniform vec4  HalfSpace0;   // half-spaces used to define star pattern 
uniform vec4  HalfSpace1; 
uniform vec4  HalfSpace2; 
uniform vec4  HalfSpace3; 
uniform vec4  HalfSpace4; 
 



 

uniform float InOrOutInit;  // = -3 
uniform float StripeWidth;  // = 0.3 
uniform float FWidth;       // = 0.005 
 
void main() 
{ 
    vec4 normal;               // Analytically computed normal 
    vec4 p;                    // Point in shader space 
    vec4 surfColor;            // Computed color of the surface 
    float intensity;           // Computed light intensity 
    vec4  distance;            // Computed distance values 
    float inorout;             // Counter for computing star pattern 
 
    p.xyz = normalize(ECposition.xyz - ECballCenter.xyz); 
    p.w   = 1.0; 
 
    inorout = InOrOutInit;     // initialize inorout to -3.0 
 
    distance[0] = dot(p, HalfSpace0); 
    distance[1] = dot(p, HalfSpace1); 
    distance[2] = dot(p, HalfSpace2); 
    distance[3] = dot(p, HalfSpace3); 
 
    distance = smoothstep(-FWidth, FWidth, distance); 
 
    inorout += dot(distance, vec4(1.0)); 
 
    distance.x = dot(p, HalfSpace4); 
    distance.y = StripeWidth - abs(p.z); 
    distance = smoothstep(-FWidth, FWidth, distance); 
    inorout += distance.x; 
 
    inorout = clamp(inorout, 0.0, 1.0); 
 
    surfColor = mix(Yellow, Red, inorout); 
    surfColor = mix(surfColor, Blue, distance.y); 
 
    // normal = point on surface for sphere at (0,0,0) 
    normal = p; 
 
    // Per-fragment diffuse lighting 
    intensity = 0.2; // ambient 
    intensity += 0.8 * clamp(dot(LightDir, normal), 0.0, 1.0); 
    surfColor *= intensity; 
 
    // Per-fragment specular lighting 
    intensity = clamp(dot(HVector, normal), 0.0, 1.0); 
    intensity = pow(intensity, SpecularColor.a); 
    surfColor += SpecularColor * intensity; 
 
    gl_FragColor = surfColor; 
} 

 

  



11.3. Lattice 
Here's a little bit of a gimmick. In this example, we show how not to draw the object 
procedurally. 

In this example, we look at how the discard command can be used in a fragment shader to 
achieve some interesting effects. The discard command causes fragments to be discarded 
rather than used to update the frame buffer. We use this to draw geometry with "holes." The 
vertex shader is the exact same vertex shader used for stripes (Section 11.1.1). The fragment 
shader is shown in Listing 11.6. 

Listing 11.6. Fragment shader for procedurally discarding part of an 
object 

The part of the object to be discarded is determined by the values of the s and t texture 
coordinates. A scale factor is applied to adjust the frequency of the lattice. The fractional part of 
this scaled texture-coordinate value is computed to provide a number in the range [0,1]. These 
values are compared with the threshold values that have been provided. If both values exceed 
the threshold, the fragment is discarded. Otherwise, we do a simple lighting calculation and 
render the fragment. 

In Color Plate 14, the threshold values were both set to 0.13. This means that more than three-
quarters of the fragments were being discarded! And that's what I call a "holy cow!" 

varying vec3  DiffuseColor; 
varying vec3  SpecularColor; 
 
uniform vec2  Scale; 
uniform vec2  Threshold; 
uniform vec3  SurfaceColor; 
 
void main() 
{ 
    float ss = fract(gl_TexCoord[0].s * Scale.s); 
    float tt = fract(gl_TexCoord[0].t * Scale.t); 
 
    if ((ss > Threshold.s) && (tt > Threshold.t)) discard; 
 
    vec3 finalColor = SurfaceColor * DiffuseColor + SpecularColor; 
    gl_FragColor = vec4(finalColor, 1.0); 
} 

 

  



11.4. Bump Mapping 
We have already seen procedural shaders that modified color (brick, stripes) and opacity 
(lattice). Another whole class of interesting effects can be applied to a surface with a technique 
called BUMP MAPPING. Bump mapping involves modulating the surface normal before lighting is 
applied. We can perform the modulation algorithmically to apply a regular pattern; we can add 
noise to the components of a normal; or we can look up a perturbation value in a texture map. 
Bump mapping has proved to be an effective way of increasing the apparent realism of an 
object without increasing the geometric complexity. It can be used to simulate surface detail or 
surface irregularities. 

The technique does not truly alter the surface being shaded, it merely "tricks" the lighting 
calculations. Therefore, the "bumping" does not show up on the silhouette edges of an object. 
Imagine modeling a planet as a sphere and shading it with a bump map so that it appears to 
have mountains that are quite large relative to the diameter of the planet. Because nothing has 
been done to change the underlying geometry, which is perfectly round, the silhouette of the 
sphere always appears perfectly round, even if the mountains (bumps) go right up to the 
silhouette edge. In real life, you would expect the mountains on the silhouette edges to prevent 
the silhouette from looking perfectly round. For this reason, it is a good idea to use bump 
mapping to apply only "small" effects to a surface (at least relative to the size of the surface). 
Wrinkles on an orange, embossed logos, and pitted bricks are all good examples of things that 
can be successfully bump-mapped. 

Bump mapping adds apparent geometric complexity during fragment processing, so once again 
the key to the process is our fragment shader. This implies that the lighting operation must be 
performed by our fragment shader instead of by the vertex shader where it is often handled. 
Again, this points out one of the advantages of the programmability that is available through 
the OpenGL Shading Language. We are free to perform whatever operations are necessary, in 
either the vertex shader or the fragment shader. We don't need to be bound to the fixed 
functionality ideas of where things like lighting are performed. 

The key to bump mapping is that we need a valid surface normal at each fragment location, 
and we also need a light source and viewing direction vectors. If we have access to all these 
values in the fragment shader, we can procedurally perturb the normal prior to the light source 
calculation to produce the appearance of "bumps." In this case, we really are attempting to 
produce bumps or small spherical nodules on the surface being rendered. 

The light source computation is typically performed with dot products. For the result to have 
meaning, all the components of the light source calculation must be defined in the same 
coordinate space. So if we used the vertex shader to perform lighting, we would typically define 
light source positions or directions in eye coordinates and would transform incoming normals 
and vertex values into this space to do the calculation. 

However, the eye-coordinate system isn't necessarily the best choice for doing lighting in the 
fragment shader. We could normalize the direction to the light and the surface normal after 
transforming them to eye space and then pass them to the fragment shader as varying 
variables. However, the light direction vector would need to be renormalized after interpolation 
to get accurate results. Moreover, whatever method we use to compute the perturbation 
normal, it would need to be transformed into eye space and added to the surface normal; that 
vector would also need to be normalized. Without renormalization, the lighting artifacts would 
be quite noticeable. Performing these operations at every fragment might be reasonably costly 
in terms of performance. There is a better way. 

Let us look at another coordinate space called the SURFACE-LOCAL COORDINATE SPACE. This coordinate 
system varies over a rendered object, and it assumes that each point is at (0, 0, 0) and that 
the unperturbed surface normal at each point is (0, 0, 1). This would be a pretty convenient 



coordinate system in which to do our bump mapping calculations. But, to do our lighting 
computation, we need to make sure that our light direction, viewing direction, and the 
computed perturbed normal are all defined in the same coordinate system. If our perturbed 
normal is defined in surface-local coordinates, that means we need to transform our light 
direction and viewing direction into surface-local space as well. How is that accomplished? 

What we need is a transformation matrix that transforms each incoming vertex into surface-
local coordinates (i.e., incoming vertex (x, y, z) is transformed to (0, 0, 0)). We need to 
construct this transformation matrix at each vertex. Then, at each vertex, we use the surface-
local transformation matrix to transform both the light direction and the viewing direction. In 
this way, the surface local coordinates of the light direction and the viewing direction are 
computed at each vertex and interpolated across the primitive. At each fragment, we can use 
these values to perform our lighting calculation with the perturbed normal that we calculate. 

But we still haven't answered the real question. How do we create the transformation matrix 
that transforms from object coordinates to surface-local coordinates? An infinite number of 
transforms will transform a particular vertex to (0, 0, 0). To transform incoming vertex values, 
we need a way that gives consistent results as we interpolate between them. 

The solution is to require the application to send down one more attribute value for each vertex, 
a tangent value. Furthermore, we require the application to send us tangents that are 
consistently defined across the surface of the object. By definition, this tangent vector is in the 
plane of the surface being rendered and perpendicular to the incoming surface normal. If 
defined consistently across the object, it serves to orient consistently the coordinate system 
that we derive. If we perform a cross-product between the tangent vector and the surface 
normal, we get a third vector that is perpendicular to the other two. This third vector is called 
the binormal, and it's something that we can compute in our vertex shader. Together, these 
three vectors form an orthonormal basis, which is what we need to define the transformation 
from object coordinates into surface-local coordinates. Because this particular surface-local 
coordinate system is defined with a tangent vector as one of the basis vectors, this coordinate 
system is sometimes referred to as TANGENT SPACE. 

The transformation from object space to surface-local space is shown in Figure 11.5. We 
transform the object space vector (Ox, Oy, Oz) into surfacelocal space by multiplying it by a 

matrix that contains the tangent vector (Tx, Ty, Tz) in the first row, the binormal vector (Bx, By, 

Bz) in the second row, and the surface normal (Nx, Ny, Nz) in the third row. We can use this 

process to transform both the light direction vector and the viewing direction vector into 
surface-local coordinates. The transformed vectors are interpolated across the primitive, and 
the interpolated vectors are used in the fragment shader to compute the reflection with the 
procedurally perturbed normal. 

Figure 11.5. Transformation from object space to surface-local space 

 

 
11.4.1. Application Setup 

For our procedural bump map shader to work properly, the application must send a vertex 
position, a surface normal, and a tangent vector in the plane of the surface being rendered. The 
application passes the tangent vector as a generic vertex attribute, and binds the index of the 



generic attribute to be used to the vertex shader variable tangent by calling glBindAttribLocation. 
The application is also responsible for providing values for the uniform variables LightPosition, 
SurfaceColor, BumpDensity, BumpSize, and SpecularFactor. 

You must be careful to orient the tangent vectors consistently between vertices; otherwise, the 
transformation into surface-local coordinates will be inconsistent, and the lighting computation 
will yield unpredictable results. Consistent tangents can be computed algorithmically for 
mathematically defined surfaces. Consistent tangents for polygonal objects can be computed 
with neighboring vertices and by application of a consistent ordering with respect to the object's 
texture coordinates. 

The problem with inconsistently defined normals is illustrated in Figure 11.6. This diagram 
shows two triangles, one with consistently defined tangents and one with inconsistently defined 
tangents. The gray arrowheads indicate the tangent and binormal vectors (the surface normal is 
pointing straight out of the page). The white arrowheads indicate the direction toward the light 
source (in this case, a directional light source is illustrated). 

Figure 11.6. Inconsistently defined tangents can lead to large lighting 
errors 

[View full size image] 



 

 
When we transform vertex 1 to surface-local coordinates, we get the same initial result in both 
cases. When we transform vertex 2, we get a large difference because the tangent vectors are 
very different between the two vertices. If tangents were defined consistently, this situation 



would not occur unless the surface had a high degree of curvature across this polygon. And if 
that were the case, we would really want to tessellate the geometry further to prevent this from 
happening. 

The result is that in case 1, our light direction vector is smoothly interpolated from the first 
vertex to the second and all the interpolated vectors are roughly the same length. If we 
normalize this light vector at each vertex, the interpolated vectors are very close to unit length 
as well. 

But in case 2, the interpolation causes vectors of wildly different lengths to be generated, some 
of them near zero. This causes severe artifacts in the lighting calculation. 

OpenGL does not have a defined vertex attribute for a tangent vector. The best choice is to use 
a generic vertex attribute to pass in the tangent value. We don't need to compute the binormal 
in the application; we have the vertex shader compute it automatically. 

The shaders described in the following section are descendants of the "bumpy/shiny" shader 
that John Kessenich and I developed for the SIGGRAPH 2002 course, State of the Art in 
Hardware Shading. 

11.4.2. Vertex Shader 

The vertex shader for our procedural bump map shader is shown in Listing 11.7. This shader is 
responsible for computing the surface-local direction to the light and the surface-local direction 
to the eye. To do this, it accepts the incoming vertex position, surface normal, and tangent 
vector; computes the binormal; and transforms the eye space light direction and viewing 
direction, using the created surface-local transformation matrix. The texture coordinates are 
also passed on to the fragment shader because they are used to determine the position of our 
procedural bumps. 

Listing 11.7. Vertex shader for doing procedural bump mapping 

varying vec3 LightDir; 
varying vec3 EyeDir; 
 
uniform vec3 LightPosition; 
 
attribute vec3 Tangent; 
 
void main() 
{ 
    EyeDir         = vec3(gl_ModelViewMatrix * gl_Vertex); 
    gl_Position    = ftransform(); 
    gl_TexCoord[0] = gl_MultiTexCoord0; 
 
    vec3 n = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 t = normalize(gl_NormalMatrix * Tangent); 
    vec3 b = cross(n, t); 
 
    vec3 v; 
    v.x = dot(LightPosition, t); 
    v.y = dot(LightPosition, b); 
    v.z = dot(LightPosition, n); 
    LightDir = normalize(v); 
 
    v.x = dot(EyeDir, t); 
    v.y = dot(EyeDir, b); 
    v.z = dot(EyeDir, n); 
    EyeDir = normalize(v); 



11.4.3. Fragment Shader 

The fragment shader for doing procedural bump mapping is shown in Listing 11.8. A couple of 
the characteristics of the bump pattern are parameterized by being declared as uniform 
variables, namely, BumpDensity (how many bumps per unit area) and BumpSize (how wide each 
bump will be). Two of the general characteristics of the overall surface are also defined as 
uniform variables: SurfaceColor (base color of the surface) and SpecularFactor (specular reflectance 
property). 

The bumps that we compute are round. Because the texture coordinate is used to determine 
the positioning of the bumps, the first thing we do is multiply the incoming texture coordinate 
by the density value. This controls whether we see more or fewer bumps on the surface. Using 
the resulting grid, we compute a bump located in the center of each grid square. The 
components of the perturbation vector p are computed as the distance from the center of the 
bump in the x direction and the distance from the center of the bump in the y direction. (We 
only perturb the normal in the x and y directions. The z value for our perturbation normal is 
always 1.0.) We compute a "pseudodistance" d by squaring the components of p and summing 
them. (The real distance could be computed at the cost of doing another square root, but it's 
not really necessary if we consider BumpSize to be a relative value rather than an absolute value.) 

To perform a proper reflection calculation later on, we really need to normalize the perturbation 
normal. This normal must be a unit vector so that we can perform dot products and get 
accurate cosine values for use in the lighting computation. We normalize a vector by multiplying 
each component of the normal by 1.0 / sqrt(x2 + y2 + z2). Because of our computation for d, 
we've already computed part of what we need (i.e., x2 + y2). Furthermore, because we're not 
perturbing z at all, we know that z2 will always be 1.0. To minimize the computation, we just 
finish computing our normalization factor at this point in the shader by computing 1.0 / sqrt(d + 
1.0). 

Next, we compare d to BumpSize to see if we're in a bump or not. If we're not, we set our 
perturbation vector to 0 and our normalization factor to 1.0. The lighting computation happens 
in the next few lines. We compute our normalized perturbation vector by multiplying through 
with the normalization factor f. The diffuse and specular reflection values are computed in the 
usual way, except that the interpolated surface-local coordinate light and view direction vectors 
are used. We get decent results without normalizing these two vectors as long as we don't have 
large differences in their values between vertices. 

Listing 11.8. Fragment shader for procedural bump mapping 

} 

 

varying vec3 LightDir; 
varying vec3 EyeDir; 
 
uniform vec3 SurfaceColor;     // = (0.7, 0.6, 0.18) 
uniform float BumpDensity;     // = 16.0 
 
uniform float BumpSize;        // = 0.15 
uniform float SpecularFactor;  // = 0.5 
 
void main() 
{ 
    vec3 litColor; 
    vec2 c = BumpDensity * gl_TexCoord[0].st; 
    vec2 p = fract(c) - vec2(0.5); 



 

The results from the procedural bump map shader are shown applied to two objects, a simple 
box and a torus, in Color Plate 15. The texture coordinates are used as the basis for positioning 
the bumps, and because the texture coordinates go from 0.0 to 1.0 four times around the 
diameter of the torus, the bumps look much closer together on that object. 

11.4.4. Normal Maps 

It is easy to modify our shader so that it obtains the normal perturbation values from a texture 
rather generating them procedurally. A texture that contains normal perturbation values for the 
purpose of bump mapping is called a BUMP MAP or a NORMAL MAP. 

An example of a normal map and the results applied to our simple box object are shown in 
Color Plate 16. Individual components for the normals can range from [1,1]. To be encoded into 
an RGB texture with 8 bits per component, they must be mapped into the range [0,1]. The 
normal map appears chalk blue because the default perturbation vector of (0,0,1) is encoded in 
the normal map as (0.5,0.5,1.0). The normal map could be stored in a floating-point texture. 
Today's graphics hardware supports textures with 16-bit floating-point values per color 
component and textures with 32-bit floating-point values per color component. If you use a 
floating-point texture format for storing normals, your image quality tends to increase (for 
instance, reducing banding effects in specular highlights). Of course, textures that are 16 bits 
per component require twice as much texture memory as 8-bit per component textures, and 
performance might be reduced. 

The vertex program is identical to the one described in Section 11.4.2. The fragment shader is 
almost the same, except that instead of computing the perturbed normal procedurally, the 
fragment shader obtains it from a normal map stored in texture memory. 

 
    float d, f; 
    d = p.x * p.x + p.y * p.y; 
    f = 1.0 / sqrt(d + 1.0); 
 
    if (d >= BumpSize) 
        { p = vec2(0.0); f = 1.0; } 
 
    vec3 normDelta = vec3(p.x, p.y, 1.0) * f; 
    litColor = SurfaceColor * max(dot(normDelta, LightDir), 0.0); 
    vec3 reflectDir = reflect(LightDir, normDelta); 
 
    float spec = max(dot(EyeDir, reflectDir), 0.0); 
    spec = pow(spec, 6.0) 
    spec *= SpecularFactor; 
    litColor = min(litColor + spec, vec3(1.0)); 
 
    gl_FragColor = vec4(litColor, 1.0); 
} 

 

  



11.5. Summary 
A master magician can make it look like something is created out of thin air. With procedural 
textures, you, as a shader writer, can express algorithms that turn flat gray surfaces into 
colorful, patterned, bumpy, or reflective ones. The trick is to come up with an algorithm that 
expresses the texture you envision. By coding this algorithm as an OpenGL shader, you too can 
create something out of thin air. 

In this chapter, we only scratched the surface of what's possible. We created a stripe shader, 
but grids and checkerboards and polka dots are no more difficult. We created a toy ball with a 
star, but we could have created a beach ball with snowflakes. Shaders can be written to 
procedurally include or exclude geometry or to add bumps or grooves. Additional procedural 
texturing effects are illustrated later in this book. Chapter 15 shows how an irregular function 
(noise) can achieve a wide range of procedural texturing effects. Shaders for generating 
procedural textures with a more complex mathematical function (the Mandelbrot and Julia sets) 
and for creating non-photorealistic effects are also described later in the book. 

Procedural textures are mathematically precise, are easy to parameterize, and don't require 
large amounts of texture memory. The end goal of a vertex shader/fragment shader pair is to 
produce a color value (and possibly a depth value) that will be written into the frame buffer. 
Because the OpenGL Shading Language is a procedural programming language, the only limit to 
this computation is your imagination. 

  



11.6. Further Information 
The book Texturing and Modeling: A Procedural Approach, Third Edition, by Ebert et al. (2002) 
is entirely devoted to creating images procedurally. This book contains a wealth of information 
and inspires a ton of ideas for the creation and use of procedural models and textures. 

The shaders written in the RenderMan Shading Language are often procedural in nature, and 
The RenderMan Companion by Steve Upstill (1990) and Advanced RenderMan: Creating CGI for 
Motion Pictures by Apodaca and Gritz (1999) contain some notable examples. 

Bump mapping was invented by Jim Blinn and described in his 1978 SIGGRAPH paper, 
Simulation of Wrinkled Surfaces. A very good overview of bump mapping techniques can be 
found in a paper titled A Practical and Robust Bump-mapping Technique for Today's GPUs by 
Mark Kilgard (2000). 

A Photoshop plug-in for creating a normal map from an image is available at NVIDIA's 
developer Web site at http://developer.nvidia.com/object/photoshop_dds_plugins.html. 
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Chapter 12. Lighting 
In the real world, we see things because they reflect light from a light source or because they 
are light sources themselves. In computer graphics, just as in real life, we won't be able to see 
an object unless it is illuminated or emits light. To generate more realistic images, we need to 
have more realistic models for illumination, shadows, and reflection than those we've discussed 
so far. 

In this chapter and the next two, we explore how the OpenGL Shading Language can help us 
implement such models so that they can execute at interactive rates on programmable graphics 
hardware. In this chapter, we look at some lighting models that provide more flexibility and 
give more realistic results than those built into OpenGL's fixed functionality rendering pipeline. 
Much has been written on the topic of lighting in computer graphics. We only examine a few 
methods in this chapter. Hopefully, you'll be inspired to try implementing some others on your 
own. 



12.1. Hemisphere Lighting 
In Chapter 9, we looked carefully at the fixed functionality lighting model built into OpenGL and 
developed shader code to mimic the fixed functionality behavior. However, this model has a 
number of flaws, and these flaws become more apparent as we strive for more realistic 
rendering effects. One problem is that objects in a scene do not typically receive all their 
illumination from a small number of specific light sources. Interreflections between objects 
often have noticeable and important contributions to objects in the scene. The traditional 
computer graphics illumination model attempts to account for this phenomena through an 
ambient light term. However, this ambient light term is usually applied equally across an object 
or an entire scene. The result is a flat and unrealistic look for areas of the scene that are not 
affected by direct illumination. 

Another problem with the traditional illumination model is that light sources in real scenes are 
not point lights or even spotlightsthey are area lights. Consider the indirect light coming in from 
the window and illuminating the floor and the long fluorescent light bulbs behind a rectangular 
translucent panel. For an even more common case, consider the illumination outdoors on a 
cloudy day. In this case, the entire visible hemisphere is acting like an area light source. In 
several presentations and tutorials, Chas Boyd, Dan Baker, and Philip Taylor of Microsoft 
described this situation as HEMISPHERE LIGHTING and discussed how to implement it in DirectX. 
Let's look at how we might create an OpenGL shader to simulate this type of lighting 
environment. 

The idea behind hemisphere lighting is that we model the illumination as two hemispheres. The 
upper hemisphere represents the sky, and the lower hemisphere represents the ground. A 
location on an object with a surface normal that points straight up gets all of its illumination 
from the upper hemisphere, and a location with a surface normal pointing straight down gets all 
of its illumination from the lower hemisphere (see Figure 12.1). By picking appropriate colors 
for the two hemispheres, we can make the sphere look as though locations with normals 
pointing up are illuminated and those with surface normals pointing down are in shadow. 

Figure 12.1. A sphere illuminated using the hemisphere lighting model. 
A point on the top of the sphere (the black "x") receives illumination 
only from the upper hemisphere (i.e., the sky color). A point on the 

bottom of the sphere (the white "x") receives illumination only from 
the lower hemisphere (i.e., the ground color). A point right on the 

equator would receive half of its illumination from the upper 
hemisphere and half from the lower hemisphere (e.g., 50% sky color 

and 50% ground color). 



 

 
To compute the illumination at any point on the surface, we must compute the integral of the 
illumination received at that point: 

Color = a · SkyColor + (1 - a) · GroundColor 

where 

a = 1.0 - (0.5 · sin(θ)) for θ  90° 

a = 0.5 · sin(θ) for θ > 90° 

θ = angle between surface normal and north pole direction 

But we can actually calculate a in another way that is simpler but roughly equivalent: 

a = 0.5 + (0.5 · cos(θ)) 

This approach eliminates the need for a conditional. Furthermore, we can easily compute the 
cosine of the angle between two unit vectors by taking the dot product of the two vectors. This 
is an example of what Jim Blinn likes to call "the ancient Chinese art of chi ting." In computer 
graphics, if it looks good enough, it is good enough. It doesn't really matter whether your 
calculations are physically correct or a colossal cheat. The difference between the two functions 
is shown in Figure 12.2. The shape of the two curves is similar. One is the mirror of the other, 
but the area under the curves is the same. This general equivalency is good enough for the 
effect we're after, and the shader is simpler and will likely execute faster as well. 

Figure 12.2. Comparing the actual analytic function for hemisphere 
lighting to a similar but higher-performance function. 

[View full size image] 



 

 

 
For the hemisphere shader, we need to pass in uniform variables for the sky color and the 
ground color. We can also consider the "north pole" to be our light position. If we pass this in as 
a uniform variable, we can light the model from different directions. 

Listing 12.1 shows a vertex shader that implements hemisphere lighting. As you can see, the 
shader is quite simple. The main purpose of the shader is to compute the diffuse color value 
and pass it on to fixed functionality fragment processing so that it can be written into the 
framebuffer. We accomplish this purpose by storing the computed color value in the built-in 
varying variable gl_FrontColor. Results for this shader are shown in Color Plate 21D and G. 
Compare this to the results of shading with a single directional light source shown in Color Plate 
21A and B. Not only is the hemisphere shader simpler and more efficient, it produces a much 
more realistic lighting effect too! This lighting model can be utilized for tasks like model 
preview, where it is important to examine all the details of a model. It can also be used in 
conjunction with the traditional computer graphics illumination model. Point, directional, or spot 
lights can be added on top of the hemisphere lighting model to provide more illumination to 
important parts of the scene. 

Listing 12.1. Vertex shader for hemisphere lighting 

One of the issues with this model is that it doesn't account for self-occlusion. Regions that 
should really be in shadow because of the geometry of the model appear too bright. We remedy 
this in Chapter 13. 

uniform vec3 LightPosition; 
uniform vec3 SkyColor; 
uniform vec3 GroundColor; 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec = normalize(LightPosition - ecPosition); 
    float costheta = dot(tnorm, lightVec); 
    float a = 0.5 + 0.5 * costheta; 
     
    gl_FrontColor = mix(GroundColor, SkyColor, a); 
     
    gl_Position = ftransform(); 
} 

 



12.2. Image-Based Lighting 
Back in Chapter 10 we looked at shaders to perform environment mapping. If we're trying to 
achieve realistic lighting in a computer graphics scene, why not just use an environment map 
for the lighting? This approach to illumination is called IMAGE-BASED LIGHTING; it has been 
popularized in recent years by researcher Paul Debevec at the University of Southern California. 
Churches and auditoriums may have dozens of light sources on the ceiling. Rooms with many 
windows also have complex lighting environments. It is often easier and much more efficient to 
sample the lighting in such environments and store the results in one or more environment 
maps than it is to simulate numerous individual light sources. 

The steps involved in image-based lighting are 

On his Web site (http://www.debevec.org/), Debevec offers a number of useful things to 
developers. For one, he has made available a number of images that can be used as high-
quality environment maps to provide realistic lighting in a scene. These images are high 
dynamic range (HDR) images that represent each color component with a 32-bit floating-point 
value. Such images can represent a much greater range of intensity values than can 8-bit-per-
component images. For another, he makes available a tool called HDRShop that manipulates 
and transforms these environment maps. Through links to his various publications and tutorials, 
he also provides step-by-step instructions on creating your own environment maps and using 
them to add realistic lighting effects to computer graphics scenes. 

Following Debevec's guidance, I purchased a 2-inch chrome steel ball from McMaster-Carr 
Supply Company (http://www.mcmaster.com). We used this ball to capture a light probe image 
from the center of the square outside our office building in downtown Fort Collins, Colorado 
(Color Plate 10A). We then used HDRShop to create a lat-long environment map (Color Plate 9) 
and a cube map (Color Plate 10B) of the same scene. The cube map and latlong map can be 
used to perform environment mapping as described in Chapter 10. That shader simulated a 
surface with an underlying base color and diffuse reflection characteristics that was covered by 
a transparent mirror-like layer that reflected the environment flawlessly. 

We can simulate other types of objects if we modify the environment maps before they are 
used. A point on the surface that reflects light in a diffuse fashion reflects light from all the light 
sources that are in the hemisphere in the direction of the surface normal at that point. We can't 
really afford to access the environment map a large number of times in our shader. What we 
can do instead is similar to what we discussed for hemisphere lighting. Starting from our light 
probe image, we can construct an environment map for diffuse lighting. Each texel in this 
environment map will contain the weighted average (i.e., the convolution) of other texels in the 
visible hemisphere as defined by the surface normal that would be used to access that texel in 
the environment. 

1.  Use a LIGHT PROBE (e.g., a reflective sphere) to capture (e.g., photograph) the illumination 
that occurs in a real-world scene. The captured omnidirectional, high-dynamic range 
image is called a LIGHT PROBE IMAGE. 
 

2.  Use the light probe image to create a representation of the environment (e.g., an 
environment map). 
 

3.  Place the synthetic objects to be rendered inside the environment. 
 

4.  Render the synthetic objects by using the representation of the environment created in 
step 2. 
 



Again, HDRShop has exactly what we need. We can use HDRShop to create a lat-long image 
from our original light probe image. We can then use a command built into HDRShop that 
performs the necessary convolution. This operation can be time consuming, because at each 
texel in the image, the contributions from half of the other texels in the image must be 
considered. Luckily, we don't need a very large image for this purpose. The effect is essentially 
the same as creating a very blurry image of the original light probe image. Since there is no 
high frequency content in the computed image, a cube map with faces that are 64 x 64 or 128 
x 128 works just fine. An example of a diffuse environment map is shown in Color Plate 10C. 

A single texture access into this diffuse environment map provides us with the value needed for 
our diffuse reflection calculation. What about the specular contribution? A surface that is very 
shiny will reflect the illumination from a light source just like a mirror. This is what we saw in 
the environment mapping shader from Chapter 10. A single point on the surface reflects a 
single point in the environment. For surfaces that are rougher, the highlight defocuses and 
spreads out. In this case, a single point on the surface reflects several points in the 
environment, though not the whole visible hemisphere like a diffuse surface. HDRShop lets us 
blur an environment map by providing a Phong exponenta degree of shininess. A value of 1.0 
convolves the environment map to simulate diffuse reflection, and a value of 50 or more 
convolves the environment map to simulate a somewhat shiny surface. An example of the Old 
Town Square environment map that has been convolved with a Phong exponent value of 50 is 
shown in Color Plate 10D. 

The shaders that implement these concepts end up being quite simple and quite fast. In the 
vertex shader, all that is needed is to compute the reflection direction at each vertex. This value 
and the surface normal are sent to the fragment shader as varying variables. They are 
interpolated across each polygon, and the interpolated values are used in the fragment shader 
to access the two environment maps in order to obtain the diffuse and the specular 
components. The values obtained from the environment maps are combined with the object's 
base color to arrive at the final color for the fragment. The shaders are shown in Listing 12.2 
and Listing 12.3. Examples of images created with this technique are shown in Color Plate 18. 

Listing 12.2. Vertex shader for image-based lighting 

Listing 12.3. Fragment shader for image-based lighting 

varying vec3 ReflectDir; 
varying vec3 Normal; 
 
void main() 
{ 
    gl_Position = ftransform(); 
    Normal = normalize(gl_NormalMatrix * gl_Normal); 
    vec4 pos = gl_ModelViewMatrix * gl_Vertex; 
    vec3 eyeDir = pos.xyz; 
    ReflectDir = reflect(eyeDir, Normal); 
} 

 

uniform vec3 BaseColor; 
uniform float SpecularPercent; 
uniform float DiffusePercent; 
 
uniform samplerCube SpecularEnvMap; 
uniform samplerCube DiffuseEnvMap; 
 
varying vec3 ReflectDir; 
varying vec3 Normal; 



 

The environment maps that are used can reproduce the light from the whole scene. Of course, 
objects with different specular reflection properties require different specular environment 
maps. And producing these environment maps requires some manual effort and lengthy 
preprocessing. But the resulting quality and performance make image-based lighting a great 
choice in many situations. 

 
void main() 
{ 
    // Look up environment map values in cube maps 
 
    vec3 diffuseColor = 
        vec3(textureCube(DiffuseEnvMap, normalize(Normal))); 
     
    vec3 specularColor = 
        vec3(textureCube(SpecularEnvMap, normalize(ReflectDir))); 
     
    // Add lighting to base color and mix 
 
   vec3 color = mix(BaseColor, diffuseColor*BaseColor, DiffusePercent); 
   color = mix(color, specularColor + color, SpecularPercent); 
 
   gl_FragColor = vec4(envColor, 1.0); 
} 

 

  



12.3. Lighting with Spherical Harmonics 
In 2001, Ravi Ramamoorthi and Pat Hanrahan presented a method that uses spherical 
harmonics for computing the diffuse lighting term. This method reproduces accurate diffuse 
reflection, based on the content of a light probe image, without accessing the light probe image 
at runtime. The light probe image is preprocessed to produce coefficients that are used in a 
mathematical representation of the image at runtime. The mathematics behind this approach is 
beyond the scope of this book (see the references at the end of this chapter if you want all the 
details). Instead, we lay the necessary groundwork for this shader by describing the underlying 
mathematics in an intuitive fashion. The result is remarkably simple, accurate, and realistic, and
it can easily be codified in an OpenGL shader. This technique has already been used 
successfully to provide real-time illumination for games and has applications in computer vision 
and other areas as well. 

Spherical harmonics provides a frequency space representation of an image over a sphere. It is 
analogous to the Fourier transform on the line or circle. This representation of the image is 
continuous and rotationally invariant. Using this representation for a light probe image, 
Ramamoorthi and Hanrahan showed that you could accurately reproduce the diffuse reflection 
from a surface with just nine spherical harmonic basis functions. These nine spherical 
harmonics are obtained with constant, linear, and quadratic polynomials of the normalized 
surface normal. 

Intuitively, we can see that it is plausible to accurately simulate the diffuse reflection with a 
small number of basis functions in frequency space since diffuse reflection varies slowly across 
a surface. With just nine terms used, the average error over all surface orientations is less than 
3% for any physical input lighting distribution. With Debevec's light probe images, the average 
error was shown to be less than 1% and the maximum error for any pixel was less than 5%. 

Each spherical harmonic basis function has a coefficient that depends on the light probe image 
being used. The coefficients are different for each color channel, so you can think of each 
coefficient as an RGB value. A preprocessing step is required to compute the nine RGB 
coefficients for the light probe image to be used. Ramamoorthi makes the code for this 
preprocessing step available for free on his Web site. I used this program to compute the 
coefficients for all the light probe images in Debevec's light probe gallery as well as the Old 
Town Square light probe image and summarized the results in Table 12.1. 

Table 12.1. Spherical harmonic coefficients for light probe images 



 
[View Full Width] 

The equation for diffuse reflection using spherical harmonics is 

Diffuse = c1 L22 (x
2 - y2) + c3 L20 z

2 + c4 L20 - c5 L20 + 2c1 (L2 - 2 xy + L21 xz + L2 - 

1 yz) + 2c2 (L11 x + L1 - 1 y + L10 z 

The constants c1c5 result from the derivation of this formula and are shown in the vertex 
shader code in Listing 12.4. The L coefficients are the nine basis function coefficients computed 
for a specific light probe image in the preprocessing phase. The x, y, and z values are the 
coordinates of the normalized surface normal at the point that is to be shaded. Unlike low 
dynamic range images (e.g., 8 bits per color component) that have an implicit minimum value 
of 0 and an implicit maximum value of 255, high dynamic range images represented with a 
floating-point value for each color component don't contain well-defined minimum and 
maximum values. The minimum and maximum values for two HDR images may be quite 
different from each other, unless the same calibration or creation process was used to create 
both images. It is even possible to have an HDR image that contains negative values. For this 
reason, the vertex shader contains an overall scaling factor to make the final effect look right. 

The vertex shader that encodes the formula for the nine spherical harmonic basis functions is 
actually quite simple. When the compiler gets hold of it, it becomes simpler still. An optimizing 



compiler typically reduces all the operations involving constants. The resulting code is quite 
efficient because it contains a relatively small number of addition and multiplication operations 
that involve the components of the surface normal. 

Listing 12.4. Vertex shader for spherical harmonics lighting 

Listing 12.5. Fragment shader for spherical harmonics lighting 

varying vec3 DiffuseColor; 
uniform float ScaleFactor; 
 
const float C1 = 0.429043; 
const float C2 = 0.511664; 
const float C3 = 0.743125; 
const float C4 = 0.886227; 
const float C5 = 0.247708; 
 
// Constants for Old Town Square lighting 
const vec3 L00  = vec3( 0.871297,  0.875222,  0.864470); 
const vec3 L1m1 = vec3( 0.175058,  0.245335,  0.312891); 
const vec3 L10  = vec3( 0.034675,  0.036107,  0.037362); 
const vec3 L11  = vec3(-0.004629, -0.029448, -0.048028); 
const vec3 L2m2 = vec3(-0.120535, -0.121160, -0.117507); 
const vec3 L2m1 = vec3( 0.003242,  0.003624,  0.007511); 
const vec3 L20  = vec3(-0.028667, -0.024926, -0.020998); 
const vec3 L21  = vec3(-0.077539, -0.086325, -0.091591); 
const vec3 L22  = vec3(-0.161784, -0.191783, -0.219152); 
 
void main() 
{ 
 
    vec3 tnorm    = normalize(gl_NormalMatrix * gl_Normal); 
     
    DiffuseColor =  C1 * L22 * (tnorm.x * tnorm.x - tnorm.y * tnorm.y) + 
                    C3 * L20 * tnorm.z * tnorm.z + 
                    C4 * L00 - 
                    C5 * L20 + 
                    2.0 * C1 * L2m2 * tnorm.x * tnorm.y + 
                    2.0 * C1 * L21  * tnorm.x * tnorm.z + 
                    2.0 * C1 * L2m1 * tnorm.y * tnorm.z + 
                    2.0 * C2 * L11  * tnorm.x + 
                    2.0 * C2 * L1m1 * tnorm.y +    
                    2.0 * C2 * L10  * tnorm.z; 
     
    DiffuseColor *= ScaleFactor; 
     
    gl_Position = ftransform(); 
} 

 

varying vec3 DiffuseColor; 
 
void main() 
{ 
    gl_FragColor = vec4(DiffuseColor, 1.0); 
} 

 



 

Once again, our fragment shader has very little work to do. Because the diffuse reflection 
typically changes slowly, for scenes without large polygons we can reasonably compute it in the 
vertex shader and interpolate it during rasterization. As with hemispherical lighting, we can add 
procedurally defined point, directional, or spotlights on top of the spherical harmonics lighting 
to provide more illumination to important parts of the scene. Results of the spherical harmonics 
shader are shown in Color Plate 19. Compare Color Plate 19A with the Old Town Square 
environment map in Color Plate 9. Note that the top of the dog's head has a bluish cast, while 
there is a brownish cast on his chin and chest. Coefficients for some of Paul Debevec's light 
probe images provide even greater color variations. We could make the diffuse lighting from the 
spherical harmonics computation more subtle by blending it with the object's base color. 

The trade-offs in using image-based lighting versus procedurally defined lights are similar to the 
trade-offs between using stored textures versus procedural textures, as discussed in Chapter 
11. Image-based lighting techniques can capture and recreate complex lighting environments 
relatively easily. It would be exceedingly difficult to simulate such an environment with a large 
number of procedural light sources. On the other hand, procedurally defined light sources do 
not use up texture memory and can easily be modified and animated. 



12.4. The ÜberLight Shader 
So far in this chapter we've discussed lighting algorithms that simulate the effect of global 
illumination for more realistic lighting effects. Traditional point, directional, and spotlights can 
be used in conjunction with these global illumination effects. However, the traditional light 
sources leave a lot to be desired in terms of their flexibility and ease of use. 

Ronen Barzel of Pixar Animation Studios wrote a paper in 1997 that described a much more 
versatile lighting model specifically tailored for the creation of computer-generated films. This 
lighting model has so many features and controls compared to the traditional graphics hardware 
light source types that its RenderMan implementation became known as the "überlight" shader 
(i.e., the lighting shader that has everything in it except the proverbial kitchen sink). Larry Gritz 
wrote a public domain version of this shader that was published in Advanced RenderMan: 
Creating CGI for Motion Pictures, which he coauthored with Tony Apodaca. A Cg version of this 
shader was published by Fabio Pellacini and Kiril Vidimice of Pixar in the book GPU Gems, edited 
by Randima Fernando. The full-blown überlight shader has been used successfully in a variety 
of computer-generated films, including Toy Story, Monsters, Inc., and Finding Nemo. Because 
of the proven usefulness of the überlight shader, this section looks at how to implement its 
essential features in the OpenGL Shading Language. 

12.4.1. ÜberLight Controls 

In movies, lighting helps to tell the story in several different ways. Sharon Calahan gives a good 
overview of this process in the book Advanced RenderMan: Creating CGI for Motion Pictures. 
This description includes five important fundamentals of good lighting design that were derived 
from the book Matters of Light & Depth by Ross Lowell: 

Directing the viewer's eye 

Creating depth 

Conveying time of day and season 

Enhancing mood, atmosphere, and drama 

Revealing character personality and situation 

Because of the importance of lighting to the final product, movies have dedicated lighting 
designers. To light computer graphics scenes, lighting designers must have an intuitive and 
versatile lighting model to use. 

For the best results in lighting a scene, it is crucial to make proper decisions about the shape 
and placement of the lights. For the überlight lighting model, lights are assigned a position in 
world coordinates. The überlight shader uses a pair of superellipses to determine the shape of 
the light. A superellipse is a function that varies its shape from an ellipse to a rectangle, based 
on the value of a roundness parameter. By varying the roundness parameter, we can shape the 
beam of illumination in a variety of ways (see Figure 12.3 for some examples). The superellipse 
function is defined as 

 



 
Figure 12.3. A variety of light beam shapes produced with the überlight 
shader. We enabled barn shaping and varied the roundness and edge 
width parameters of the superellipse shaping function. The top row 

uses edge widths of 0 and the bottom row uses 0.3. From left to right, 
the roundness parameter is set to 0.2, 0.5, 1.0, 2.0, and 4.0. 

 

 
As the value for d nears 0, this function becomes the equation for a rectangle, and when d is 
equal to 1, the function becomes the equation for an ellipse. Values in between create shapes in 
between a rectangle and an ellipse, and these shapes are also useful for lighting. This is 
referred to in the shader as barn shaping since devices used in the theater for shaping light 
beams are referred to as barn doors. 

It is also desirable to have a soft edge to the light, in other words, a gradual drop-off from full 
intensity to zero intensity. We accomplish this by defining a pair of nested superellipses. Inside 
the innermost superellipse, the light has full intensity. Outside the outermost superellipse, the 
light has zero intensity. In between, we can apply a gradual transition by using the smoothstep 
function. See Figure 12.3 for examples of lights with and without such soft edges. 

Two more controls that add to the versatility of this lighting model are the near and far distance 
parameters, also known as the cuton and cutoff values. These define the region of the beam 
that actually provides illumination (see Figure 12.4). Again, smooth transition zones are desired 
so that the lighting designer can control the transition. Of course, this particular control has no 
real-world analogy, but it has proved to be useful for softening the lighting in a scene and 
preventing the light from reaching areas where no light is desired. See Figure 12.5 for an 
example of the effect of modifying these parameters. 

Figure 12.4. Effects of the near and far distance parameters for the 
überlight shader 

[View full size image] 



 

 
Figure 12.5. Dramatic lighting effects achieved by alteration of the 

depth cutoff parameters of the überlight shader. In the first frame, the 
light barely reaches the elephant model. By simply adjusting the far 

depth edge value, we can gradually bathe our model in light. 

 

 
12.4.2. Vertex Shader 

Listing 12.6 shows the code for the vertex shader for the überlight model. The main purpose of 
the vertex shader is to transform vertex positions, surface normals, and the viewing (camera) 
position into the lighting coordinate system. In this coordinate system the light is at the origin 
and the z axis is pointed toward the origin of the world coordinate system. This allows us to 
more easily perform the lighting computations in the fragment shader. The computed values 
are passed to the fragment shader in the form of the varying variables LCpos, LCnorm, and 
LCcamera. 

To perform these calculations, the application must provide ViewPosition, the position of the 
camera in world space, and WCLightPos, the position of the light source in world coordinates. 

To do the necessary transformations, we need matrices that transform points from modeling 
coordinates to world coordinates (MCtoWC) and from world coordinates to the light coordinate 
system (WCtoLC). The corresponding matrices for transforming normals between the same 
coordinate systems are the inverse transpose matrices (MCtoWCit and WCtoLCit). 

Listing 12.6. Überlight vertex shader 

uniform vec3 WCLightPos;       // Position of light in world coordinates 
uniform vec4 ViewPosition;     // Position of camera in world space 
uniform mat4 WCtoLC;           // World to light coordinate transform 



12.4.3. Fragment Shader 

With the key values transformed into the lighting coordinate system for the specified light 
source, the fragment shader (Listing 12.7) can perform the necessary lighting computations. 
One subroutine in this shader (superEllipseShape) computes the attenuation factor of the light 
across the cross section of the beam. This value is 1.0 for fragments within the inner 
superellipse, 0 for fragments outside the outer superellipse, and a value between 0 and 1.0 for 
fragments between the two superellipses. Another subroutine (distanceShape) computes a similar 
attenuation factor along the direction of the light beam. These two values are multiplied 
together to give us the illumination factor for the fragment. 

The computation of the light reflection is done in a manner similar to shaders we've examined 
in previous chapters. Because the computed normals may become denormalized by linear 
interpolation, we must renormalize them in the fragment shader to obtain more accurate 
results. After the attenuation factors are computed, we perform a simple reflection computation 
that gives a plastic appearance. You could certainly modify these computations to simulate the 
reflection from some other type of material. 

Listing 12.7. Überlight fragment shader 

uniform mat4 WCtoLCit;         // World to light inverse transpose 
uniform mat4 MCtoWC;           // Model to world coordinate transform 
uniform mat4 MCtoWCit;         // Model to world inverse transpose 
 
varying vec3 LCpos;            // Vertex position in light coordinates 
varying vec3 LCnorm;           // Normal in light coordinates 
varying vec3 LCcamera;         // Camera position in light coordinates 
 
void main() 
{ 
    gl_Position = ftransform(); 
 
    // Compute world space position and normal 
    vec4 wcPos = MCtoWC * gl_Vertex; 
    vec3 wcNorm = (MCtoWCit * vec4(gl_Normal, 0.0)).xyz; 
 
    // Compute light coordinate system camera position, 
    // vertex position and normal 
    LCcamera = (WCtoLC * ViewPosition).xyz; 
    LCpos = (WCtoLC * wcPos).xyz; 
    LCnorm = (WCtoLCit * vec4(wcNorm, 0.0)).xyz; 
} 

 

uniform vec3 SurfaceColor; 
 
// Light parameters 
uniform vec3 LightColor; 
uniform vec3 LightWeights; 
 
// Surface parameters 
uniform vec3 SurfaceWeights; 
uniform float SurfaceRoughness; 
uniform bool AmbientClamping; 
 
// Super ellipse shaping parameters 
uniform bool BarnShaping; 
uniform float SeWidth; 



uniform float SeHeight; 
uniform float SeWidthEdge; 
uniform float SeHeightEdge; 
uniform float SeRoundness; 
 
// Distance shaping parameters 
uniform float DsNear; 
uniform float DsFar; 
uniform float DsNearEdge; 
uniform float DsFarEdge; 
 
varying vec3 LCpos;          // Vertex position in light coordinates 
varying vec3 LCnorm;         // Normal in light coordinates 
varying vec3 LCcamera;       // Camera position in light coordinates 
 
float superEllipseShape(vec3 pos) 
{ 
   if (!BarnShaping) 
       return 1.0; 
   else 
   { 
 
       // Project the point onto the z = 1.0 plane 
      vec2 ppos = pos.xy / pos.z; 
      vec2 abspos = abs(ppos); 
 
      float w = SeWidth; 
      float W = SeWidth + SeWidthEdge; 
      float h = SeHeight; 
      float H = SeHeight + SeHeightEdge; 
 
      float exp1 = 2.0 / SeRoundness; 
      float exp2 = -SeRoundness / 2.0; 
 
      float inner = w * h * pow(pow(h * abspos.x, exp1) + 
                                pow(w * abspos.y, exp1), exp2); 
      float outer = W * H * pow(pow(H * abspos.x, exp1) + 
                                pow(W * abspos.y, exp1), exp2); 
 
      return 1.0 - smoothstep(inner, outer, 1.0); 
   } 
} 
float distanceShape(vec3 pos) 
{ 
   float depth; 
 
   depth = abs(pos.z); 
 
   float dist = smoothstep(DsNear - DsNearEdge, DsNear, depth) * 
                (1.0 - smoothstep(DsFar, DsFar + DsFarEdge, depth)); 
   return dist; 
} 
 
void main() 
{ 
      vec3 tmpLightColor = LightColor; 
       
      vec3 N = normalize(LCnorm); 
      vec3 L = -normalize(LCpos); 
      vec3 V = normalize(LCcamera-LCpos); 
      vec3 H = normalize(L + V); 
       
      vec3 tmpColor = tmpLightColor; 



 

An example of using this shader is shown in Color Plate 20, along with a screen shot of a user 
interface designed by Philip Rideout for manipulating its controls. The überlight shader as 
described by Barzel and Gritz actually has several additional features. It can support multiple 
lights, but our example shader showed just one for simplicity. The key parameters can be 
defined as arrays, and a loop can be executed to perform the necessary computations for each 
light source. In the following chapter, we show how to add shadows to this shader. 

 
      float attenuation = 1.0; 
      attenuation *= superEllipseShape(LCpos); 
      attenuation *= distanceShape(LCpos); 
 
      float ndotl = dot(N, L); 
      float ndoth = dot(N, H); 
 
      vec3 litResult; 
 
      litResult[0] = AmbientClamping ? max(ndotl, 0.0) : 1.0; 
      litResult[1] = max(ndotl, 0.0); 
      litResult[2] = litResult[1] * max(ndoth, 0.0) * SurfaceRoughness; 
      litResult *= SurfaceWeights * LightWeights; 
 
      vec3 ambient = tmpLightColor * SurfaceColor * litResult[0]; 
      vec3 diffuse = tmpColor * SurfaceColor * litResult[1]; 
      vec3 specular = tmpColor * litResult[2]; 
      gl_FragColor = vec4(attenuation * 
                         (ambient + diffuse + specular), 1.0); 
} 

 

  



 

 

  

12.5. Summary 
The summary of this chapter is "Just say NO!" to the traditional computer graphics lighting 
model." Now that programmable graphics hardware has freed us from the shackles of the 
traditional hardware lighting equations, we are free to implement and experiment with a variety 
of new techniques. Some of the techniques we explored are both faster and more realistic than 
the traditional methods. 

Hemisphere lighting is a simple way to approximate global illumination in a scene. Environment 
maps are very useful tools for simulating complex lighting environments. It is neither expensive 
nor difficult to capture images of real-world lighting conditions. Such light probe images can 
either be preprocessed and used to perform image-based lighting directly, or they can be 
preprocessed to compute spherical harmonic basis function coefficients that can be used for 
simple and high-performance lighting. 

We've also seen that the traditional OpenGL fixed functionality lighting model leaves a lot to be 
desired in terms of flexibility and ease of use. Lighting models such as the one defined by the 
überlight shader are much more versatile and easier for artists to use. 

  



12.6. Further Information 
Hemisphere lighting has been popularized by Microsoft and is described in several presentations 
on DirectX. An online article, Per-Pixel Lighting, by Microsoft's Phil Taylor describes this 
technique. Material in this article was derived from a talk given by Dan Baker and Chas Boyd at 
Meltdown 2001. 

Image-based lighting builds on the foundations of texture mapping and reflection mapping first 
discussed by Jim Blinn and Martin Newell in 1976. Paul Debevec has recently popularized this 
area and maintains a Web site (http://www.debevec.org/) with lots of useful information on this 
topic, including a gallery of light probe images, the history of reflection mapping, electronic 
versions of his publications, and much more. A related Web site is http://www.hdrshop.com 
from which you can download the free (for personal and educational use) version of HDRShop 
or obtain the commercial version. There are also tutorials that helped me create the light probe 
images and environment maps described in this chapter. 

Spherical harmonic lighting was described by Ravi Ramamoorthi and Pat Hanrahan in their 2001 
SIGGRAPH paper. A lengthy and more tractable discussion of the details of this approach is 
available in a white paper by Robin Green of Sony. 

The überlight shader for RenderMan is discussed in the book Advanced RenderMan: Creating 
CGI for Motion Pictures by Apodaca and Gritz. A Cg version of this shader is described by Fabio 
Pellacini and Kiril Vidimice in the book GPU Gems, edited by Randima Fernando. 
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Chapter 13. Shadows 
I have a little shadow that goes in and out with me And what can be the use of him 
is more than I can see. 

From My Shadow by Robert Louis Stevenson 

Like Robert Louis Stevenson, have you ever wondered what shadows are good for? The 
previous chapter discussed lighting models, and wherever there is light, there are also shadows. 
Well, maybe this is true in the real world, but it is not always true in computer graphics. We 
have talked a lot about illumination already and have developed a variety of shaders that 
simulate light sources. But so far we have not described any shaders that generate shadows. 
This lack of shadows is part of the classic computer graphics "look" and is one obvious clue that 
a scene is synthetic rather than real. 

What are shadows good for? Shadows help define the spatial relationships between objects in a 
scene. Shadows tell us when a character's feet make contact with the floor as he is running. 
The shape and movement of a bouncing ball's shadow gives us a great deal of information 
about the ball's location at any point in time. Shadows on objects help reveal shape and form. 
In film and theater, shadows play a vital role in establishing mood. And in computer graphics, 
shadows help enhance the apparent realism of the scene. 

Although computing shadows adds complexity and slows performance, the increase in 
comprehension and realism is often worth it. In this chapter, we explore some relatively simple 
techniques that produce shadows and shadow effects. 



13.1. Ambient Occlusion 
The lighting model built into OpenGL that we explored in Chapter 9 has a simple assumption for 
ambient light, namely, that it is constant over the entire scene. But if you look around your 
current location, you will probably see that this is almost always a bad assumption as far as 
generating a realistic image is concerned. Look underneath the table, and you will see an area 
that is darker than other areas. Look at the stack of books on the table, and you will see that 
there are dark areas between the books and probably a darker area near the base of the books. 
Almost every scene in real life contains a variety of complex shadows. 

The alternative lighting models described in the previous chapter are an improvement over 
OpenGL's fixed function lighting model, but they still fall short. If you look carefully at Color 
Plate 21D, you can see that the lighting still does not look completely realistic. The area under 
the chin, the junctions of the legs and the boots, and the creases in the clothing are brightly lit. 
If this were a real scene, we know that these areas would be darker because they would be 
obscured by nearby parts of the model. Hence, this object looks fake. 

A relatively simple way to add realism to computer-generated imagery is a technique called 
AMBIENT OCCLUSION. This technique uses a precomputed occlusion (or accessibility) factor to scale 
the calculated direct diffuse illumination factor. It can be used with a variety of illumination 
methods, including hemisphere lighting and image-based lighting, as discussed in the preceding 
chapter. It results in soft shadows that darken parts of the object that are only partially 
accessible to the overall illumination in a scene. 

The basic idea with ambient occlusion is to determine, for each point on an object, how much of 
the potentially visible hemisphere is actually visible and how much is obstructed by nearby 
parts of the object. The hemisphere that is considered at each point on the surface is in the 
direction of the surface normal at that point. For instance, consider the venerable teapot in 
Figure 13.1. The top of the knob on the teapot's lid receives illumination from the entire visible 
hemisphere. But a point partway down inside the teapot's spout receives illumination only from 
a very small percentage of the visible hemisphere, in the direction of the small opening at the 
end of the spout. 

Figure 13.1. A 2D representation of the process of computing occlusion 
(accessibility) factors. A point on the top of the knob on the teapot's lid 
has nothing in the way of the visible hemisphere (accessibility = 1.0) 

while a point inside the spout has its visible hemisphere mostly 
obscured (accessibility nearer to 0). 

 

 
For a specific model we can precompute these occlusion factors and save them as per-vertex 
attribute values. Alternatively, we can create a texture map that stores these values for each 
point on the surface. One method for computing occlusion factors is to cast a large number of 



rays from each vertex and keep track of how many intersect another part of the object and how 
many do not. The percentage of such rays that are unblocked is the accessibility factor. The top 
of the lid on the teapot has a value of 1 since no other part of the model blocks its view of the 
visible hemisphere. A point partway down the spout has an accessibility value near 0, because 
its visible hemisphere is almost completely obscured. 

We then multiply the computed accessibility (or occlusion) factor by our computed diffuse 
reflection value. This has the effect of darkening areas that are obscured by other parts of the 
model. It is simple enough to use this value in conjunction with our other lighting models. For 
instance, the hemisphere lighting vertex shader that we developed in Section 12.1 can 
incorporate ambient occlusion with a few simple changes, as shown in Listing 13.1. 

Listing 13.1. Vertex shader for hemisphere lighting with ambient 
occlusion 

The only change made to this shader is to pass in the accessibility factor as an attribute 
variable and use this to attenuate the computed diffuse color value. The results are quite a bit 
more realistic, as you can see by comparing Color Plate 21D and G. The overall appearance is 
too dark, but this can be remedied by choosing a mid-gray for the ground color rather than 
black. Color Plate 21F shows ambient occlusion with a simple diffuse lighting model. 

The same thing can be done to the image-based lighting shader that we developed in Section 
12.2 (see Listing 13.2) and to the spherical harmonic lighting shader that we developed in 
Section 12.3 (see Listing 13.3). In the former case, the lighting is done in the fragment shader, 
so the per-vertex accessibility factor must be passed to the fragment shader as a varying 
variable. (Alternatively, the accessibility values could have been stored in a texture that could 
be accessed in the fragment shader.) 

Listing 13.2. Fragment shader for image-based lighting 

uniform vec3 LightPosition; 
uniform vec3 SkyColor; 
uniform vec3 GroundColor; 
 
attribute float Accessibility; 
 
varying vec3  DiffuseColor; 
 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPosition); 
    float costheta  = dot(tnorm, lightVec); 
    float a         = 0.5 + 0.5 * costheta; 
 
    DiffuseColor = mix(GroundColor, SkyColor, a) * Accessibility; 
 
    gl_Position     = ftransform(); 
} 

 

uniform vec3  BaseColor; 
uniform float SpecularPercent; 
uniform float DiffusePercent; 
 
uniform samplerCube SpecularEnvMap; 



Listing 13.3. Vertex shader for spherical harmonics lighting 

uniform samplerCube DiffuseEnvMap; 
 
varying vec3  ReflectDir; 
varying vec3  Normal; 
varying float Accessibility; 
 
void main() 
{ 
    // Look up environment map values in cube maps 
 
    vec3 diffuseColor = 
        vec3(textureCube(DiffuseEnvMap,  normalize(Normal))); 
 
    vec3 specularColor = 
        vec3(textureCube(SpecularEnvMap, normalize(ReflectDir))); 
 
    // Add lighting to base color and mix 
 
    vec3 color = mix(BaseColor, diffuseColor*BaseColor, DiffusePercent); 
    color     *= Accessibility; 
    color      = mix(color, specularColor + color, SpecularPercent); 
 
    gl_FragColor = vec4(envColor, 1.0); 
} 

 

varying vec3    DiffuseColor; 
uniform float   ScaleFactor; 
attribute float Accessibility; 
 
const float C1 = 0.429043; 
const float C2 = 0.511664; 
const float C3 = 0.743125; 
const float C4 = 0.886227; 
const float C5 = 0.247708; 
 
// Constants for Old Town Square lighting 
const vec3 L00  = vec3( 0.871297,  0.875222,  0.864470); 
const vec3 L1m1 = vec3( 0.175058,  0.245335,  0.312891); 
const vec3 L10  = vec3( 0.034675,  0.036107,  0.037362); 
const vec3 L11  = vec3(-0.004629, -0.029448, -0.048028); 
const vec3 L2m2 = vec3(-0.120535, -0.121160, -0.117507); 
const vec3 L2m1 = vec3( 0.003242,  0.003624,  0.007511); 
const vec3 L20  = vec3(-0.028667, -0.024926, -0.020998); 
const vec3 L21  = vec3(-0.077539, -0.086325, -0.091591); 
const vec3 L22  = vec3(-0.161784, -0.191783, -0.219152); 
 
void main() 
{ 
    vec3 tnorm    = normalize(gl_NormalMatrix * gl_Normal); 
 
    DiffuseColor =  C1 * L22 * (tnorm.x * tnorm.x - tnorm.y * tnorm.y) + 
                    C3 * L20 * tnorm.z * tnorm.z + 
                    C4 * L00 - 
                    C5 * L20 + 
                    2.0 * C1 * L2m2 * tnorm.x * tnorm.y + 
                    2.0 * C1 * L21 * tnorm.x * tnorm.z + 
                    2.0 * C1 * L2m1 * tnorm.y * tnorm.z + 



 

Results for ambient occlusion shaders are shown in Color Plate 21 C, F, G, H, and I. These 
images come from a GLSL demo program called deLight, written by Philip Rideout. Philip also 
wrote the ray-tracer that generated per-vertex accessibility information for a number of 
different models. 

Ambient occlusion is a view-independent technique, but the computation of the occlusion 
factors assumes that the object is rigid. If the object has moving parts, the occlusion factors 
would need to be recomputed for each position. Work has been done recently on methods for 
computing the occlusion factors in real time (see Dynamic Ambient Occlusion and Indirect 
Lighting by Michael Bunnell in the book GPU Gems 2). 

During the preprocessing stage, we can also compute an attribute called a BENT NORMAL. We 
obtain this value by averaging all the nonoccluded rays from a point on a surface. It represents 
the average direction of the available light arriving at that particular point on the surface. 
Instead of using the surface normal to access an environment map, we use the bent normal to 
obtain the color of the light from the appropriate portion of the environment map. We can 
simulate a soft fill light with a standard point or spotlight by using the bent normal instead of 
the surface normal and then multiplying the result by the occlusion factor. 

Occlusion factors are not only useful for lighting but are also useful for reducing reflections from 
the environment in areas that are occluded. Hayden Landis of Industrial Light & Magic has 
described how similar techniques have been used to control reflections in films such as Pearl 
Harbor and Jurassic Park III. The technique is modified still further to take into account the type 
of surface that is reflecting the environment. Additional rays used along the main reflection 
vector provide an average (blurred) reflection. For diffuse surfaces (e.g., rubber), the additional 
rays are spread out more widely from the main reflection vector so that the reflection appears 
more diffuse. For more specular surfaces, the additional rays are nearer the main reflection 
vector, so the reflection is more mirrorlike. 

                    2.0 * C2 * L11 * tnorm.x + 
                    2.0 * C2 * L1m1 * tnorm.y + 
                    2.0 * C2 * L10 * tnorm.z; 
 
    DiffuseColor *= ScaleFactor; 
    DiffuseColor *= Accessibility; 
 
    gl_Position   = ftransform(); 
} 

 

  



13.2. Shadow Maps 
Ambient occlusion is quite useful for improving the realism of rigid objects under diffuse lighting 
conditions, but often a scene will need to incorporate lighting from one or more well-defined 
light sources. In the real world, we know that strong light sources cause objects to cast well-
defined shadows. Producing similar shadows in our computer-generated scenes will make them 
seem more realistic. How can we accomplish this? 

The amount of computer graphics literature that discusses generation of shadows is vast. This 
is partly because no single shadowing algorithm is optimal for all cases. There are numerous 
trade-offs in performance, quality, and simplicity. Some algorithms work well for only certain 
types of shadow-casting objects or shadow-receiving objects. Some algorithms work for certain 
types of light sources or lighting conditions. Some experimentation and adaptation may be 
needed to develop a shadow-generation technique that is optimal for a specific set of 
conditions. 

OpenGL and the OpenGL Shading Language include facilities for a generally useful shadowing 
algorithm called SHADOW MAPPING. In this algorithm, the scene is rendered multiple timesonce for 
each light source that is capable of causing shadows, and once to generate the final scene, 
including shadows. Each of the per-light passes is rendered from the point of view of the light 
source. The results are stored in a texture that is called a SHADOW MAP or a DEPTH MAP. This texture 
is essentially a visible surface representation from the point of view of the light source. Surfaces 
that are visible from the point of view of this light source are fully illuminated by the light 
source. Surfaces that are not visible from the point of view of this light source are in shadow. 
Each of the textures so generated is accessed during the final rendering pass to create the final 
scene with shadows from one or more light sources. During the final rendering pass, the 
distance from the fragment to each light is computed and compared to the depth value in the 
shadow map for that light. If the distance from the fragment to the light is greater than the 
depth value in the shadow map, the fragment receives no contribution from that light source 
(i.e., it is in shadow); otherwise, the fragment is subjected to the lighting computation for that 
particular light source. 

Because this algorithm involves an extra rendering pass for each light source, performance is a 
concern if a large number of shadow-casting lights are in the scene. But for interactive 
applications, it is quite often the case that shadows from one or two lights add sufficiently to 
the realism and comprehensibility of a scene. More than that and you may be adding needless 
complexity. And, just like other algorithms that use textures, shadow mapping is prone to 
severe aliasing artifacts unless proper care is taken. 

The depth comparison can also lead to problems. Since the values being compared were 
generated in different passes with different transformation matrices, it is possible to have a 
small difference in the values. Therefore, you must use a small epsilon value in the comparison. 
You can use the glPolygonOffset command to bias depth values as the shadow map is being 
created. You must be careful, though, because too much bias can cause a shadow to become 
detached from the object casting the shadow. 

A way to avoid depth precision problems with illuminated faces is to draw backfaces when you 
are building the shadow map. This avoids precision problems with illuminated faces because the 
depth value for these surfaces is usually quite different from the shadow map depth, so there is 
no possibility of precision problems incorrectly darkening the surface. 

Precision problems are still possible on surfaces facing away from the light. You can avoid these 
problems by testing the surface normalif it points away from the light, then the surface is in 
shadow. There will still be problems when the back and front faces have similar depth values, 
such as at the edge of the shadow. A carefully weighted combination of normal test plus depth 
test can provide artifact-free shadows even on gently rounded objects. However, this approach 



does not handle occluders that aren't simple closed geometry. 

Despite its drawbacks, shadow mapping is still a popular and effective means of generating 
shadows. A big advantage is that it can be used with arbitrarily complex geometry. It is 
supported in RenderMan and has been used to generate images for numerous movies and 
interactive games. OpenGL supports shadow maps (they are called depth component textures 
in OpenGL) and a full range of depth comparison modes that can be used with them. Shadow 
mapping can be performed in OpenGL with either fixed functionality or the programmable 
processing units. The OpenGL Shading Language contains corresponding functions for accessing 
shadow maps from within a shader (shadow2D, shadow2DProj, and the like). 

13.2.1. Application Setup 

As mentioned, the application must create a shadow map for each light source by rendering the 
scene from the point of view of the light source. For objects that are visible from the light's 
point of view, the resulting texture map contains depth values representing the distance to the 
light. (The source code for the example program deLight available from the 3Dlabs Web site 
illustrates specifically how this is done.) 

For the final pass of shadow mapping to work properly, the application must create a matrix 
that transforms incoming vertex positions into projective texture coordinates for each light 
source. The vertex shader is responsible for performing this transformation, and the fragment 
shader uses the interpolated projective coordinates to access the shadow map for each light 
source. To keep things simple, we look at shaders that deal with just a single light source. (You 
can use arrays and loops to extend the basic algorithm to support multiple light sources.) 

We construct the necessary matrix by concatenating 

The modeling matrix (M) that transforms modeling coordinates into world coordinates 
(this is the same modeling matrix that would be used to render the object normally) 

A view matrix (Vlight) that rotates and translates world coordinates into a coordinate 

system that has the light source at the origin and is looking at the point (0, 0, 0) in world 
coordinates 

A projection matrix (Plight) that defines the frustum for the view from the light source 

(i.e., field of view, aspect ratio, near and far clipping planes) 

A scale and bias matrix that takes the clip space coordinates (i.e., values in the range 
[1,1]) from the previous step into values in the range [0,1] so that they can be used 
directly as the index for accessing the shadow map. 

The equation for the complete transformation looks like this: 

 

 
We can actually use the OpenGL texture generation capabilities to generate shadows with 
OpenGL fixed functionality. We store the transformation matrix as a texture transformation 
matrix to produce the proper texture coordinates for use in the texture access operation. By 
performing this transformation in a vertex shader, we can have shadows and can add any 



desired programmable functionality as well. Let's see how this is done in a vertex shader. Philip 
Rideout developed some shaders for the deLight demo that use shadow mapping. They have 
been adapted slightly for inclusion in this book. 

13.2.2. Vertex Shader 

The OpenGL Shading Language defines that all varying variables are interpolated in a 
perspective-correct manner. We can use this fact to perform the perspective division that is 
necessary to prevent objectionable artifacts during animation. To get perspective-correct 
projective texture coordinates, we need to end up with per-fragment values of s/q, t/q, and r/q. 
This is analogous to homogeneous clip coordinates where we divide through by the 
homogeneous coordinate w to end up with x/w, y/w, and z/w. Instead of interpolating the (s, t, 
r, q) projected texture coordinate directly and doing the division in the fragment shader, we 
divide the first three components by w in the vertex shader and then interpolate s/w, t/w, and 
r/w. The net result of the perspective-correct interpolation is then (s/w)/(q/w) = s/q and (t/w)/
(q/w) = t/q, which is exactly what we want for projective texturing. 

The vertex shader in Listing 13.4 shows how this is done. We use ambient occlusion in this 
shader, so these values are passed in as vertex attributes through the attribute variable 
Accessibility. These values attenuate the incoming per-vertex color values after a simple diffuse 
lighting model has been applied. The alpha value is left unmodified by this process. Using light 
source 0 as defined by OpenGL state makes it convenient for the application to draw shadows 
by using either the fixed functionality path or the programmable path. The matrix that 
transforms modeling coordinates to light source coordinates is stored in texture matrix 1 for the 
same reason and is accessed through the built-in uniform variable gl_TextureMatrix[1]. This matrix 
transforms the incoming vertex, and the resulting value has its first three components divided 
by the fourth component to make the interpolated values turn out correctly, as we have just 
discussed. 

Listing 13.4. Vertex shader for generating shadows 

attribute float Accessibility; 
 
varying vec4 ShadowCoord; 
 
// Ambient and diffuse scale factors. 
const float As = 1.0 / 1.5; 
const float Ds = 1.0 / 3.0; 
 
void main() 
{ 
    vec4 ecPosition = gl_ModelViewMatrix * gl_Vertex; 
    vec3 ecPosition3 = (vec3(ecPosition)) / ecPosition.w; 
    vec3 VP = vec3(gl_LightSource[0].position) - ecPosition3; 
    VP = normalize(VP); 
    vec3 normal = normalize(gl_NormalMatrix * gl_Normal); 
    float diffuse = max(0.0, dot(normal, VP)); 
 
    float scale = min(1.0, Accessibility * As + diffuse * Ds); 
 
    vec4 texCoord = gl_TextureMatrix[1] * gl_Vertex; 
    ShadowCoord   = texCoord / texCoord.w; 
 
    gl_FrontColor  = vec4(scale * gl_Color.rgb, gl_Color.a); 
    gl_Position    = ftransform(); 
} 

 



13.2.3. Fragment Shader 

A simple fragment shader for generating shadows is shown in Listing 13.5. The main function 
calls a subroutine named lookup to do the shadow map lookup, giving it offsets of 0 in both the x 
and the y directions. These offset values are added to the interpolated projective texture 
coordinate, an epsilon value is added, and the result is used to perform a texture access on the 
shadow map (depth texture) specified by ShadowMap. When shadow2Dproj is used to access a 
texture, the third component of the texture index (i.e., ShadowCoord.p + Epsilon) is compared with 
the depth value stored in the shadow map. The comparison function is the one specified for the 
texture object indicated by ShadowMap. If the comparison results in a value of true, shadow2Dproj 
returns 1.0; otherwise, it returns 0. If shadow2Dproj returns a value of 0, the lookup function 
returns a value of 0.75 (shadowed); otherwise, it returns a value of 1.0 (fully illuminated). The 
value returned by the lookup function is used to attenuate the red, green, and blue components 
of the fragment's color. Fragments that are fully illuminated are unchanged, while fragments 
that are shadowed are multiplied by a factor of 0.75 to make them darker. 

Listing 13.5. Fragment shader for generating shadows 

Chances are that as soon as you execute this shader, you will be disappointed by the aliasing 
artifacts that appear along the edges of the shadows. We can do something about this, and we 
can customize the shader for a specific viewing situation to get a more pleasing result. Michael 
Bunnell and Fabio Pellacini describe a method for doing this in an article called Shadow Map 
Antialiasing in the book GPU Gems. Philip Rideout implemented this technique in GLSL, as 
shown in Listing 13.6 and Listing 13.7. 

The shader in Listing 13.6 adds a couple of things. The first thing is that the main function 
assigns a value to Illumination based on a Boolean uniform variable. This shader essentially 
distinguishes between two types of shadowsthose that are generated by the object itself and 
those that are generated by another object in the scene. The self-shadows are made a little 
lighter than other cast shadows for aesthetic reasons. The result of this conditional statement is 
that where the object shadows itself, the shadows are relatively light. And where the object's 
shadow falls on the floor, the shadows are darker. (See Color Plate 22.) 

The second difference is that the shadow map is sampled four times. The purpose of sampling 
multiple times is to try to do better at determining the shadow boundary. This lets us apply a 
smoother transition between shadowed and unshadowed regions, thus reducing the jagged 
edges of the shadow. However, it is incorrect to simply average the Boolean values returned by 
shadow2D, because this can result in rendering errors. Instead, the returned Boolean value is 

uniform sampler2DShadow ShadowMap; 
uniform float Epsilon; 
 
varying vec4 ShadowCoord; 
 
float lookup(float x, float y) 
{ 
    float depth = shadow2DProj(ShadowMap, 
                      ShadowCoord + vec3(x, y, 0) * Epsilon).x; 
    return depth != 1.0 ? 0.75 : 1.0; 
} 
 
void main() 
{ 
    float shadeFactor = lookup(0.0, 0.0); 
    gl_FragColor = vec4(shadeFactor * gl_Color.rgb, gl_Color.a); 
} 

 



used to assign a value to Illumination, and then the four computed Illumination values are 
subsequently averaged. 

Listing 13.6. Fragment shader for generating shadows with antialiased 
edges, using four samples per pixel 

This shader can be extended in the obvious way to perform even more samples per pixel and 
thus improve the quality of the shadow boundaries even more. However, the more texture 
lookups that we perform in our shader, the slower it will run. 

Using a method akin to dithering, we can actually use four samples that are spread somewhat 
farther apart to achieve a quality of antialiasing that is similar to that of using quite a few more 
than four samples per pixel. In Listing 13.7 we include code for computing offsets in x and y 
from the current pixel location. These offsets form a regular dither pattern that is used to 
access the shadow map. The results of using four dithered samples per pixel provides much 
better quality than just using four standard samples, though it is not quite as good as using 16 
samples per pixel. 

Listing 13.7. Fragment shader for generating shadows, using four 
dithered samples 

uniform sampler2DShadow ShadowMap; 
uniform float Epsilon; 
uniform bool  SelfShadowed; 
uniform float SelfShadowedVal; 
uniform float NonSelfShadowedVal; 
 
varying vec3 ShadowCoord; 
 
float Illumination; 
 
float lookup(float x, float y) 
{ 
    float depth = shadow2D(ShadowMap, 
                        ShadowCoord + vec3(x, y, 0) * Epsilon).x; 
    return depth != 1.0 ? Illumination : 1.0; 
} 
 
void main() 
{ 
    // lighten up the self-shadows 
    Illumination = SelfShadowed ? SelfShadowedVal : NonSelfShadowedVal; 
 
    float sum = 0.0; 
 
    sum += lookup(-0.5, -0.5); 
    sum += lookup( 0.5, -0.5); 
 
    sum += lookup(-0.5, 0.5); 
    sum += lookup( 0.5, 0.5); 
 
    gl_FragColor = vec4(sum * 0.25 * gl_Color.rgb, gl_Color.a); 
} 

 

uniform sampler2DShadow ShadowMap; 
uniform float Epsilon; 



 

Sample images using these shaders are shown in Color Plate 22. A small area of the shadow 
has been enlarged by 400% to show the differences in quality at the edge of the shadow. 

uniform bool  SelfShadowed; 
uniform float SelfShadowedVal; 
uniform float NonSelfShadowedVal; 
 
varying vec3 ShadowCoord; 
 
float Illumination; 
 
float lookup(float x, float y) 
{ 
    float depth = shadow2D(ShadowMap, 
                       ShadowCoord + vec3(x, y, 0) * Epsilon).x; 
    return depth != 1.0 ? Illumination : 1.0; 
} 
 
void main() 
{ 
    // lighten up the self-shadows 
    Illumination = SelfShadowed ? SelfShadowedVal : NonSelfShadowedVal; 
 
    // use modulo to vary the sample pattern 
    vec2 o = mod(floor(gl_FragCoord.xy), 2.0); 
 
    float sum = 0.0; 
 
    sum += lookup(vec2(-1.5, 1.5) + o); 
    sum += lookup(vec2( 0.5, 1.5) + o); 
    sum += lookup(vec2(-1.5, -0.5) + o); 
    sum += lookup(vec2( 0.5, -0.5) + o); 
 
    gl_FragColor = vec4(sum * 0.25 * gl_Color.rgb, gl_Color.a); 
} 

 

  



13.3. Deferred Shading for Volume Shadows 
With contributions by Hugh Malan and Mike Weiblen 

One of the disadvantages of shadow mapping as discussed in the previous section is that the 
performance depends on the number of lights in the scene that are capable of casting shadows. 
With shadow mapping, a rendering pass must be performed for each of these light sources. 
These shadow maps are utilized in a final rendering pass. All these rendering passes can reduce 
performance, particularly if a great many polygons are to be rendered. 

It is possible to do higher-performance shadow generation with a rendering technique that is 
part of a general class of techniques known as DEFERRED SHADING. With deferred shading, the idea 
is to first quickly determine the surfaces that will be visible in the final scene and apply complex 
and time-consuming shader effects only to the pixels that make up those visible surfaces. In 
this sense, the shading operations are deferred until it can be established just which pixels 
contribute to the final image. A very simple and fast shader can render the scene into an 
offscreen buffer with depth buffering enabled. During this initial pass, the shader stores 
whatever information is needed to perform the necessary rendering operations in subsequent 
passes. Subsequent rendering operations are applied only to pixels that are determined to be 
visible in the high-performance initial pass. This technique ensures that no hardware cycles are 
wasted performing shading calculations on pixels that will ultimately be hidden. 

To render soft shadows with this technique, we need to make two passes. In the first pass, we 
do two things: 

1. We use a shader to render the geometry of the scene without shadows or lighting into the 
framebuffer. 

2. We use the same shader to store a normalized camera depth value for each pixel in a 
separate buffer. (This separate buffer is accessed as a texture in the second pass for the 
shadow computations.) 

In the second pass, the shadows are composited with the existing contents of the framebuffer. 
To do this compositing operation, we render the shadow volume (i.e., the region in which the 
light source is occluded) for each shadow casting object. In the case of a sphere, computing the 
shadow volume is relatively easy. The sphere's shadow is in the shape of a truncated cone, 
where the apex of the cone is at the light source. One end of the truncated cone is at the center 
of the sphere (see Figure 13.2). (It is somewhat more complex to compute the shadow volume 
for an object defined by polygons, but the same principle applies.) 

Figure 13.2. The shadow volume for a sphere 



 

 
We composite shadows with the existing geometry by rendering the polygons that define the 
shadow volume. This allows our second pass shader to be applied only to regions of the image 
that might be in shadow. 

To draw a shadow, we use the texture map shown in Figure 13.3. This texture map expresses 
how much a visible surface point is in shadow relative to a shadow-casting object (i.e., how 
much its value is attenuated) based on a function of two values: 1) the squared distance from 
the visible surface point to the central axis of the shadow volume, and 2) the distance from the 
visible surface point to the center of the shadow-casting object. The first value is used as the s 
coordinate for accessing the shadow texture, and the second value is used as the t coordinate. 
The net result is that shadows are relatively sharp when the shadow-casting object is very close 
to the fragment being tested and the edges become softer as the distance increases. 

Figure 13.3. A texture map used to generate soft shadows 

 

 
In the second pass of the algorithm, we do the following: 

1. Draw the polygons that define the shadow volume. Only the fragments that could possibly 
be in shadow are accessed during this rendering operation. 

2. For each fragment rendered, 



a. Look up the camera depth value for the fragment as computed in the first pass. 

b. Calculate the coordinates of the visible surface point in the local space of the 
shadow volume. In this space, the z axis is the axis of the shadow volume and the 
origin is at the center of the shadow-casting object. The x component of this 
coordinate corresponds to the distance from the center of the shadow-casting 
object and is used directly as the second coordinate for the shadow texture lookup. 

c. Compute the squared distance between the visible surface point and the z axis of 
the shadow volume. This value becomes the first coordinate for the texture lookup. 

d. Access the shadow texture by using the computed index values to retrieve the light 
attenuation factor and store this in the output fragment's alpha value. The red, 
green, and blue components of the output fragment color are each set to 0. 

e. Compute for the fragment the light attenuation factor that will properly darken the 
existing framebuffer value. For the computation, enable fixed functionality blending, 
set the blend mode source function to GL_SRC_ALPHA, and set the blend 
destination function to GL_ONE. 

Because the shadow (second pass) shader is effectively a 2D compositing operation, the texel it 
reads from the depth texture must exactly match the pixel in the framebuffer it affects. So the 
texture coordinate and other quantities must be bilinearly interpolated without perspective 
correction. We interpolate by ensuring that w is constant across the polygondividing x, y, and z 
by w and then setting w to 1.0 does the job. Another issue is that when the viewer is inside the 
shadow volume, all faces are culled. We handle this special case by drawing a screen-sized 
quadrilateral since the shadow volume would cover the entire scene. 

13.3.1. Shaders for First Pass 

The shaders for the first pass of the volume shadow algorithm are shown in Listings 13.8 and 
13.9. In the vertex shader, to accomplish the standard rendering of the geometry (which in this 
specific case is all texture mapped), we just call ftransform and pass along the texture 
coordinate. The other lines of code compute the normalized value for the depth from the vertex 
to the camera plane. The computed value, CameraDepth, is stored in a varying variable so that it 
can be interpolated and made available to the fragment shader. 

To render into two buffers by using a fragment shader, the application must call glDrawBuffers 
and pass it a pointer to an array containing symbolic constants that define the two buffers to be 
written. In this case, we might pass the symbolic constant GL_BACK_LEFT as the first value in 
the array and GL_AUX0 as the second value. This means that gl_FragData[0] will be used to 
update the value in the soon-to-be-visible framebuffer (assuming we are double-buffering) and 
the value for gl_FragData[1] will be used to update the value in auxiliary buffer number 0. Thus, 
the fragment shader for the first pass of our algorithm contains just two lines of code (Listing 
13.9). 

Listing 13.8. Vertex shader for first pass of soft volume shadow 
algorithm 

uniform vec3  CameraPos; 
uniform vec3  CameraDir; 
uniform float DepthNear; 
uniform float DepthFar; 
 
varying float CameraDepth;  // normalized camera depth 
varying vec2 TexCoord; 
 



Listing 13.9. Fragment shader for first pass of soft volume shadow 
algorithm 

13.3.2. Shaders for Second Pass 

The second pass of our shadow algorithm is responsible for compositing shadow information on 
top of what has already been rendered. After the first pass has been completed, the application 
must arrange for the depth information rendered into auxiliary buffer 0 to be made accessible 
for use as a texture. There are several ways we can accomplish this. One way is to set the 
current read buffer to auxiliary buffer 0 by calling glReadBuffer with the symbolic constant 
GL_AUX0, and then call glCopyTexImage2d to copy the values from auxiliary buffer 0 to a texture 
that can be accessed in the second pass of the algorithm. (A higher performance method that 
avoids an actual data copy is possible if the EXT_framebuffer_objects extension is used. This 
extension is expected to be promoted to the OpenGL core in OpenGL 2.1.) 

In the second pass, the only polygons rendered are the ones that define the shadow volumes 
for the various objects in the scene. We enable blending by calling glEnable with the symbolic 
constant GL_BLEND, and we set the blend function by calling glBlendFunc with a source factor of 
GL_ONE and a destination factor of GL_SRC_ALPHA. The fragment shader outputs the shadow 
color and an alpha value obtained from a texture lookup operation. This alpha value blends the 
shadow color value into the frame buffer. 

The vertex shader for the second pass (see Listing 13.10) is responsible for computing the 

void main() 
{ 
    // offset = vector to vertex from camera's position 
    vec3 offset = (gl_Vertex.xyz / gl_Vertex.w) - CameraPos; 
 
    // z = distance from vertex to camera plane 
    float z = -dot(offset, CameraDir); 
 
    // Depth from vertex to camera, mapped to [0,1] 
    CameraDepth = (z - DepthNear) / (DepthFar - DepthNear); 
 
    // typical interpolated coordinate for texture lookup 
    TexCoord = gl_MultiTexCoord0.xy; 
 
    gl_Position = ftransform(); 
} 

 

uniform sampler2D TextureMap; 
 
varying float CameraDepth; 
varying vec2  TexCoord; 
 
void main() 
{ 
    // draw the typical textured output to visual framebuffer 
    gl_FragData[0] = texture2D(TextureMap, TexCoord); 
 
    // write "normaliized vertex depth" to the depthmap's alpha. 
    gl_FragData[1] = vec4(vec3(0.0), CameraDepth); 
} 

 



coordinates for accessing the depth values that were computed in the first pass. We accomplish 
the computation by transforming the incoming vertex position, dividing the x, y, and z 
components by the w component, and then scaling and biasing the x and y components to 
transform them from the range [1,1] into the range [0,1]. Values for ShadowNear and ShadowDir 
are also computed. These are used in the fragment shader to compute the position of the 
fragment relative to the shadow-casting object. 

Listing 13.10. Vertex shader for second pass of soft volume shadow 
algorithm 

uniform mat3 WorldToShadow; 
uniform vec3 SphereOrigin; 
 
uniform vec3 CameraPos; 
uniform vec3 CameraDir; 
uniform float DepthNear; 
uniform float DepthFar; 
 
varying vec2 DepthTexCoord; 
varying vec3 ShadowNear; 
varying vec3 ShadowDir; 
 
void main() 
{ 
    vec4 tmp1 = ftransform(); 
    gl_Position = tmp1; 
 
    // Predivide out w to avoid perspective-correct interpolation. 
    // The quantities being interpolated are screen-space texture 
    // coordinates and vectors to the near and far shadow plane, 
    // all of which have to be bilinearly interpolated. 
    // This could potentially be done by setting glHint, 
    // but it wouldn't be guaranteed to work on all hardware. 
 
    gl_Position.xyz /= gl_Position.w; 
    gl_Position.w = 1.0; 
 
    // Grab the transformed vertex's XY components as a texcoord 
    // for sampling from the depth texture from pass 1. 
    // Normalize them from [0,0] to [1,1] 
 
    DepthTexCoord = gl_Position.xy * 0.5 + 0.5; 
 
    // offset = vector to vertex from camera's position 
    vec3 offset = (gl_Vertex.xyz / gl_Vertex.w) - CameraPos; 
 
    // z = distance from vertex to camera plane 
    float z = -dot(offset, CameraDir); 
 
    vec3 shadowOffsetNear = offset * DepthNear / z; 
    vec3 shadowOffsetFar  = offset * DepthFar / z; 
 
    vec3 worldPositionNear = CameraPos + shadowOffsetNear; 
    vec3 worldPositionFar  = CameraPos + shadowOffsetFar; 
 
    vec3 shadowFar  = WorldToShadow * (worldPositionFar - SphereOrigin); 
    ShadowNear = WorldToShadow * (worldPositionNear - SphereOrigin); 
    ShadowDir = shadowFar - ShadowNear; 
} 

 



The fragment shader for the second pass is shown in Listing 13.11. In this shader, we access 
the cameraDepth value computed by the first pass by performing a texture lookup. We then map 
the fragment's position into the local space of the shadow volume. The mapping from world to 
shadow space is set up so that the center of the occluding sphere maps to the origin, and the 
circle of points on the sphere at the terminator between light and shadow maps to a circle in 
the YZ plane. 

The variables d and l are respectively the distance along the shadow axis and the squared 
distance from it. These values are used as texture coordinates for the lookup into the texture 
map defining the shape of the shadow. 

With the mapping described above, points on the terminator map to a circle in the YZ plane. 
The texture map has been painted with the transition from light to shadow occurring at s=0.5; 
to match this, the mapping from world to shadow is set up so that the terminator circle maps to 
a radius of sqrt(0.5). 

Finally, the value retrieved from the shadow texture is used as the alpha value for blending the 
shadow color with the geometry that has already been rendered into the frame buffer. 

Listing 13.11. Fragment shader for second pass of soft volume shadow 
algorithm 

Figure 13.4 shows the result of this multipass shading algorithm in a scene with several 
spheres. Note how the shadows for the four small spheres get progressively softer edges as the 
spheres increase in distance from the checkered floor. The large sphere that is farthest from the 
floor casts an especially soft shadow. 

Figure 13.4. Screen shot of the volume shadows shader in action. 
Notice that spheres that are farther from the surface have shadows 

with softer edges. 

uniform sampler2D DepthTexture; 
uniform sampler2D ShadowTexture; 
 
varying vec2 DepthTexCoord; 
varying vec3 ShadowNear; 
varying vec3 ShadowDir; 
 
const vec3 shadowColor = vec3(0.0); 
 
void main() 
{ 
    // read from DepthTexture 
    // (depth is stored in texture's alpha component) 
    float cameraDepth = texture2D(DepthTexture, DepthTexCoord).a; 
 
    vec3 shadowPos = (cameraDepth * ShadowDir) + ShadowNear; 
    float l = dot(shadowPos.yz, shadowPos.yz); 
    float d = shadowPos.x; 
 
    // k = shadow density: 0=opaque, 1=transparent 
    // (use texture's red component as the density) 
    float k = texture2D(ShadowTexture, vec2(l, d)).r; 
 
    gl_FragColor = vec4(shadowColor, k); 
} 

 



 

 

 
The interesting part of this deferred shading approach is that the volumetric effects are 
implemented by rendering geometry that bounds the volume of the effect. This almost certainly 
means processing fewer vertices and fewer fragments. The shaders required are relatively 
simple and quite fast. Instead of rendering the geometry once for each light source, the 
geometry is rendered just once, and all the shadow volumes due to all light sources can be 
rendered in a single compositing pass. Localized effects such as shadow maps, decals, and 
projective textures can be accomplished easily. Instead of having to write tricky code to figure 
out the subset of the geometry to which the effect applies, you write a shader that is applied to 
each pixel and use that shader to render geometry that bounds the effect. This technique can 
be extended to render a variety of different effectsvolumetric fog, lighting, and improved 
caustics to name a few. 

  



13.4. Summary 
There are a number of techniques for generating shadows, and this chapter described several 
that particularly lend themselves to real-time usage. Ambient occlusion is a technique that 
complements the global illumination techniques described in Chapter 12 by adding soft shadows 
that would naturally appear in the corners and crevices of objects in a scene. Shadow mapping 
is a technique that is well suited to implementation with OpenGL shaders on today's graphics 
hardware. A number of variations to shadow mapping can be used to improve its quality. We 
looked at a couple of methods that produce antialiased shadow edges. Finally, we also looked at 
a method that uses a deferred shading approach to render shadow volumes in order to produce 
soft shadows. 

  



13.5. Further Information 
The SIGGRAPH 2002 course notes contained the article Production-Ready Global Illumination, 
by Hayden Landis. This document describes ambient environments, reflection occlusion, and 
ambient occlusion and explains how they are used in the ILM computer graphics production 
environment. The article Ambient Occlusion, by Matt Pharr and Simon Green, provides further 
details about the preprocessing step and gives example shaders written in Cg. The GPU Gems 2 
book contains an article by Michael Bunnell that describes efforts to compute occlusion factors 
in real time. 

Frank Crow pioneered the development of shadow algorithms for computer graphics. Mark 
Segal and others described the basics of using texture mapping hardware to generate shadows 
in a 1992 SIGGRAPH paper. Randima Fernando and Mark Kilgard discuss a Cg implementation 
of these techniques in the book The Cg Tutorial. Eric Haines wrote a survey of real-time shadow 
algorithms and presented this information at GDC in 2001. Some of this material is also in the 
book Real-Time Rendering by Akenine-Möller and Haines. 

Deferred shading has recently been a hot topic in computer games development. In the book 
GPU Gems 2, Oles Shishkovtsov discusses how this approach was used for the computer game 
S.T.A.L.K.E.R. His article also mentions presentations from the 2004 Game Developer's 
Conference. 
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Chapter 14. Surface Characteristics 
Up to this point, we have primarily been modeling surface reflection in a simplistic way. The 
traditional reflection model is simple enough to compute and gives reasonable results, but it 
reproduces the appearance of only a small number of materials. In the real world, there is 
enormous variety in the way objects interact with light. To simulate the interaction of light with 
materials such as water, metals, metallic car paints, CDs, human skin, butterfly wings, and 
peacock feathers, we need to go beyond the basics. 

One way to achieve greater degrees of realism in modeling the interaction between light and 
surfaces is to use models that are more firmly based on the physics of light reflection, 
absorption, and transmission. Such models have been the pursuit of graphics researchers since 
the 1970s. With the programmable graphics hardware of today, we are now at a point where 
such models can be used in real-time graphics applications to achieve unprecedented realism. A 
performance optimization that is often employed is to precompute these functions and store the 
results in textures that can be accessed from within a shader. A second way to achieve greater 
degrees of realism is to measure or photograph the characteristics of real materials and use 
these measurements in our shading algorithms. In this chapter, we look at shaders based on 
both approaches. 

In addition, we have not yet looked at any shaders that allow for the transmission of light 
through a surface. This is our first example as we look at several shaders that model materials 
with differing surface characteristics. 



14.1. Refraction 
Refraction is the bending of light as it passes through a boundary between surfaces with 
different optical densities. You can easily see this effect by looking through the side of an 
aquarium or at a straw in a glass of water. Light bends by different amounts as it passes from 
one material to another, depending on the materials that are transmitting light. This effect is 
caused by light traveling at different speeds in different types of materials. This characteristic of 
a material is called its INDEX OF REFRACTION, and this value has been determined for many common
materials that transmit light. It is easy to model refraction in our shaders with the built-in 
function refract. The key parameter that is required is the ratio of the index of refraction for the 
two materials forming a boundary where refraction occurs. The application can compute this 
ratio and provide it to the OpenGL shader as a uniform variable. Given a surface normal, an 
angle of incidence, and the aforementioned ratio, the refract function applies Snell's law to 
compute the refracted vector. We can use the refracted vector in a fragment shader to access a 
cube map to determine the surface color for a transparent object. 

Once again, our goal is to produce results that are "good enough." In other words, we're after a 
refraction effect that looks plausible, rather than a physically accurate simulation. One 
simplification that we make is that we model the refraction effect at only one surface boundary. 
When light goes from air through glass, it is refracted once at the air-glass boundary, 
transmitted through the glass, and refracted again at the glass-air boundary on the other side. 
We satisfy ourselves with simulating the first refraction effect. The results of refraction are 
complex enough that most people would not be able to tell the difference in the final image. 

If we go ahead and write a shader that performs refraction, we will likely be somewhat 
disappointed in the results. It turns out that most transparent objects exhibit both reflection 
and refraction. The surface of a lake reflects the mountains in the distance if you are looking at 
the lake from one side. But if you get into your boat and go out into the lake and look straight 
down, you may see fish swimming around underneath the surface. This is known as the FRESNEL 

EFFECT. The Fresnel equations describe the reflection and refraction that occur at a material 
boundary as a function of the angle of incidence, the polarization and wavelength of the light, 
and the indices of refraction of the materials involved. It turns out that many materials exhibit a 
higher degree of reflectivity at extremely shallow (grazing) angles. Even a material such as 
nonglossy paper exhibits this phenomenon. For instance, hold a sheet of paper (or a book) so 
that you are looking at a page at a grazing angle and looking towards a light source. You will 
see a specular (mirrorlike) reflection from the paper, something you wouldn't see at steeper 
angles. 

Because the Fresnel equations are relatively complex, we make the simplifying assumptions 
that (A) the light in our scene is not polarized, (B) all light is of the same wavelength (but we 
loosen this assumption later in this section), and (C) it is sufficient to use an approximation to 
the Fresnel equations rather than the exact equations themselves. An approximation for the 
ratio between reflected light and refracted light created by Christophe Schlick is 

F = f + (1 - f) (1 - V • N)5

 

In this equation, V is the direction of view, N is the surface normal, and f is the reflectance of 
the material when θ is 0 given by 



 

 
where n1 and n2 are the indices of refraction for materials 1 and 2. 

Let's put this together in a shader. Figure 14.1 shows the relevant parameters in two 
dimensions. For the direction of view V, we want to compute a reflected ray and a refracted ray. 
We use each of these to access a texture in a cube map. We linearly blend the two values with 
a ratio we compute using the Fresnel approximations described above. 

Figure 14.1. The geometry of refraction 

 

 
In The Cg Tutorial, Randima Fernando and Mark Kilgard describe Cg shaders for refraction that 
can easily be implemented in GLSL. The code for our vertex shader is shown in Listing 14.1. 
The ratio of indices of refraction for the two materials is precomputed and stored in the 
constant Eta. A value of 0.66 represents a boundary between air (index of refraction 1.000293) 
and glass (index of refraction 1.52). We can allow the user to control the amount of reflectivity 
at grazing angles by using a variable for the Fresnel power. Lower values provide higher 
degrees of reflectivity at grazing angles, whereas higher values reduce this effect. The value for 
f in the equations above is also stored as a constant. (We could have the application provide Eta 
and FresnelPower as uniform variables. This would then require the application to compute and 
pass F as well.) 

The vertex shader uses the viewing position and the surface normal to compute a reflected ray 
and a refracted ray. The vertex position is transformed into eye coordinates. The reflect and 
refract functions both require an incident vector. This is just the vector going in the direction 
opposite of V in Figure 14.1. We compute this vector (i) by subtracting the viewing position 
(which is defined as being at (0, 0, 0) in the eye coordinate system) from the eye coordinate 
position and normalizing the result. We also transform the surface normal into the eye 
coordinate system and normalize it (n). 



To compute the angle θ, we really need the vector V as shown in Figure 14.1 instead of i so that 
we can perform a dot product operation. We get this vector by negating i. We plug the values 
into the Fresnel approximation equation to get the ratio between the reflective and refractive 
components. 

The values for i and n are sent to the built-in functions reflect and refract to compute a reflected 
vector and a refracted vector. These are used in the fragment shader to access the environment 
map. The application that uses these shaders allows the environment map to be rotated 
independently of the geometry. This transformation is stored in one of OpenGL's texture 
matrices. The resulting rays must be transformed with this matrix to access the proper location 
in the rotated environment. 

Listing 14.1. Vertex shader for Fresnel reflection/refraction effect 

The corresponding fragment shader is shown in Listing 14.2. All the hard work has been done in 
the vertex shader. All that remains for the fragment shader is to perform the two environment 
map lookups and to use the computed ratio to blend the two values. 

Listing 14.2. Fragment shader for Fresnel reflection/refraction effect 

const float Eta = 0.66;         // Ratio of indices of refraction 
const float FresnelPower = 5.0; 
 
const float F  = ((1.0-Eta) * (1.0-Eta)) / ((1.0+Eta) * (1.0+Eta)); 
 
varying vec3  Reflect; 
varying vec3  Refract; 
varying float Ratio; 
 
void main() 
{ 
 
    vec4 ecPosition  = gl_ModelViewMatrix * gl_Vertex; 
    vec3 ecPosition3 = ecPosition.xyz / ecPosition.w; 
 
    vec3 i = normalize(ecPosition3); 
    vec3 n = normalize(gl_NormalMatrix * gl_Normal); 
 
    Ratio   = F + (1.0 - F) * pow((1.0 - dot(-i, n)), FresnelPower); 
 
    Refract = refract(i, n, Eta); 
    Refract = vec3(gl_TextureMatrix[0] * vec4(Refract, 1.0)); 
 
    Reflect = reflect(i, n); 
    Reflect = vec3(gl_TextureMatrix[0] * vec4(Reflect, 1.0)); 
 
    gl_Position = ftransform(); 
} 

 

varying vec3  Reflect; 
varying vec3  Refract; 
varying float Ratio; 
 
uniform samplerCube Cubemap; 
 
void main() 
{ 



With a small modification, we can get our reflection/refraction shader to perform another cool 
effect, although we stray a bit further from realistic physics. As stated earlier, the refraction of 
light is wavelength dependent. We made the simplifying assumption that all our light was a 
single wavelength, and this allowed us to compute a single refracted ray. In reality, there would 
be a continuum of refracted rays, one for each constituent wavelength of the light source. The 
breaking up of a light source into its constituent components, for example, with a prism, is 
called CHROMATIC DISPERSION. In camera lenses, this effect is undesirable and is called CHROMATIC 

ABERRATION. 

We can model our light as though it contains three wavelengths of light: red, green, and blue. 
By providing a slightly different index of refraction for each of red, green, and blue, we can 
compute three slightly different refraction rays (see Listing 14.3). These three rays are passed 
to the fragment shader, where they perform three environment map accesses. The RefractR ray 
obtains just the red component of the final refracted color, and RefractG and RefractB obtain the 
green and blue components similarly. The result is used as the refracted color value. The 
remainder of the fragment shader is the same (see Listing 14.4). 

Listing 14.3. Vertex shader for chromatic aberration effect 

    vec3 refractColor = vec3(textureCube(Cubemap, Refract)); 
    vec3 reflectColor = vec3(textureCube(Cubemap, Reflect)); 
 
    vec3 color   = mix(refractColor, reflectColor, Ratio); 
 
    gl_FragColor = vec4(color, 1.0); 
} 

 

const float EtaR = 0.65; 
const float EtaG = 0.67;         // Ratio of indices of refraction 
const float EtaB = 0.69; 
const float FresnelPower = 5.0; 
 
const float F  = ((1.0-EtaG) * (1.0-EtaG)) / ((1.0+EtaG) * (1.0+EtaG)); 
 
varying vec3  Reflect; 
varying vec3  RefractR; 
varying vec3  RefractG; 
varying vec3  RefractB; 
varying float Ratio; 
 
void main() 
{ 
    vec4 ecPosition  = gl_ModelViewMatrix * gl_Vertex; 
    vec3 ecPosition3 = ecPosition.xyz / ecPosition.w; 
 
    vec3 i = normalize(ecPosition3); 
    vec3 n = normalize(gl_NormalMatrix * gl_Normal); 
 
    Ratio   = F + (1.0 - F) * pow((1.0 - dot(-i, n)), FresnelPower); 
 
    RefractR = refract(i, n, EtaR); 
    RefractR = vec3(gl_TextureMatrix[0] * vec4(RefractR, 1.0)); 
    RefractG = refract(i, n, EtaG); 
    RefractG = vec3(gl_TextureMatrix[0] * vec4(RefractG, 1.0)); 
 
    RefractB = refract(i, n, EtaB); 
    RefractB = vec3(gl_TextureMatrix[0] * vec4(RefractB, 1.0)); 
 



 

Listing 14.4. Fragment shader for chromatic aberration effect 

Results of these shaders are shown in Color Plate 17. Notice the color fringes that occur on the 
character's knee and chest and on the top of his arm. 

    Reflect  = reflect(i, n); 
    Reflect  = vec3(gl_TextureMatrix[0] * vec4(Reflect, 1.0)); 
 
    gl_Position = ftransform(); 
} 

 

varying vec3  Reflect; 
varying vec3  RefractR; 
varying vec3  RefractG; 
varying vec3  RefractB; 
varying float Ratio; 
 
uniform samplerCube Cubemap; 
 
void main() 
{ 
    vec3 refractColor, reflectColor; 
 
    refractColor.r = vec3(textureCube(Cubemap, RefractR)).r; 
    refractColor.g = vec3(textureCube(Cubemap, RefractG)).g; 
    refractColor.b = vec3(textureCube(Cubemap, RefractB)).b; 
 
    reflectColor   = vec3(textureCube(Cubemap, Reflect)); 
 
    vec3 color     = mix(refractColor, reflectColor, Ratio); 
 
    gl_FragColor   = vec4(color, 1.0); 
} 

 

  



14.2. Diffraction 
by Mike Weiblen 

DIFFRACTION is the effect of light bending around a sharp edge. A device called a DIFFRACTION 

GRATING leverages that effect to efficiently split white light into the rainbow of its constituent 
colors. Jos Stam described how to approximate this effect, first with assembly language shaders 
(in a SIGGRAPH '99 paper) and then with Cg (in an article in the book GPU Gems). Let's see 
how we can approximate the behavior of a diffraction grating with an OpenGL shader. 

First, let's quickly review the wave theory of light and diffraction gratings. One way of 
describing the behavior of visible light is as waves of electromagnetic radiation. The distance 
between crests of those waves is called the wavelength, usually represented by the Greek letter 
lambda (λ). 

The wavelength is what determines the color we perceive when the light hits the sensing cells 
on the retina of the eye. The human eye is sensitive to the range of wavelengths beginning 
from about 400 nanometers (nm) for deep violet, up to about 700nm for dark red. Within that 
range are what humans perceive as all the colors of the rainbow. 

A diffraction grating is a tool for separating light based on its wavelength, similar in effect to a 
prism but using diffraction rather than refraction. Diffraction gratings typically are very closely 
spaced parallel lines in an opaque or reflective material. They were originally made with a 
mechanical engine that precisely scribed parallel lines onto the surface of a mirror. Modern 
gratings are usually created with photographic processes. 

The lines of a grating have a spacing roughly on the order of the wavelengths of visible light. 
Because of the difference in path length when white light is reflected from adjacent mirrored 
lines, the different wavelengths of reflected light interfere and reinforce or cancel, depending on 
whether the waves constructively or destructively interfere. 

For a given wavelength, if the path length of light reflecting from two adjacent lines differs by 
an integer number of wavelengths (meaning that the crests of the waves reflected from each 
line coincide), that color of light constructively interferes and reinforces in intensity. If the path 
difference is an integer number of wavelengths plus half a wavelength (meaning that crests of 
waves from one line coincide with troughs from the other line), those waves destructively 
interfere and extinguish at that wavelength. That interference condition varies according to the 
wavelength of the light, the spacing of the grating lines, and the angle of the light's path (both 
incident and reflected) with respect to the grating surface. Because of that interference, white 
light breaks into its component colors as the light source and eyepoint move with respect to the 
diffracting surface. 

Everyday examples of diffraction gratings include compact discs, novelty "holographic" gift-
wrapping papers, and the rainbow logos on modern credit cards used to discourage 
counterfeiting. 

To demonstrate this shader, we use the everyday compact disc as a familiar example; 
extending this shader for other applications is straightforward. 

While everyone is familiar with the overall physical appearance of a CD, let's look at the 
microscopic characteristics that make it a functional diffraction grating. A CD consists of one 
long spiral of microscopic pits embossed onto one side of a sheet of mirrored plastic. The 
dimensions of those pits is on the order of several hundred nanometers, or the same order of 
magnitude as the wavelengths of visible light. The track pitch of the spiral of pits (i.e., the 
spacing between each winding of the spiral) is nominally 1600 nanometers. The range of those 



dimensions, being so close to visible wavelengths, is what gives a CD its rainbow light-splitting 
qualities. 

Our diffraction shader computes two independent output color components per vertex: 

1. An anisotropic glint that reflects the color of the light source 

2. A color based on accumulation of the wavelengths that constructively interfere for the 
given light source and eyepoint locations. 

We can do this computation just by using a vertex shader. No fragment processing beyond 
typical OpenGL fixed functionality is necessary. Therefore, we write this vertex shader to take 
advantage of OpenGL's capability to combine programmable and fixed functionality processing. 
The vertex shader writes to the built-in varying variable gl_FrontColor and the special output 
variable gl_Position, and no programmable fragment processing is necessary. 

The code for the diffraction vertex shader is shown in Listing 14.5. To render the diffraction 
effect, the shader requires the application to send a normal and tangent for each vertex. For 
this shader, the tangent is defined to be parallel to the orientation of the simulated grating 
lines. In the case of a compact disc (which has a spiral of pits on its mirrored surface), the close 
spacing of that spiral creates a diffraction grating of basically concentric circles, so the tangent 
is tangent to those circles. 

Since the shader uses wavelength to compute the constructive interference, we need to convert 
wavelength to OpenGL's RGB representation of color. We use the function lambda2rgb, which 
approximates the conversion of wavelength to RGB by using a bump function. We begin the 
conversion by mapping the range of visible wavelengths to a normalized 0.0 to 1.0 range. From 
that normalized wavelength, we create a vec3 by subtracting an offset for each of the 
red/green/blue bands. Then for each color component, we compute the contribution with the 
bump expression 1 cx2 clamped to the range of [0, 1]. The c term controls the width of the 
bump and is selected for best appearance by allowing the bumps to overlap somewhat, 
approximating a relatively smooth rainbow spread. This bump function is quick and easy to 
implement, but we could use another approach to the wavelength-to-RGB conversion, for 
example, using the normalized wavelength to index into a lookup table or using a 1D texture, 
which would be tuned for enhanced spectral qualities. 

More than one wavelength can satisfy the constructive interference condition at a vertex for a 
given set of lighting and viewing conditions, so the shader must accumulate the contribution 
from each of those wavelengths. Using the condition that constructive interference occurs at 
path differences of integer wavelength, the shader iterates over those integers to determine the 
reinforced wavelength. That wavelength is converted to an RGB value by the lambda2rgb function 
and accumulated in diffColor. 

A specular glint of HighlightColor is reflected from the grating lines in the region where diffractive 
interference does not occur. The SurfaceRoughness term controls the width of that highlight to 
approximate the scattering of light from the microscopic pits. 

The final steps of the shader consist of the typical vertex transformation to compute gl_Position 
and the summing of the lighting contributions to determine gl_FrontColor. The diffAtten term 
attenuates the diffraction color slightly to prevent the colors from being too intensely garish. 

A simplification we made in this shader is this: Rather than attempt to represent the spectral 
composition of the HighlightColor light source, we assume the incident light source is a flat 
spectrum of white light. 

Being solely a vertex shader, the coloring is computed only at vertices. Since diffraction 
gratings can produce dramatic changes in color for a small displacement, there is an 
opportunity for artifacts caused by insufficient tesselation. Depending on the choice of 



performance trade-offs, this shader could easily be ported to a fragment shader if per-pixel 
shading is preferred. 

Results from the diffraction shader are shown in Figure 14.2 and Color Plate 17. 

Figure 14.2. The diffraction shader simulates the look of a vinyl 
phonograph record (3Dlabs, Inc.) 

 

 
Listing 14.5. Vertex shader for diffraction effect 

attribute vec3 Tangent;     // parallel to grating lines at each vertex 
 
// map a visible wavelength [nm] to OpenGL's RGB representation 
 
vec3 lambda2rgb(float lambda) 
{ 
    const float ultraviolet = 400.0; 
    const float infrared    = 700.0; 
 
    // map visible wavelength range to 0.0 -> 1.0 
    float a = (lambda-ultraviolet) / (infrared-ultraviolet); 
 
    // bump function for a quick/simple rainbow map 
    const float C = 7.0;        // controls width of bump 
    vec3 b = vec3(a) - vec3(0.75, 0.5, 0.25); 
    return max((1.0 - C * b * b), 0.0); 
} 
void main() 
{ 
    // extract positions from input uniforms 
    vec3 lightPosition = gl_LightSource[0].position.xyz; 
    vec3 eyePosition   = -osg_ViewMatrix[3].xyz / osg_ViewMatrix[3].w; 
 
    // H = halfway vector between light and viewer from vertex 
    vec3 P = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 L = normalize(lightPosition - P); 
    vec3 V = normalize(eyePosition - P); 
    vec3 H = L + V; 
 
    // accumulate contributions from constructive interference 
    // over several spectral orders. 
    vec3 T  = gl_NormalMatrix * Tangent; 
    float u = abs(dot(T, H)); 
    vec3 diffColor = vec3(0.0); 



 

    const int numSpectralOrders = 3; 
    for (int m = 1; m <= numSpectralOrders; ++m) 
    { 
        float lambda = GratingSpacing * u / float(m); 
        diffColor += lambda2rgb(lambda); 
    } 
 
    // compute anisotropic highlight for zero-order (m = 0) reflection. 
    vec3  N = gl_NormalMatrix * gl_Normal; 
    float w = dot(N, H); 
    float e = SurfaceRoughness * u / w; 
    vec3 hilight = exp(-e * e) * HighlightColor; 
 
    // write the values required for fixed function fragment processing 
    const float diffAtten = 0.8; // attenuation of the diffraction color 
    gl_FrontColor = vec4(diffAtten * diffColor + hilight, 1.0); 
    gl_Position = ftransform(); 
} 

 

  



14.3. BRDF Models 
The traditional OpenGL reflectance model and the one that we have been using for most of the 
previous shader examples in this book (see, for example, Section 6.2) consists of three 
components: ambient, diffuse, and specular. The ambient component is assumed to provide a 
certain level of illumination to everything in the scene and is reflected equally in all directions 
by everything in the scene. The diffuse and specular components are directional in nature and 
are due to illumination from a particular light source. The diffuse component models reflection 
from a surface that is scattered in all directions. The diffuse reflection is strongest where the 
surface normal points directly at the light source, and it drops to zero where the surface normal 
is pointing 90° or more away from the light source. Specular reflection models the highlights 
caused by reflection from surfaces that are mirrorlike or nearly so. Specular highlights are 
concentrated on the mirror direction. 

But relatively few materials have perfectly specular (mirrorlike) or diffuse (Lambertian) 
reflection characteristics. To model more physically realistic surfaces, we must go beyond the 
simplistic lighting/reflection model that is built into OpenGL. This model was developed 
empirically and is not physically accurate. Furthermore, it can realistically simulate the 
reflection from only a relatively small class of materials. 

For more than two decades, computer graphics researchers have been rendering images with 
more realistic reflection models called BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTIONS, or BRDFS. 
A BRDF model for computing the reflection from a surface takes into account the input direction 
of incoming light and the outgoing direction of reflected light. The elevation and azimuth angles 
of these direction vectors are used to compute the relative amount of light reflected in the 
outgoing direction (the fixed functionality OpenGL model uses only the elevation angle). A BRDF 
model renders surfaces with ANISOTROPIC reflection properties (i.e., surfaces that are not 
rotationally invariant in their surface reflection properties). Instruments have been developed to 
measure the BRDF of real materials. In some cases, the measured data has been used to create 
a function with a few parameters that can be modified to model the reflective characteristics of 
a variety of materials. In other cases, the measured data has been sampled to produce texture 
maps that reconstruct the BRDF function at runtime. A variety of different measuring, sampling, 
and reconstruction methods have been devised to use BRDFs in computer graphics, and this is 
still an area of active research. 

Generally speaking, the amount of light that is reflected to a particular viewing position depends 
on the position of the light, the position of the viewer, and the surface normal and tangent. If 
any of these changes, the amount of light reflected to the viewer may also change. The surface 
characteristics also play a role because different wavelengths of light may be reflected, 
transmitted, or absorbed, depending on the physical properties of the material. Shiny materials 
have concentrated, near-mirrorlike specular highlights. Rough materials have specular 
highlights that are more spread out. Metals have specular highlights that are the color of the 
metal rather than the color of the light source. The color of reflected light may change as the 
reflection approaches a grazing angle with the surface. Materials with small brush marks or 
grooves reflect light differently as they are rotated, and the shapes of their specular highlights 
also change. These are the types of effects that BRDF models are intended to accurately 
reproduce. 

A BRDF is a function of two pairs of angles as well as the wavelength and polarization of the 
incoming light. The angles are the altitude and azimuth of the incident light vector (θi, φi) and 

the altitude and azimuth of the reflected light vector (θr, φr). Both sets of angles are given with 

respect to a given tangent vector. For simplicity, some BRDF models omit polarization effects 
and assume that the function is the same for all wavelengths. Because the incident and 
reflected light vectors are measured against a fixed tangent vector in the plane of a surface, 
BRDF models can reproduce the reflective characteristics of anisotropic materials such as 
brushed or rolled metals. And because both the incident and reflected light vectors are 



considered, BRDF models can also reproduce the changes in specular highlight shapes or colors 
that occur when an object is illuminated by a light source at a grazing angle. 

BRDF models can either be theoretical or empirical. Theoretical models attempt to model the 
physics of light and materials in order to reproduce the observed reflectance properties. In 
contrast, an empirical model is a function with adjustable parameters that is designed to fit 
measured reflectance data for a certain class of materials. The volume of measured data 
typically prohibits its direct use in a computer graphics environment, and this data is often 
imperfect or incomplete. Somehow, the measured data must be boiled down to a few useful 
values that can be plugged into a formula or used to create textures that can be accessed 
during rendering. A variety of methods for reducing the measured data have been developed. 

One such model was described by Greg Ward in a 1992 SIGGRAPH paper. He and his colleagues 
at Lawrence Berkeley Laboratory built a device that was relatively efficient in collecting 
reflectance data from a variety of materials. The measurements were the basis for creating a 
mathematical reflectance model that provided a reasonable approximation to the measured 
data. Ward's goal was to produce a simple empirical formula that was physically valid and fit 
the measured reflectance data for a variety of different materials. Ward measured the 
reflectivity of various materials to determine a few key values with physical meaning and 
plugged those values into the formula he developed to replicate the measured data in a 
computer graphics environment. 

To understand Ward's model, we should first review the geometry involved, as shown in Figure 
14.3. This diagram shows a point on a surface and the relevant direction vectors that are used 
in the reflection computation: 

Figure 14.3. The geometry of reflection 

 

 
N is the unit surface normal. 

L is the unit vector in the direction of the simulated light source. 

V is the unit vector in the direction of the viewer. 

R is the unit vector in the direction of reflection from the simulated light source. 

H is the unit angular bisector of V and L (sometimes called the halfway vector). 

T is a unit vector in the plane of the surface that is perpendicular to N (i.e., the tangent). 



B is a unit vector in the plane of the surface that is perpendicular to both N and T (i.e., the 
binormal). 

The formula developed by Ward is based on a Gaussian reflectance model. The key parameters 
of the formula are the diffuse reflectivity of the surface (ρd), the specular reflectivity of the 

surface (ρs), and the standard deviation of the surface slope (α). The final parameter is a 

measure of the roughness of a surface. The assumption is that a surface is made up of tiny 
microfacets that reflect in a specular fashion. For a mirrorlike surface, all the microfacets line up 
with the surface. For a rougher surface, some random orientation of these microfacets causes 
the specular highlight to spread out more. The fraction of facets that are oriented in the 
direction of H is called the facet slope distribution function, or the surface slope. Several 
possibilities for this function have been suggested. 

With but a single value for the surface slope, the mathematical model is limited in its ability to 
reproduce materials exhibiting anisotropic reflection. To deal with this, Ward's model includes 
two α values, one for the standard deviation of the surface slope in the x direction (i.e., in the 
direction of the surface tangent vector T) and one for the standard deviation of the surface 
slope in the y direction (i.e., in the direction of the surface binormal value B). The formula used 
by Ward to fit his measured reflectance data and the key parameters derived from that data is 

[View full size image] 

 

 
This formula looks a bit onerous, but Ward has supplied values for ρd, ρs, αx, and αy for several 

materials, and all we need to do is code the formula in the OpenGL Shading Language. The 
result of this BRDF is plugged into the overall equation for illumination, which looks like this 

 

 
This formula basically states that the reflected radiance is the sum of a general indirect radiance 
contribution, plus an indirect semispecular contribution, plus the radiance from each of N light 
sources in the scene. I is the indirect radiance, Ls is the radiance from the indirect semispecular 

contribution, and Li is the radiance from light source i. For the remaining terms, ωi is the solid 

angle in steradians of light source i, and ρbd is the BRDF defined in the previous equation. 

This all translates quite easily into OpenGL Shading Language code. To get higher-quality 
results, we compute all the vectors in the vertex shader, interpolate them, and then perform 
the reflection computations in the fragment shader. 

The application is expected to provide four attributes for every vertex. Two of them are 
standard OpenGL attributes and need not be defined by our vertex program: gl_Vertex (position) 
and gl_Normal (surface normal). The other two attributes are a tangent vector and a binormal 
vector, which the application computes. These two attributes should be provided to OpenGL 
with either the glVertexAttrib function or a generic vertex array. The location to be used for these 
generic attributes can be bound to the appropriate attribute in our vertex shader with 
glBindAttribLocation. For instance, if we choose to pass the tangent values in vertex attribute 
location 3 and the binormal values in vertex attribute location 4, we would set up the binding 



with these lines of code: 

glBindAttribLocation(programObj, 3, "Tangent"); 
glBindAttribLocation(programObj, 4, "Binormal"); 

 
If the variable tangent is defined to be an array of three floats and binormal is also defined as an 
array of three floats, we can pass in these generic vertex attributes by using the following calls: 

glVertexAttrib3fv(3, tangent); 
glVertexAttrib3fv(4, binormal); 

 
Alternatively, we could pass these values to OpenGL by using generic vertex arrays. 

Listing 14.6 contains the vertex shader. Its primary job is to compute and normalize the vectors 
shown in Figure 14.3, namely, the unit vectors N, L, V, H, R, T, and B. We compute the values 
for N, T, and B by transforming the application-supplied normal, tangent, and binormal into eye 
coordinates. We compute the reflection vector R by using the built-in function reflect. We 
determine L by normalizing the direction to the light source. Because the viewing position is 
defined to be at the origin in eye coordinates, we compute V by transforming the viewing 
position into eye coordinates and subtracting the surface position in eye coordinates. H is the 
normalized sum of L and V. All seven of these values are stored in varying variables that will be 
interpolated and made available to the fragment shader. 

Listing 14.6. Vertex shader for rendering with Ward's BRDF model 

It is then up to the fragment shader to implement the equations defined previously. The values 
that parameterize a material (ρd, ρs, αx, αy) are passed as the uniform variables P and A. We 

can use the values from the table published in Ward's paper or try some values of our own. The 

attribute vec3 Tangent; 
attribute vec3 Binormal; 
 
uniform vec3 LightDir;  // Light direction in eye coordinates 
uniform vec4 ViewPosition; 
 
varying vec3 N, L, H, R, T, B; 
 
void main() 
{ 
    vec3 V, eyeDir; 
    vec4 pos; 
 
    pos    = gl_ModelViewMatrix * gl_Vertex; 
    eyeDir = pos.xyz; 
 
    N = normalize(gl_NormalMatrix * gl_Normal); 
    L = normalize(LightDir); 
    V = normalize((gl_ModelViewMatrix * ViewPosition).xyz - pos.xyz); 
    H = normalize(L + V); 
    R = normalize(reflect(eyeDir, N)); 
    T = normalize(gl_NormalMatrix * Tangent); 
    B = normalize(gl_NormalMatrix * Binormal); 
 
    gl_Position = ftransform(); 
} 

 



 

base color of the surface is also passed as a uniform variable (Ward's measurements did not 
include color for any of the materials). Instead of dealing with the radiance and solid angles of 
light sources, we just use a uniform variable to supply coefficients that manipulate these terms 
directly. 

The vectors passed as varying variables become denormalized during interpolation, but if the 
polygons in the scene are all relatively small, this effect is hard to notice. For this reason, we 
can usually skip the step of renormalizing these values in the fragment shader. The first three 
lines of code in the fragment shader (Listing 14.7) compute the expression in the exp function 
from Ward's BRDF. The next two lines obtain the necessary cosine values by computing the dot 
product of the appropriate vectors. We then use these values to compute the value for brdf, 
which is the same as ρbd in the equations above. The next equation puts it all together into an 
intensity value that attenuates the base color for the surface. The attenuated value becomes 
the final color for the fragment. 

Listing 14.7. Fragment shader for rendering with Ward's BRDF model 

Some results from this shader are shown in Color Plate 23. It certainly would be possible to 
extend the formula and surface parameterization values to operate on three channels instead of 
just one. The resulting shader could be used to simulate materials whose specular highlight 
changes color depending on the viewing angle. 

const float PI = 3.14159; 
const float ONE_OVER_PI = 1.0 / PI; 
 
uniform vec4 SurfaceColor; // Base color of surface 
uniform vec2 P;            // Diffuse (x) and specular reflectance (y) 
uniform vec2 A;            // Slope distribution in x and y 
uniform vec3 Scale;        // Scale factors for intensity computation 
 
varying vec3 N, L, H, R, T, B; 
 
void main() 
{ 
    float e1, e2, E, cosThetaI, cosThetaR, brdf, intensity; 
 
    e1 = dot(H, T) / A.x; 
    e2 = dot(H, B) / A.y; 
    E = -2.0 * ((e1 * e1 + e2 * e2) / (1.0 + dot(H, N))); 
 
    cosThetaI = dot(N, L); 
    cosThetaR = dot(N, R); 
 
    brdf = P.x * ONE_OVER_PI + 
           P.y * (1.0 / sqrt(cosThetaI * cosThetaR)) * 
           (1.0 / (4.0 * PI * A.x * A.y)) * exp(E); 
 
    intensity = Scale[0] * P.x * ONE_OVER_PI + 
                Scale[1] * P.y * cosThetaI * brdf + 
                Scale[2] * dot(H, N) * P.y; 
 
    vec3 color = intensity * SurfaceColor.rgb; 
 
    gl_FragColor = vec4(color, 1.0); 
} 

 

  



14.4. Polynomial Texture Mapping with BRDF Data 
This section describes the OpenGL Shading Language BRDF shaders that use the Polynomial 
Texture Mapping technique developed by Hewlett-Packard. The shaders presented are courtesy 
of Brad Ritter, Hewlett-Packard. The BRDF data is from Cornell University. It was obtained by 
measurement of reflections from several types of automotive paints that were supplied by Ford 
Motor Co. 

One reason this type of rendering is important is that it achieves realistic rendering of materials 
whose reflection characteristics vary as a function of view angle and light direction. Such is the 
case with these automotive paints. To a car designer, it is extremely important to be able to 
visualize the final "look" of the car, even when it is painted with a material whose reflection 
characteristics vary as a function of view angle and light direction. One of the paint samples 
tested by Cornell, Mystique Lacquer, has the peculiar property that the color of its specular 
highlight color changes as a function of viewing angle. This material cannot be adequately 
rendered if only conventional texture-mapping techniques are used. 

The textures used in this example are called POLYNOMIAL TEXTURE MAPS, or PTMs. PTMs are 
essentially light-dependent texture maps; PTMs are described in a 2001 SIGGRAPH paper by 
Malzbender, Gelb, and Wolters. PTMs reconstruct the color of a surface under varying lighting 
conditions. When a surface is rendered with a PTM, it takes on different illumination 
characteristics depending on the direction of the light source. As with bump mapping, this 
behavior helps viewers by providing perceptual clues about the surface geometry. But PTMs go 
beyond bump maps in that they capture surface variations resulting from self-shadowing and 
interreflections. PTMs are generated from real materials and preserve the visual characteristics 
of the actual materials. Polynomial texture mapping is an image-based technique that does not 
require bump maps or the modeling of complex geometry. 

The image in Color Plate 27A shows two triangles from a PTM demo developed by Hewlett-
Packard. The triangle on the upper right has been rendered with a polynomial texture map, and 
the triangle on the lower left has been rendered with a conventional 2D texture map. The 
objects that were used in the construction of the texture maps were a metallic bezel with the 
Hewlett-Packard logo on it and a brushed metal notebook cover with an embossed 3Dlabs logo. 
As you move the simulated light source in the demo, the conventional texture looks flat and 
somewhat unrealistic, whereas the PTM texture faithfully reproduces the highlights and surface 
shadowing that occur on the real-life objects. In the image captured here, the light source is a 
bit in front and above the two triangles. The PTM shows realistic reflections, but the 
conventional texture can only reproduce the lighting effect from a single lighting angle (in this 
case, as if the light were directly in front of the object). 

The PTM technique developed by HP requires as input a set of images of the desired object, 
with the object illuminated by a light source of a different known direction for each image, all 
captured from the same viewpoint. For each texel of the PTM, these source images are sampled 
and a least-squares biquadric curve fit is performed to obtain a polynomial that approximates 
the lighting function for that texel. This part of the process is partly science and partly art (a bit 
of manual intervention can improve the end results). The biquadric equation generated in this 
manner allows runtime reconstruction of the lighting function for the source material. The 
coefficients stored in the PTM are A, B, C, D, E, and F, as shown in this equation: 

Au2 + Bv2 + Cuv + Du + Ev + F

 

One use of PTMs is for representing materials with surface properties that vary spatially across 
the surface. Things like brushed metal, woven fabric, wood, and stone are all materials that 
reflect light differently depending on the viewing angle and light source direction. They may 
also have interreflections and self-shadowing. The PTM technique captures these details and 
reproduces them at runtime. There are two variants for PTMs: luminance (LRGB) and RGB. An 



LRGB PTM uses the biquadric polynomials to determine the brightness of each rendered pixel. 
Because each texel in an LRGB PTM has its own biquadric polynomial function, the luminance or 
brightness characteristics of each texel can be unique. An RGB PTM uses a separate biquadric 
polynomial for each of the three colors: red, green, and blue. This allows objects rendered with 
an RGB PTM to vary in color as the light position shifts. Thus, color-shifting materials such as 
holograms can be accurately reconstructed with an RGB PTM. 

The key to creating a PTM for these types of spatially varying materials is to capture images of 
them as lit from a variety of light source directions. Engineers at Hewlett-Packard have 
developed an instrumenta dome with multiple light sources and a camera mounted at the topto 
do just that. This device can automatically capture 50 images of the source material from a 
single fixed camera position as illuminated by light sources in different positions. A photograph 
of this picture-taking device is shown in Figure 14.4. 

Figure 14.4. A device for capturing images for the creation of 
polynomial texture maps (© Copyright 2003, Hewlett-Packard 

Development Company, L.P., reproduced with permission) 

 

 
The image data collected with this device is the basis for creating a PTM for the real-world 
texture of a material (e.g., automobile paints). These types of PTMs have four degrees of 
freedom. Two of these represent the spatially varying characteristics of the material. These two 
degrees of freedom are controlled by the 2D texture coordinates. The remaining two degrees of 
freedom represent the light direction. These are the two independent variables in the biquadric 
polynomial. 

A BRDF PTM is slightly different from a spatially varying PTM. BRDF PTMs model homogeneous 
materialsthat is, they do not vary spatially. BRDF PTMs use two degrees of freedom to 
represent the light direction, and the remaining two degrees of freedom represent the view 
direction. The parameterized light direction (Lu,Lv) is used for the independent variables of the 
biquadric polynomial, and the parameterized view direction (Vu,Vv) is used as the 2D texture 
coordinate. 

No single parameterization works well for all BRDF materials. A further refinement to enhance 
quality for BRDF PTMs for the materials we are trying to reproduce is to reparameterize the 
light and view vectors as half angle and difference vectors (Hu,Hv) and (Du,Dv). In the BRDF PTM 
shaders discussed in the next section, Hu and Hv are the independent variables of the biquadric 
polynomial, and (Du,Dv) is the 2D texture coordinate. A large part of the vertex shader's 
function is to calculate (Hu,Hv) and (Du,Dv). 



BRDF PTMs can be created as either LRGB or RGB PTMs. The upcoming example shows how an 
RGB BRDF PTM is rendered with OpenGL shaders. RGBA textures with 8 bits per component are 
used because the PTM file format and tools developed by HP are based on this format. 

14.4.1. Application Setup 

To render BRDF surfaces using the following shaders, the application must set up a few uniform 
variables. The vertex shader must be provided with values for uniform variables that describe 
the eye direction (i.e., an infinite viewer) and the position of a single light source (i.e., a point 
light source). The fragment shader requires the application to provide values for scaling and 
biasing the six polynomial coefficients. (These values were prescaled when the PTM was created 
to preserve precision, and they must be rescaled with the scale and bias factors that are 
specific to that PTM.) 

The application is expected to provide the surface normal, vertex position, tangent, and 
binormal in exactly the same way as the BRDF shader discussed in the previous section. Before 
rendering, the application should also set up seven texture maps: three 2D texture maps to 
hold the A, B, and C co-efficients for red, green, and blue components of the PTM; three 2D 
texture maps to hold the D, E, and F coefficients for red, green, and blue components of the 
PTM; and a 1D texture map to hold a lighting function. 

This last texture is set up by the application whenever the lighting state is changed. The light 
factor texture solves four problems: 

1. The light factor texture is indexed with LdotN, which is positive for front-facing vertices 
and negative for back-facing vertices. As a first level of complexity, the light texture can 
solve the front-facing/backfacing discrimination problem by being 1.0 for positive index 
values and 0.0 for back-facing values. 

2. We'd like to be able to light BRDF PTM shaded objects with colored lights. As a second 
level of complexity, the light texture (which has three channels, R, G, and B) uses a light 
color instead of 1.0 for positive index values. 

3. An abrupt transition from front-facing to back-facing looks awkward and unrealistic on 
rendered images. As a third level of complexity, we apply a gradual transition in the light 
texture values from 0 to 1.0. We use a sine or cosine curve to determine these gradual 
texture values. 

4. There is no concept of ambient light for PTM rendering. It can look very unrealistic to 
render back-facing pixels as (0,0,0). Instead of using 0 values for negative indices, we 
use values such as 0.1. 

14.4.2. Vertex Shader 

The BRDF PTM vertex shader is shown in Listing 14.8. This shader produces five varying values: 

gl_Position, as required by every vertex shader 

TexCoord, which is used to access our texture maps to get the two sets of polynomial 
coefficients 

Du, a float that contains the cosine of the angle between the light direction and the 
tangent vector 

Dv, a float that contains the cosine of the angle between the light direction and the 
binormal vector 



LdotN, a float that contains the cosine of the angle between the incoming surface normal 
and the light direction 

The shader assumes a viewer at infinity and one point light source. 

Listing 14.8. Vertex shader for rendering BRDF-based polynomial 
texture maps 

// 
// PTM vertex shader by Brad Ritter, Hewlett-Packard 
// and Randi Rost, 3Dlabs. 
// 
// © Copyright 2003 3Dlabs, Inc., and 
// Hewlett-Packard Development Company, L.P., 
// Reproduced with Permission 
// 
uniform vec3 LightPos; 
uniform vec3 EyeDir; 
attribute vec3 Tangent; 
attribute vec3 Binormal; 
 
varying float Du; 
varying float Dv; 
varying float LdotN; 
varying vec2  TexCoord; 
 
void main() 
{ 
 
    vec3 lightTemp; 
    vec3 halfAngleTemp; 
    vec3 tPrime; 
    vec3 bPrime; 
 
    // Transform vertex 
    gl_Position = ftransform(); 
    lightTemp = normalize(LightPos - gl_Vertex.xyz); 
 
    // Calculate the Half Angle vector 
    halfAngleTemp = normalize(EyeDir + lightTemp); 
 
    // Calculate T' and B' 
    //    T' = |T - (T.H)H| 
    tPrime = Tangent - (halfAngleTemp * dot(Tangent, halfAngleTemp)); 
    tPrime = normalize(tPrime); 
 
    //    B' = H x T' 
    bPrime = cross(halfAngleTemp, tPrime); 
 
    Du = dot(lightTemp, tPrime); 
    Dv = dot(lightTemp, bPrime); 
 
    // Multiply the Half Angle vector by NOISE_FACTOR 
    // to avoid noisy BRDF data 
    halfAngleTemp = halfAngleTemp * 0.9; 
 
    // Hu = Dot(HalfAngle, T) 
    // Hv = Dot(HalfAngle, B) 
    // Remap [-1.0..1.0] to [0.0..1.0] 
    TexCoord.s = dot(Tangent, halfAngleTemp) * 0.5 + 0.5; 
    TexCoord.t = dot(Binormal, halfAngleTemp) * 0.5 + 0.5; 
 



The light source position and eye direction are passed in as uniform variables by the 
application. In addition to the standard OpenGL vertex and normal vertex attributes, the 
application is expected to pass in a tangent and a binormal per vertex, as described in the 
previous section. These two generic attributes are defined with appropriate names in our vertex 
shader. 

The first line of the vertex shader transforms the incoming vertex value by the current 
modelview-projection matrix. The next line computes the light source direction for our 
positional light source by subtracting the vertex position from the light position. Because LightPos 
is defined as a vec3 and the built-in attribute gl_Vertex is defined as a vec4, we must use 
the .xyz component selector to obtain the first three elements of gl_Vertex before doing the 
vector subtraction operation. The result of the vector subtraction is then normalized and stored 
as our light direction. 

The following line of code computes the half angle by summing the eye direction vector and the 
light direction vector and normalizing the result. 

The next few lines of code compute the 2D parameterization of our half angle and difference 
vector. The goal here is to compute values for u (Du) and v (Dv) that can be plugged into the 
biquadric equation in our fragment shader. The technique we use is called Gram-Schmidt 
orthonormalization. H (half angle), T', and B' are the orthogonal axes of a coordinate system. T' 
and B' maintain a general alignment with the original T (tangent) and B (binormal) vectors. 
Where T and B lie in the plane of the triangle being rendered, T' and B' are in a plane 
perpendicular to the half angle vector. More details on the reasons for choosing H, T', and B' to 
define the coordinate system are available in the paper Interactive Rendering with Arbitrary 
BRDFs Using Separable Approximations by Jan Kautz and Michael McCool (1999). 

BRDF data often has noisy data values for extremely large incidence angles (i.e., close to 
180°), so in the next line of code, we avoid the noisy data in a somewhat unscientific manner 
by applying a scale factor to the half angle. This effectively causes these values to be ignored. 

Our vertex shader code then computes values for Hu and Hv and places them in the varying 
variable TexCoord. These are plugged into our biquadric equation in the fragment shader as the u 
and v values. These values hold our parameterized difference vector and are used to look up the 
required polynomial coefficients from the texture maps, so they are mapped into the range 
[0,1]. 

Finally, we compute a value that applies the lighting effect. This value is simply the cosine of 
the angle between the surface normal and the light direction. It is also mapped into the range 
[0,1] because it is the texture coordinate for accessing a 1D texture to obtain the lighting factor 
that is used. 

14.4.3. Fragment Shader 

The fragment shader for our BRDF PTM surface rendering is shown in Listing 14.9. 

Listing 14.9. Fragment shader for rendering BRDF-based polynomial 
texture maps 

    // "S" Text Coord3: Dot(Light, Normal); 
    LdotN = dot(lightTemp, gl_Normal) * 0.5 + 0.5; 
} 

 

// 



// PTM fragment shader by Brad Ritter, Hewlett-Packard 
// and Randi Rost, 3Dlabs. 
// 
// © Copyright 2003 3Dlabs, Inc., and 
// Hewlett-Packard Development Company, L.P., 
// Reproduced with Permission 
// 
uniform sampler2D ABCred;          // = 0 
uniform sampler2D DEFred;          // = 1 
uniform sampler2D ABCgrn;          // = 2 
uniform sampler2D DEFgrn;          // = 3 
uniform sampler2D ABCblu;          // = 4 
uniform sampler2D DEFblu;          // = 5 
uniform sampler1D Lighttexture;    // = 6 
 
uniform vec3 ABCscale, ABCbias; 
uniform vec3 DEFscale, DEFbias; 
 
varying float Du;        // passes the computed L*tPrime value 
varying float Dv;        // passes the computed L*bPrime value 
varying float LdotN;     // passes the computed L*Normal value 
varying vec2 TexCoord;   // passes s, t, texture coords 
 
void main() 
{ 
    vec3    ABCcoef, DEFcoef; 
    vec3    ptvec; 
 
    // Read coefficient values for red and apply scale and bias factors 
    ABCcoef = (texture2D(ABCred, TexCoord).rgb - ABCbias) * ABCscale; 
    DEFcoef = (texture2D(DEFred, TexCoord).rgb - DEFbias) * DEFscale; 
 
    // Compute red polynomial 
    ptvec.r = ABCcoef[0] * Du * Du + 
              ABCcoef[1] * Dv * Dv + 
              ABCcoef[2] * Du * Dv + 
              DEFcoef[0] * Du + 
              DEFcoef[1] * Dv + 
              DEFcoef[2]; 
 
    // Read coefficient values for green and apply scale and bias factors
    ABCcoef = (texture2D(ABCgrn, TexCoord).rgb - ABCbias) * ABCscale; 
    DEFcoef = (texture2D(DEFgrn, TexCoord).rgb - DEFbias) * DEFscale; 
 
    // Compute green polynomial 
    ptvec.g = ABCcoef[0] * Du * Du + 
              ABCcoef[1] * Dv * Dv + 
              ABCcoef[2] * Du * Dv + 
              DEFcoef[0] * Du + 
              DEFcoef[1] * Dv + 
              DEFcoef[2]; 
 
    // Read coefficient values for blue and apply scale and bias factors 
    ABCcoef = (texture2D(ABCblu, TexCoord).rgb - ABCbias) * ABCscale; 
    DEFcoef = (texture2D(DEFblu, TexCoord).rgb - DEFbias) * DEFscale; 
 
    // Compute blue polynomial 
    ptvec.b = ABCcoef[0] * Du * Du + 
              ABCcoef[1] * Dv * Dv + 
              ABCcoef[2] * Du * Dv + 
              DEFcoef[0] * Du + 
              DEFcoef[1] * Dv + 
              DEFcoef[2]; 



 

This shader is relatively straightforward if you've digested the information in the previous three 
sections. The values in the s and t components of TexCoord hold a 2D parameterization of the 
difference vector. TexCoord indexes into each of our coefficient textures and retrieves the values 
for the A, B, C, D, E, and F coefficients. The BRDF PTMs are stored as mipmap textures, and, 
because we're not providing a bias argument, the computed level-of-detail bias is just used 
directly. Using vector operations, we scale and bias the six coefficients by using values passed 
from the application through uniform variables. 

We then use these scaled, biased coefficient values together with our parameterized half angle 
(Du and Dv) in the biquadric polynomial to compute the red value for the surface. We repeat the 
process to compute the green and blue values as well. We compute the lighting factor by 
accessing the 1D light texture, using the cosine of the angle between the light direction and the 
surface normal. Finally, we multiply the lighting factor by our polynomial vector and use an 
alpha value of 1.0 to produce the final fragment color. 

The image in Color Plate 27B shows our BRDF PTM shaders rendering a torus with the BRDF 
PTM created for the Mystique Lacquer automotive paint. The basic color of this paint is black, 
but, in the orientation captured for the still image, the specular highlight shows up as mostly 
white with a reddish-brown tinge on one side of the highlight and a bluish tinge on the other. As 
the object is moved around or as the light is moved around, our BRDF PTM shaders properly 
render the shifting highlight color. 

    // Multiply result * light factor 
    ptvec *= texture1D(Lighttexture, LdotN).rgb; 
 
    // Assign result to gl_FragColor 
    gl_FragColor = vec4(ptvec, 1.0); 
} 

 

  



14.5. Summary 
This chapter looked at how shaders model the properties of light that arrives at a particular 
point on a surface. Light can be transmitted, reflected, or absorbed. We developed shaders that 
model the reflection and refraction of light based on an approximation to the Fresnel equations, 
a shader that simulates diffraction, and shaders that implement a bidirectional reflectance 
distribution function. Finally, we studied a shader that uses image-based methods to reproduce 
varying lighting conditions and self-shadowing for a variety of materials. 

Pardon the pun, but the shaders presented in this chapter (as well as in the preceding two 
chapters) only begin to scratch the surface of the realistic rendering effects that are possible 
with the OpenGL Shading Language. The hope is that by developing shaders to implement a 
few examples of lighting, shadows, and reflection, you will be equipped to survey the literature 
and implement a variety of similar techniques. The shaders we've developed can be further 
streamlined and optimized for specific purposes. 

  



14.6. Further Information 
A thorough treatment of reflectance and lighting models can be found in the book Real-Time 
Shading, by Marc Olano et al. (2002). Real-Time Rendering by Akenine-Möller and Haines also 
contains discussions of Fresnel reflection and the theory and implementation of BRDFs. The 
paper discussing the Fresnel approximation we've discussed was published by Christophe 
Schlick as part of Eurographics '94. Cg shaders that utilize this approximation are described in 
the Cg Tutorial and GPU Gems books. The diffraction shader is based on work presented by Jos 
Stam in a 1999 SIGGRAPH paper called Diffraction Shaders. Stam later developed a diffraction 
shader in Cg and discussed it in the book GPU Gems. 

The specific paper that was drawn upon heavily for the BRDF reflection section was Gregory 
Ward's Measuring and Modeling Anisotropic Reflection, which appeared in the 1992 SIGGRAPH 
conference proceedings. A classic early paper that set the stage for this work was the 1981 
SIGGRAPH paper, A Reflectance Model for Computer Graphics, by Cook and Torrance. 

The SIGGRAPH 2001 proceedings contain the paper Polynomial Texture Maps by Tom 
Malzbender, Dan Gelb, and Hans Wolters. Additional information is available at the Hewlett-
Packard Laboratories Web site, http://www.hpl.hp.com/ptm/. At this site, you can find example 
data files, a PTM viewing program, the PTM file format specification, and utilities to assist in 
creating PTMs. 

The book Physically-Based Rendering: From Theory to Implementation by Pharr and Humphreys 
is a thorough treatment of techniques for achieving realism in computer graphics. 
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Chapter 15. Noise 
In computer graphics, it's easy to make things look good. By definition, geometry is drawn and 
rendered precisely. However, when realism is a goal, perfection isn't always such a good thing. 
Real-world objects have dents and dings and scuffs. They show wear and tear. Computer 
graphics artists have to work hard to make a perfectly defined bowling pin look like it has been 
used and abused for 20 years in a bowling alley or to make a space ship that seems a little 
worse for wear after many years of galactic travel. 

This was the problem that Ken Perlin was trying to solve when he worked for a company called 
Magi in the early 1980s. Magi was working with Disney on a feature film called Tron that was 
the most ambitious film in its use of computer graphics until that time. Perlin recognized the 
"imperfection" of the perfectly rendered objects in that film, and he resolved to do something 
about it. 

In a seminal paper published in 1985, Perlin described a renderer that he had written that used 
a technique he called NOISE. His definition of noise was a little different from the everyday 
definition of noise. Normally, when we refer to noise, we're referring to something like a 
random pattern of pixels on a television channel with no signal (also called "snow") or to static 
on the radio on a frequency that doesn't have any nearby station broadcasting. 

But a truly random function like this isn't that useful for computer graphics. For computer 
graphics, we need a function that is repeatable so that an object can be drawn from different 
view angles. We also need the ability to draw the object the same way, frame after frame, in an 
animation. Truly random functions do not depend on any input values, so an object rendered 
with such a function would look different each time it was drawn. 

The visual artifacts caused by this type of rendering would look horrible as the object was 
moved about the screen. What is needed is a function that produces the same output value for 
a given input value every time and yet gives the appearance of randomness. This function also 
needs to be continuous at all levels of detail. 

Perlin was the first to come up with a usable function for that purpose. Since then, a variety of 
similar noise functions have been defined and used in combinations to produce interesting 
rendering effects such as 

Rendering natural phenomena (clouds, fire, smoke, wind effects, etc.) 

Rendering natural materials (marble, granite, wood, mountains, etc.) 

Rendering man-made materials (stucco, asphalt, cement, etc.) 

Adding imperfections to perfect models (rust, dirt, smudges, dents, etc.) 

Adding imperfections to perfect patterns (wiggles, bumps, color variations, etc.) 

Adding imperfections to time periods (time between blinks, amount of change between 
successive frames, etc.) 

Adding imperfections to motion (wobbles, jitters, bumps, etc.) 

Actually, the list is endless. Today, most rendering libraries include support for Perlin noise or 
something nearly equivalent. It is a staple of realistic rendering, and it's been heavily used in 



 

the generation of computer graphics images for the movie industry. For his groundbreaking 
work in this area, Perlin was presented with an Academy Award for technical achievement in 
1997. 

Because noise is such an important technique, it is included as a built-in function in the OpenGL 
Shading Language. There are several ways to make use of noise within a fragment shader. 
After laying the groundwork for noise, we take a look at several shader examples that depend 
on noise to achieve an interesting effect. 

  



 
  

15.1. Noise Defined 
The purpose of this section is not to explain the mathematical underpinnings of noise but to 
provide enough of an intuitive feel that you can grasp the noise-based OpenGL shaders 
presented in the chapter and then use the OpenGL Shading Language to create additional 
noise-based effects. For a deeper understanding of noise functions, consult the references listed 
at the end of this chapter, especially Texturing and Modeling: A Procedural Approach, Third 
Edition, by Ebert et al., which contains several significant discussions of noise, including a 
description by Perlin of his original noise function. In that book, Darwyn Peachey also provides a 
taxonomy of noise functions called Making Noises. The application of different noise functions 
and combinations of noise functions are discussed by Ken Musgrave in his section on building 
procedural planets. 

As Perlin describes it, you can think of noise as "seasoning" for graphics. It often helps to add a 
little noise, but noise all by itself isn't all that appealing. A perfect model looks a little less 
perfect and, therefore, a little more realistic if some subtle noise effects are applied. 

The ideal noise function has some important qualities. 

It is a continuous function that gives the appearance of randomness. 

It is a function that is repeatable (i.e., it generates the same value each time it is 
presented with the same input). 

It has a well-defined range of output values (usually the range is [1,1] or [0,1]). 

It results in values that do not show obvious regular patterns or periods. 

It is a function whose small-scale form is roughly independent of large-scale position. 

It is a function that is isotropic (i.e., its statistical character is rotationally invariant). 

It can be defined for 1, 2, 3, 4, or even more dimensions. 

This definition of noise provides an irregular primitive that adds variety or an apparent element 
of "randomness" to a regular pattern or period. It can be used as part of modeling, rendering, 
or animation. Its characteristics make it a valuable tool for creating a variety of interesting 
effects. Algorithms for creating noise functions make various trade-offs in quality and 
performance, so they meet the preceding criteria with varying degrees of success. 

We can construct a simple noise function (called VALUE NOISE by Peachey) by first assigning a 
pseudorandom number in the range [1,1] to each integer value along the x axis, as shown in 
Figure 15.1, and then smoothly interpolating between these points, as shown in Figure 15.2. 
The function is repeatable in that, for a given input value, it always returns the same output 
value. 

Figure 15.1. A discrete 1D noise function 



 

 
Figure 15.2. A continuous 1D noise function 

 

 
A key choice to be made in this type of noise function is the method used to interpolate 
between successive points. Linear interpolation is not good enough, because the resulting noise 
pattern shows obvious artifacts. A cubic interpolation method is usually used to produce 
smooth-looking results. 

By varying the frequency and the amplitude, you can get a variety of noise functions (see 
Figure 15.3). 

Figure 15.3. Varying the frequency and the amplitude of the noise 
function 

[View full size image] 



 

 
As you can see, the "features" in these functions get smaller and closer together as the 
frequency increases and the amplitude decreases. When two frequencies are related by a ratio 
of 2:1, it's called an OCTAVE. Figure 15.3 illustrates five octaves of the 1D noise function. These 
images of noise don't look all that useful, but by themselves they can provide some interesting 
characteristics to shaders. If we add the functions at different frequencies (see Figure 15.4), we 
start to see something that looks even more interesting. 

Figure 15.4. Result of summing noise functions of different amplitude 
and frequency 



 

 
The result is a function that contains features of various sizes. The larger bumps from the 
lower-frequency functions provide the overall shape, whereas the smaller bumps from the 
higher-frequency functions provide detail and interest at a smaller scale. The function that 
results from summing the noise of consecutive octaves, each at half the amplitude of the 
previous octave, was called 1/f noise by Perlin, but the terms "fractional Brownian motion" and 
"fBm" are used more commonly today. 

If you sum octaves of noise in a procedural shader, at some point you will begin to add 



frequencies that cause aliasing artifacts. Algorithms for antialiasing noise functions typically 
stop adding detail (higher-frequency noise) before this occurs. This is another key aspect of the 
noise functionit can be faded to the average value at the point at which aliasing artifacts would 
begin to occur. 

The noise function defined by Perlin (PERLIN NOISE) is sometimes called gradient noise. It is 
defined as a function whose value is 0 at each integer input value, and its shape is created by 
defining a pseudorandom gradient vector for the function at each of these points. The 
characteristics of this noise function make it a somewhat better choice, in general, for the 
effects we're after (see Ebert et al. (2002) for details). It is used for the implementation of the 
noise function in RenderMan, and it is also intended to be used for implementations of the noise 
function built into the OpenGL Shading Language. 

Lots of other noise functions have been defined, and there are many ways to vary the basic 
ideas. The examples of Perlin noise shown previously have a frequency multiplier of 2, but it 
can be useful to use a frequency multiplier, such as 2.21, that is not an integer value. This 
frequency multiplier is called the LACUNARITY of the function. The word comes from the Latin word 
lacuna, which means gap. Using a value larger than 2 allows us to build up more "variety" more 
quickly (e.g., by summing fewer octaves to achieve the same apparent visual complexity). 
Similarly, it is not necessary to divide the amplitude of each successive octave by 2. 

Summed noise functions are the basis for the terrain and features found in the planet-building 
software package MojoWorld from Pandromeda. In Texturing and Modeling: A Procedural 
Approach, Ken Musgrave defines a fractal as "a geometrically complex object, the complexity of 
which arises through the repetition of a given form over a range of scales." The relationship 
between the change in frequency and the change in amplitude determines the fractal dimension 
of the resulting function. If we use a noise function as the basis for generating a terrain model, 
we can take steps to make it behave differently at different locations. For instance, natural 
terrain has plains, rolling hills, foothills, and mountains. Varying the fractal dimension based on 
location can create a similar appearancesuch a function is called a MULTIFRACTAL. 

You can achieve interesting effects by using different noise functions for different situations or 
by combining noise functions of different types. It's not that easy to visualize in advance the 
results of calculations that depend on noise values, so varied experience will be a key ally as 
you try to achieve the effect you're after. 

15.1.1. 2D Noise 

Armed with a basic idea of what the noise function looks like in one dimension, we can take a 
look at two-dimensional noise. Figure 15.5 contains images of 2D Perlin noise at various 
frequencies mapped into the range [0,1] and displayed as a grayscale image. Each successive 
image is twice the frequency of the previous one. In each image, the contrast has been 
enhanced to make the peaks brighter and the valleys darker. In actual use, each subsequent 
image has an average that is half the previous one and an amplitude that is half the previous 
one. If we were to print images of the actual values, the images would be much grayer and it 
would be harder to see what 2D noise really looks like. 

Figure 15.5. Basic 2D noise, at frequencies 4, 8, 16, and 32 (contrast 
enhanced) 

 



 

 
As in the 1D case, adding the different frequency functions provides more interesting results 
(Figure 15.6). 

Figure 15.6. Summed noise, at 1, 2, 3, and 4 octaves (contrast 
enhanced) 

 

 
The first image in Figure 15.6 is exactly the same as the first image in Figure 15.5. The second 
image in Figure 15.6 is the sum of the first image in Figure 15.6 plus half of the second image 
in Figure 15.5 shifted so that its average intensity value is 0. This causes intensity to be 
increased in some areas and decreased in others. The third image in Figure 15.6 adds the third 
octave of noise to the first two, and the fourth image in Figure 15.6 adds the fourth octave. The 
fourth picture is starting to look a little bit like clouds in the sky. 

15.1.2. Higher Dimensions of Noise 

3D and 4D noise functions are obvious extensions of the 1D and 2D functions. It's a little hard 
to generate pictures of 3D noise, but the images in Figure 15.5 can be thought of as 2D slices 
out of a 3D noise function. Neighboring slices have continuity between them. 

Often, a higher dimension of noise is used to control the time aspect of the next lower-
dimension noise function. For instance, 1D noise can add some wiggle to otherwise straight 
lines in a drawing. If you have a 2D noise function, one dimension can control the wiggle, and 
the second dimension can animate the effect (i.e., make the wiggles move in successive 
frames). Similarly, a 2D noise function can create a 2D cloud pattern, whereas a 3D noise 
function can generate the 2D cloud pattern and animate it in a realistic way. With a 4D noise 
function, you can create a 3D object like a planet and use the fourth dimension to watch it 
evolve in "fits and starts." 

15.1.3. Using Noise in OpenGL Shaders 

You include noise in an OpenGL shader in three ways: 

1. Use the OpenGL Shading Language built-in noise function. 

2. Write your own noise function in the OpenGL Shading Language. 

3. Use a texture map to store a previously computed noise function. 

With today's graphics hardware, option 3 typically gives the best performance, so in this 
chapter, we look at some shaders based on this approach. In the next chapter, we look at a 
shader that uses the built-in noise function to animate geometry. The important thing is to 
realize the usefulness of noise in computer-generated imagery. 

  



15.2. Noise Textures 
The programmability offered by the OpenGL Shading Language lets us use values stored in 
texture memory in new and unique ways. We can precompute a noise function and save it in a 
1D, 2D, or 3D texture map. We can then access this texture map (or texture maps) from within 
a shader. Because textures can contain up to four components, we can use a single texture 
map to store four octaves of noise or four completely separate noise functions. 

Listing 15.1 shows a C function that generates a 3D noise texture. This function creates an 
RGBA texture with the first octave of noise stored in the red texture component, the second 
octave stored in the green texture component, the third octave stored in the blue component, 
and the fourth octave stored in the alpha component. Each octave has twice the frequency and 
half the amplitude as the previous one. 

This function assumes the existence of a noise3 function that can generate 3D noise values in the 
range [1,1]. If you want, you can start with Perlin's C implementation (available from 
http://www.texturingandmodeling.com/CODE/PERLIN/PERLIN.C). John Kessenich made some 
small changes to this code (adding a setNoiseFrequency function) to produce noise values that 
wrap smoothly from one edge of the array to the other. This means we can use the texture with 
the wrapping mode set to GL_REPEAT, and we won't see any discontinuities in the function 
when it wraps. The revised version of the code is in a program from 3Dlabs called GLSLdemo, 
and the source code for this example program can be downloaded from the 3Dlabs Web site at 
http://developer.3dlabs.com. 

Listing 15.1. C function to generate a 3D noise texture 

int noise3DTexSize = 128; 
GLuint noise3DTexName = 0; 
GLubyte *noise3DTexPtr; 
 
void make3DNoiseTexture(void) 
{ 
    int f, i, j, k, inc; 
    int startFrequency = 4; 
    int numOctaves = 4; 
    double ni[3]; 
    double inci, incj, inck; 
    int frequency = startFrequency; 
    GLubyte *ptr; 
    double amp = 0.5; 
 
    if ((noise3DTexPtr = (GLubyte *) malloc(noise3DTexSize * 
                                            noise3DTexSize * 
                                            noise3DTexSize * 4)) == NULL) 
    { 
         fprintf(stderr,"ERROR: Could not allocate 3D noise texture\n"); 
         exit(1); 
    } 
 
    for (f = 0, inc = 0; f < numOctaves; 
         ++f, frequency *= 2, ++inc, amp *= 0.5) 
    { 
        setNoiseFrequency(frequency); 
        ptr = noise3DTexPtr; 
        ni[0] = ni[1] = ni[2] = 0; 
 
        inci = 1.0 / (noise3DTexSize / frequency); 



This function computes noise values for four octaves of noise and stores them in a 3D RGBA 
texture of size 128 x 128 x 128. This code also assumes that each component of the texture is 
stored as an 8-bit integer value. The first octave has a frequency of 4 and an amplitude of 0.5. 
In the innermost part of the loop, we call the noise3 function to generate a noise value based on 
the current value of ni. The noise3 function returns a value in the range [1,1], so by adding 1, we 
end up with a noise value in the range [0,2]. Multiplying by our amplitude value of 0.5 gives a 
value in the range [0,1]. Finally, we multiply by 128 to give us an integer value in the range 
[0,128] that can be stored in the red component of a texture. (When accessed from within a 
shader, the value is a floating-point value in the range [0,0.5]. 

The amplitude value is cut in half and the frequency is doubled in each pass through the loop. 
The result is that integer values in the range [0,64] are stored in the green component of the 
noise texture, integer values in the range [0,32] are stored in the blue component of the noise 
texture, and integer values in the range [0,16] are stored in the alpha component of the 
texture. We generated the images in Figure 15.5 by looking at each of these channels 
independently after scaling the values by a constant value that allowed them to span the 
maximum intensity range (i.e., integer values in the range [0,255] or floating-point values in 
the range [0,1]). 

After the values for the noise texture are computed, the texture can be provided to the graphics 
hardware with the code in Listing 15.2. First, we pick a texture unit and bind to it the 3D 
texture we've created. We set up its wrapping parameters so that the texture wraps in all three 
dimensions. This way, we always get a valid result for our noise function no matter what input 
values are used. We still have to be somewhat careful to avoid using the texture in a way that 
makes obvious repeating patterns. The next two lines set the texture filtering modes to linear 
because the default is mipmap linear and we're not using mipmap textures here. (Using a 
mipmap texture might be appropriate in some circumstances, but we are controlling the scaling 
factors from within our noise shaders, so a single texture is sufficient.) When all the parameters 
are set up, we can download the noise texture to the hardware by using the glTexImage3D 
function. 

Listing 15.2. A function for activating the 3D noise texture 

        for (i = 0; i < noise3DTexSize; ++i, ni[0] += inci) 
        { 
            incj = 1.0 / (noise3DTexSize / frequency); 
            for (j = 0; j < noise3DTexSize; ++j, ni[1] += incj) 
            { 
                inck = 1.0 / (noise3DTexSize / frequency); 
               for (k = 0; k < noise3DTexSize; ++k, ni[2] += inck, ptr+= 4)
                { 
                   *(ptr+inc) = (GLubyte)(((noise3(ni)+1.0) * amp)*128.0); 
                } 
            } 
        } 
    } 
} 

 

void init3DNoiseTexture() 
{ 
    glGenTextures(1, &noise3DTexName); 
 
    glActiveTexture(GL_TEXTURE6); 
    glBindTexture(GL_TEXTURE_3D, noise3DTexName); 
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT); 
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT); 



 

This is an excellent approach if the period of repeatability can be avoided in the final rendering. 
One way to avoid it is to make sure that no texture value is accessed more than once when the 
target object is rendered. For instance, if a 128 x 128 x 128 texture is being used and the 
position on the object is used as the input to the noise function, the repeatability won't be 
visible if the entire object fits within the texture. 

    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT); 
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); 
    glTexParameterf(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
 
    glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA, noise3DTexSize, 
                    noise3DTexSize, noise3DTexSize, 0, GL_RGBA, 
                    GL_UNSIGNED_BYTE, noise3DTexPtr); 
} 

 

  



15.3. Trade-offs 
As previously mentioned, three methods can be used to generate noise values in a shader. How 
do you know which is the best choice for your application? A lot depends on the underlying 
implementation, but generally speaking, if we assume a hardware computation of noise that 
does not use texturing, the points favoring usage of the OpenGL Shading Language built-in noise 
function are the following. 

It doesn't consume any texture memory (a 128 x 128 x 128 texture map stored as RGBA 
with 8 bits per component uses 8MB of texture memory). 

It doesn't use a texture unit (texture units are a scarce resource if the hardware supports 
only 2 or 4 of them). 

It is a continuous function rather than a discrete one, so it does not look "pixelated" no 
matter what the scaling is. 

The repeatability of the function should be undetectable, especially for 2D and 3D noise 
(but it depends on the hardware implementation). 

Shaders written with the built-in noise function don't depend on the application to set up 
appropriate textures. 

The advantages of using a texture map to implement the noise function are as follows. 

Because the noise function is computed by the application, the application has total 
control of this function and can ensure matching behavior on every hardware platform. 

You can store four noise values (i.e., one each for the R, G, B, and A values of the 
texture) at each texture location. This lets you precompute four octaves of noise, for 
instance, and retrieve all four values with a single texture access. 

Accessing a texture map may be faster than calling the built-in noise function. 

User-defined functions can implement noise functions that provide a different appearance from 
that of the built-in noise function. A user-defined function can also provide matching behavior 
on every platform, whereas the built-in noise function cannot (at least not until all graphics 
hardware developers support the noise function in exactly the same way.) But hardware 
developers will optimize the built-in noise function, perhaps accelerating it with special hardware, 
so it is apt to be faster than user-defined noise functions. 

In the long run, using the built-in noise function or user-defined noise functions will be the way 
to go for most applications. This will result in noise that doesn't show a repetitive pattern, has 
greater numerical precision, and doesn't use up any texture resources. Applications that want 
full control over the noise function and can live within the constraints of a fixed-size noise 
function can be successful using textures for their noise. With current generation hardware, 
noise textures may also provide better performance and require fewer instructions in the 
shader. 

  



15.4. A Simple Noise Shader 
Now we put all these ideas into some OpenGL shaders that do some interesting rendering for 
us. The first shader we look at uses noise in a simple way to produce a cloud effect. 

15.4.1. Application Setup 

Very little needs to be passed to the noise shaders discussed in this section and in Section 15.5 
and Section 15.6. The vertex position must be passed in as always, and the surface normal is 
needed for performing lighting computations. Colors and scale factors are parameterized as 
uniform variables for the various shaders. 

15.4.2. Vertex Shader 

The code shown in Listing 15.3 is the vertex shader that we use for the four noise fragment 
shaders that follow. It is fairly simple because it really only needs to accomplish three things. 

1. As in all vertex shaders, our vertex shader transforms the incoming vertex value and 
stores it in the built-in varying variable gl_Position. 

2. Using the incoming normal and the uniform variable LightPos, the vertex shader computes 
the light intensity from a single white light source and applies a scale factor of 1.5 to 
increase the amount of illumination. 

3. The vertex shader scales the incoming vertex value and stores it in the varying variable 
MCposition. This value is available to us in our fragment shader as the modeling coordinate 
position of the object at every fragment. It is an ideal value to use as the input for our 3D 
texture lookup. 

No matter how the object is drawn, fragments always produce the same position values (or 
very close to them); therefore, the noise value obtained for each point on the surface is also 
the same (or very close to it). The application can set a uniform variable called Scale to optimally 
scale the object in relationship to the size of the noise texture. 

Listing 15.3. Cloud vertex shader 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform vec3  LightPos; 
uniform float Scale; 
 
void main() 
{ 
    vec3 ECposition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    MCposition      = vec3(gl_Vertex) * Scale; 
    vec3 tnorm      = normalize(vec3(gl_NormalMatrix * gl_Normal)); 
    LightIntensity  = dot(normalize(LightPos - ECposition), tnorm); 
    LightIntensity *= 1.5; 
    gl_Position     = ftransform(); 
} 

 



 

15.4.3. Fragment Shader 

After we've computed a noise texture and used OpenGL calls to download it to the graphics 
card, we can use a fairly simple fragment shader together with the vertex shader described in 
the previous section to make an interesting "cloudy sky" effect (see Listing 15.4). This shader 
results in something that looks like the sky on a mostly cloudy day. You can experiment with 
the color values to get a result that is visually pleasing. 

This fragment shader receives as input the two varying variablesLightIntensity and MCpositionthat 
were computed by the vertex shader shown in the previous section. These values were 
computed at each vertex by the vertex shader and then interpolated across the primitive by the 
rasterization hardware. Here, in our fragment shader, we have access to the interpolated value 
of each of these variables at every fragment. 

The first line of code in the shader performs a 3D texture lookup on our 3D noise texture to 
produce a four-component result. We compute the value of intensity by summing the four 
components of our noise texture. This value is then scaled by 1.5 and used to perform a linear 
blend between two colors: white and sky blue. The four channels in our noise texture have 
mean values of 0.25, 0.125, 0.0625, and 0.03125. An additional 0.03125 term is added to 
account for the average values of all the octaves at higher frequencies. You can think of this as 
fading to the average values of all the higher frequency octaves that aren't being included in 
the calculation, as described earlier in Section 15.1. Scaling the sum by 1.5 stretches the 
resulting value to use up more of the range from [0,1]. 

The computed color is then scaled by LightIntensity value to simulate a diffuse surface lit by a 
single light source. The result is assigned to the built-in variable gl_FragColor with an alpha value 
of 1.0 to produce the color value that is used by the remainder of the OpenGL pipeline. An 
object rendered with this shader is shown in Color Plate 24. Notice that the texture on the 
teapot looks a lot like the final image in Figure 15.6. 

Listing 15.4. Fragment shader for cloudy sky effect 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform sampler3D Noise; 
uniform vec3 SkyColor;     // (0.0, 0.0, 0.8) 
uniform vec3 CloudColor;   // (0.8, 0.8, 0.8) 
 
void main() 
{ 
    vec4  noisevec  = texture3D(Noise, MCposition); 
 
    float intensity = (noisevec[0] + noisevec[1] + 
                       noisevec[2] + noisevec[3] + 0.03125) * 1.5; 
 
    vec3 color   = mix(SkyColor, CloudColor, intensity) * LightIntensity;
    gl_FragColor = vec4(color, 1.0); 
} 

 

  



15.5. Turbulence 
We can obtain some additional interesting effects by taking the absolute value of the noise 
function. This technique introduces a discontinuity of the derivative because the function folds 
on itself when it reaches 0 (see Figure 5.2 for an illustration of the absolute value function). 
When this folding is done to noise functions at several frequencies and the results are summed, 
the result is cusps or creases in the texture at various scales. Perlin started referring to this 
type of noise as TURBULENCE because it is reminiscent of turbulent flow. It shows up in a variety 
of places in nature, so this type of noise can be used to simulate various things like flames or 
lava. The two-dimensional appearance of this type of noise is shown in Figure 15.7. 

Figure 15.7. Absolute value noise or "turbulence" 

 

 
15.5.1. Sun Surface Shader 

We can achieve an effect that looks like a pit of hot molten lava or the surface of the sun by 
using the same vertex shader as the cloud shader and a slightly different fragment shader. The 
main difference is that we scale each noise value and shift it over so that it is centered at 0; 
then we take its absolute value. After summing the values, we scale the result again to occupy 
nearly the full range of [0,1]. We clamp this value and use it to mix between yellow and red to 
get the result shown in Color Plate 24 (see Listing 15.5). (In Chapter 16, we examine some 
ways of animating these textures to make them more interesting.) 

Listing 15.5. Sun surface fragment shader 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform sampler3D Noise; 
uniform vec3 Color1;       // (0.8, 0.7, 0.0) 
uniform vec3 Color2;       // (0.6, 0.1, 0.0) 
uniform float NoiseScale;  // 1.2 
 
void main() 
{ 
    vec4 noisevec = texture3D(Noise, MCposition * NoiseScale); 
 
 
    float intensity = abs(noisevec[0] - 0.25) + 
                      abs(noisevec[1] - 0.125) + 
                      abs(noisevec[2] - 0.0625) + 



 

15.5.2. Marble 

Yet another variation on the noise function is to use it as part of a periodic function such as 
sine. By adding noise to the input value for the sine function, we get a "noisy" oscillating 
function. We use this to create a look similar to the alternating color veins of some types of 
marble. Listing 15.6 shows the fragment shader to do it. Again, we use the same vertex shader. 
Results of this shader are also shown in Color Plate 24. 

Listing 15.6. Fragment shader for marble 

                      abs(noisevec[3] - 0.03125); 
 
    intensity    = clamp(intensity * 6.0, 0.0, 1.0); 
    vec3 color   = mix(Color1, Color2, intensity) * LightIntensity; 
    gl_FragColor = vec4(color, 1.0); 
} 

 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform sampler3D Noise; 
uniform vec3 MarbleColor; 
uniform vec3 VeinColor; 
 
void main() 
{ 
    vec4 noisevec   = texture3D(Noise, MCposition); 
 
    float intensity = abs(noisevec[0] - 0.25) + 
                      abs(noisevec[1] - 0.125) + 
                      abs(noisevec[2] - 0.0625) + 
                      abs(noisevec[3] - 0.03125); 
 
    float sineval = sin(MCposition.y * 6.0 + intensity * 12.0) * 0.5 + 0.5;
    vec3 color    = mix(VeinColor, MarbleColor, sineval) * LightIntensity; 
    gl_FragColor   = vec4(color, 1.0); 
} 

 

  



15.6. Granite 
With noise, it's also easy just to try and make stuff up. In this example, I wanted to simulate a 
grayish rocky material with small black specks. To generate a relatively high-frequency noise 
texture, I used only the fourth component (the highest frequency one). I scaled it by an 
arbitrary amount to provide an appropriate intensity level and then used this value for each of 
the red, green, and blue components. The shader in Listing 15.7 generates an appearance 
similar to granite, as shown in Color Plate 24. 

Listing 15.7. Granite fragment shader 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform sampler3D Noise; 
uniform float NoiseScale; 
 
void main() 
{ 
    vec4  noisevec  = texture3D(Noise, NoiseScale * MCposition); 
    float intensity = min(1.0, noisevec[3] * 18.0); 
    vec3  color     = vec3(intensity * LightIntensity); 
    gl_FragColor    = vec4(color, 1.0); 
} 

 

  



15.7. Wood 
We can do a fair approximation of wood with this approach as well. In Advanced Renderman, 
Apodaca and Gritz describe a model for simulating the appearance of wood. We can adapt their 
approach to create wood shaders in the OpenGL Shading Language. Here are the basic ideas 
behind the wood fragment shader shown in Listing 15.8. 

The wood is composed of light and dark areas alternating in concentric cylinders 
surrounding a central axis. 

Noise is added to warp the cylinders to create a more natural looking pattern. 

The center of the "tree" is taken to be the y-axis. 

Throughout the wood, a high-frequency grain pattern gives the appearance of wood that 
has been sawed, exposing the open grain nature of the wood. 

The wood shader uses the same vertex shader as the other noise-based shaders discussed in 
this chapter. 

15.7.1. Application Setup 

The wood shaders don't require too much from the application. The application is expected to 
pass in a vertex position and a normal per vertex, using the usual OpenGL entry points. In 
addition, the vertex shader takes a light position and a scale factor that are passed in as 
uniform variables. The fragment shader takes a number of uniform variables that parameterize 
the appearance of the wood. 

The uniform variables needed for the wood shaders are initialized as follows: 

 
15.7.2. Fragment Shader 

Listing 15.8 shows the fragment shader for procedurally generated wood. 

Listing 15.8. Fragment shader for wood 

LightPos 0.0, 0.0, 4.0 

Scale 2.0 

LightWood 0.6, 0.3, 0.1 

DarkWood 0.4, 0.2, 0.07 

RingFreq 4.0 

LightGrains 1.0 

DarkGrains 0.0 

GrainThreshold 0.5 

NoiseScale 0.5, 0.1, 0.1 

Noisiness 3.0 

GrainScale 27.0 



As you can see, we've parameterized quite a bit of this shader through the use of uniform 
variables to make it easy to manipulate through the application's user interface. As in many 
procedural shaders, the object position is the basis for computing the procedural texture. In this 
case, the object position is multiplied by NoiseScale (a vec3 that allows us to scale the noise 
independently in the x, y, and z directions), and the computed value is used as the index into 
our 3D noise texture. The noise values obtained from the texture are scaled by the value 
Noisiness, which allows us to increase or decrease the contribution of the noise. 

Our tree is assumed to be a series of concentric rings of alternating light wood and dark wood. 
To give some interest to our grain pattern, we add the noise vector to our object position. This 
has the effect of adding our low frequency (first octave) noise to the x coordinate of the position 
and the third octave noise to the z coordinate (the y coordinate won't be used). The result is 
rings that are still relatively circular but have some variation in width and distance from the 
center of the tree. 

To compute where we are in relation to the center of the tree, we square the x and z 
components and take the square root of the result. This gives us the distance from the center of 
the tree. The distance is multiplied by RingFreq, a scale factor that gives the wood pattern more 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform sampler3D Noise; 
 
uniform vec3  LightWood; 
uniform vec3  DarkWood; 
uniform float RingFreq; 
uniform float LightGrains; 
uniform float DarkGrains; 
uniform float GrainThreshold; 
uniform vec3  NoiseScale; 
uniform float Noisiness; 
uniform float GrainScale; 
 
void main() 
{ 
    vec3 noisevec = vec3(texture3D(Noise, MCposition * NoiseScale) * 
                                                 Noisiness); 
    vec3 location = MCposition + noisevec; 
 
    float dist = sqrt(location.x * location.x + location.z * location.z); 
    dist *= RingFreq; 
 
    float r = fract(dist + noisevec[0] + noisevec[1] + noisevec[2]) * 2.0;
 
    if (r > 1.0) 
        r = 2.0 - r; 
 
    vec3 color = mix(LightWood, DarkWood, r); 
 
    r = fract((MCposition.x + MCposition.z) * GrainScale + 0.5); 
    noisevec[2] *= r; 
    if (r < GrainThreshold) 
        color += LightWood * LightGrains * noisevec[2]; 
    else 
        color -= LightWood * DarkGrains * noisevec[2]; 
    color *= LightIntensity; 
    gl_FragColor = vec4(color, 1.0); 
} 

 



 

rings or fewer rings. 

Following this, we attempt to create a function that goes from 0 up to 1.0 and then back down 
to 0. We add three octaves of noise to the distance value to give more interest to the wood 
grain pattern. We could compute different noise values here, but the ones we've already 
obtained will do just fine. Taking the fractional part of the resulting value gives us a function 
that ranges from [0,1). Multiplying this value by 2.0 gives us a function that ranges from [0,2). 
And finally, by subtracting 1.0 from values that are greater than 1.0, we get our desired 
function that varies from 0 to 1.0 and back to 0. 

We use this "triangle" function to compute the basic color for the fragment, using the built-in 
mix function. The mix function linearly blends LightWood and DarkWood according to our computed 
value r. 

At this point, we would have a pretty nice result for our wood function, but we attempt to make 
it a little better by adding a subtle effect to simulate the look of open-grain wood that has been 
sawed. (You may not be able to see this effect on the object shown in Color Plate 25.) 

Our desire is to produce streaks that are roughly parallel to the y-axis. So we add the x and z 
coordinates, multiply by the GrainScale factor (another uniform variable that we can adjust to 
change the frequency of this effect), add 0.5, and take the fractional part of the result. Again, 
this gives us a function that varies from [0,1), but for the default values for GrainScale (27.0) and 
RingFreq (4.0), this function for r goes from 0 to 1.0 much more often than our previous function 
for r. 

We could just make our "grains" go linearly from light to dark but we try something a little 
more subtle. We multiply the value of r by our third octave noise value to produce a value that 
increases nonlinearly. Finally, we compare our value of r to the GrainThreshold value (default is 
0.5). If the value of r is less than GrainThreshold, we modify our current color by adding to it a 
value we computed by multiplying the LightWood color, the LightGrains color, and our modified 
noise value. Conversely, if the value of r is greater than GrainThreshold, we modify our current 
color by subtracting from it a value we computed by multiplying the DarkWood color, the 
DarkGrains color, and our modified noise value. (By default, the value of LightGrains is 1.0, and the 
value of DarkGrains is 0, so we don't actually see any change if r is greater than GrainThreshold.) 

You can play around with this effect and see if it really does help the appearance. It seemed to 
me that it added to the effect of the wood texture for the default settings I've chosen, but there 
probably is a way to achieve a better effect more simply. 

With our final color computed, all that remains is to multiply the color by the interpolated 
diffuse lighting factor and add an alpha value of 1.0 to produce our final fragment value. The 
results of our shader are applied to a bust of Beethoven in Color Plate 25. 

  



15.8. Summary 
This chapter introduced noise, an incredibly useful function for adding irregularity to procedural 
shaders. After a brief description of the mathematical definition of this function, we used it as 
the basis for shaders that simulated clouds, turbulent flow, marble, granite, and wood. The 
noise function is available as a built-in function in the OpenGL Shading Language. Noise 
functions can also be created with user-defined shader functions or textures. However it is 
implemented, noise can increase the apparent realism of an image or an animation by adding 
imperfections, complexity, and an element of apparent randomness. 

  



15.9. Further Information 
Ken Perlin has a tutorial and history of the noise function as well as a recent reference 
implementation in the Java programming language at his Web site 
(http://www.noisemachine.com). A lot of other interesting things are available on Ken's home 
page at NYU (http://mrl.nyu.edu/~perlin). His paper, An Image Synthesizer, appeared in the 
1985 SIGGRAPH proceedings, and his improvements to the original algorithm were published in 
the paper Improving Noise as part of SIGGRAPH 2002. He also described a clever method for 
combining two small 3D textures to get a large 3D Perlin-like noise function in the article 
Implementing Improved Perlin Noise in the book GPU Gems. 

The book Texturing & Modeling: A Procedural Approach, Third Edition, by David S. Ebert et al. 
(2000) contains several excellent discussions on noise, and that book's Web site, 
http://www.texturingandmodeling.com contains C source code for a variety of noise functions 
that appear in the book, including Perlin's original noise function. Perlin has written a chapter 
for that book that provides more depth on his noise algorithm, and Ken Musgrave explores 
breathtakingly beautiful mathematical worlds based on a variety of noise functions. Planet-
building software built on these ideas is available from Musgrave's company, Pandromeda, at 
http://www.pandromeda.com. In Chapter 2 of that book, Darwyn Peachey describes a variety 
of noise functions, and in Chapter 7, David Ebert describes an approach similar to the 3D 
texturing approach described previously. Advanced RenderMan: Creating CGI for Motion 
Pictures by Tony Apodaca and Larry Gritz (1999) also contains a discussion of noise and 
presents some excellent noise-based RenderMan shaders. 
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Chapter 16. Animation 
Animation can explain whatever the mind of man can conceive. This facility makes it 
the most versatile and explicit means of communication yet devised for quick mass 
appreciation. 

Walt Disney 

As Walt Disney noted, animation is largely about explanation. Rotating an object provides 
information about shape and form. Doing a simulated walkthrough of a building gives a sense of 
how it would feel to be inside the building. Watching a character's facial expressions provides 
insight into the emotions the character is feeling. 

With the latest graphics hardware and the OpenGL Shading Language, we can do even more 
realistic rendering in real time on low-cost graphics hardware. I was somewhat surprised when 
I found out how easy it was to animate programmable shaders. By developing shaders that 
modify their behavior over time, we can turn over even more of the rendering task to the 
graphics hardware. 

This chapter describes how a shader can be written to produce an animation effect. Typically, 
the animation effect is controlled by one or more uniform variables that convey an application's 
sense of time. These variables pass a frame count, an elapsed time value, or some other value 
that can be used as the basis for chronology. If there are multiple objects in a scene and they 
are expected to animate in different ways, each object is rendered with its own unique shader. 
If objects have identical characteristics other than the animation effect, the source code for 
each of the shaders can be the same except for the portion that defines the animation effect. 

A shader can be written to behave differently depending on these control values, and so, if they 
are updated at each frame, the scene is drawn slightly differently in each frame to produce the 
animation effect. Discontinuities in cyclical motion can be avoided by design, with a smooth 
overlap whereby the end of the cycle wraps back to the beginning. By controlling the animation 
effect in an OpenGL shader, the application need not perform any complex computations to 
achieve this motion. All it needs to do is update the control value(s) of each frame and redraw 
the object. However, the application can perform animation computations in addition to the 
animation effects built into a shader to produce extremely interesting effects. 

Interesting animation effects can be created with stored textures, procedural textures, noise, 
and other mechanisms. In this chapter, we describe simple animation effects and discuss 
shaders for modifying the shape and position of an object and for simulating an oscillating 
motion. 

  



16.1. On/Off 
Suppose you have an object in the scene that must be drawn two different ways, such as a 
neon restaurant sign saying "OPEN" that repeatedly flashes on and off. It would certainly be 
possible to write two different shaders for rendering this object, one for when the sign is "on" 
and one for when the sign is "off." However, in a situation like this, it may actually be easier to 
write a single shader that takes a control variable specifying whether the object is to be drawn 
as on or off. The shader can be written to render one way if the control variable is on and 
another way if it is off. 

To do this, the application would set up a uniform variable that indicates the on/off state. The 
application would update this variable as needed. To achieve a sequence of 3 seconds on and 1 
second off, the application would write the variable with the value for on, update the value to 
off 3 seconds later, update the value to on 1 second later, and repeat this sequence. In the 
interim, the application just continually redraws the geometry every frame. The decoupling of 
the rendering from the animation effect might make the application a little simpler and a little 
more maintainable as a result. 

  



16.2. Threshold 
An improvement to the "on/off" animation is to have the application pass the shader one or 
more values that are tested against one or more threshold values within the shader. Using one 
control value and two threshold values, you could write a shader with three behaviors: one for 
when the control value is less than the first threshold value, one for when the control value is 
between the two threshold values, and one for when the control value is greater than the 
second threshold value. 

In the case just described, you actually may have a transition period when the neon light is 
warming up to full brightness or dissipating to its off condition. This type of transition helps to 
"soften" the change between two states so that the transition appears more natural. The 
smoothstep function is handy for calculating such a transition. 

  



16.3. Translation 
We can achieve a simple animation effect for stored textures or procedural textures just by 
adding an offset to the texture access calculation. For instance, if we wanted to have procedural 
clouds that drift slowly across the sky, we could make a simple change to the cloud shader that 
we discussed in Section 15.4. Instead of using the object position as the index into our 3D noise 
texture, we add an offset value. The offset is defined as a uniform variable and can be updated 
by the application at each frame. If we want the clouds to drift slowly from left to right, we just 
subtract a small amount from the x component of this uniform variable each frame. If we want 
the clouds to move rapidly from bottom to top, we just subtract a larger amount from the y 
component of this value. To achieve a more complex effect, we might modify all three 
coordinates each frame. We could use a noise function in computing this offset to make the 
motion more natural and less like a scrolling effect. 

The cloud shader as modified so as to be animatable is shown in Listing 16.1. 

Listing 16.1. Animatable fragment shader for cloudy sky effect 

varying float LightIntensity; 
varying vec3  MCposition; 
 
uniform sampler3D Noise; 
uniform vec3 SkyColor;     // (0.0, 0.0, 0.8) 
 
uniform vec3 CloudColor;   // (0.8, 0.8, 0.8) 
uniform vec3 Offset;       // updated each frame by the application 
 
void main() 
{ 
    vec4 noisevec   = texture3D(Noise, MCposition + Offset); 
 
    float intensity = (noisevec[0] + noisevec[1] + 
                       noisevec[2] + noisevec[3]) * 1.5; 
 
    vec3 color = mix(SkyColor, CloudColor, intensity) * LightIntensity; 
    gl_FragColor = vec4(color, 1.0); 
} 

 



16.4. Morphing 
Another cool animation effect, called morphing, gradually blends between two things. This could 
be used to mix two effects over a sequence of frames. A complete animation sequence can be 
created by performing KEY-FRAME INTERPOLATION. Important frames of the animation are identified, 
and the frames in between them can be generated with substantially less effort. Instead of the 
application doing complex calculations to determine the proper way to render the "in between" 
object or effect, it can all be done automatically within the shader. 

You can blend between the geometry of two objects to create a tweened (inbetween) version or 
do a linear blend between two colors, two textures, two procedural patterns, and so on. All it 
takes is a shader that uses a control value that is the ratio of the two items being blended and 
that is updated each frame by the application. In some cases, a linear blend is sufficient. For an 
oscillating effect, you'll probably want to have the application compute the interpolation factor 
by using a spline function to avoid jarring discontinuities in the animation. (You could have the 
shader compute the interpolation value, but it's better to have the application compute it once 
per frame rather than have the vertex shader compute it once per vertex or have the fragment 
shader compute it needlessly at every fragment.) 

For instance, using generic vertex attributes, you can actually pass the geometry for two 
objects at a time. The geometry for the first object would be passed through the usual OpenGL 
calls (glVertex, glColor, glNormal, etc.). A second set of vertex information can be passed by 
means of generic vertex attributes 0, 1, 2, etc. The application can provide a blending factor 
through a uniform variable, and the vertex shader can use this blending factor to do a weighted 
average of the two sets of vertex data. The tweened vertex position is the one that actually 
gets transformed, the tweened normal is the one actually used for lighting calculations, and so 
on. 

To animate a character realistically, you need to choose the right number of key frames as well 
as the proper number of inbetweens to use. In their classic book, Disney AnimationThe Illusion 
of Life, Frank Thomas and Ollie Johnston (1995, pp. 6465) describe this concept as "Timing," 
and explain it in the following way: 

Just two drawings of a head, the first showing it leaning toward the right shoulder 
and the second with it over on the left and its chin slightly raised, can be made to 
communicate a multitude of ideas, depending entirely on the Timing used. Each 
inbetween drawing added between these two "extremes" gives a new meaning to 
the action. 

No inbetweens The character has been hit by a tremendous force. 
His head is nearly snapped off. 

One inbetween . . . has been hit by a brick, rolling pin, frying pan. 

Two inbetweens . . . has a nervous tic, a muscle spasm, an 
uncontrollable twitch. 

Three inbetweens . . . is dodging the brick, rolling pin, frying pan. 

Four inbetweens . . . is giving a crisp order, "Get going!" "Move it!" 

Five inbetweens . . . is more friendly, "Over here." "Come onhurry!" 

Six inbetweens . . . sees a good-looking girl, or the sports car he 
has always wanted. 

Seven inbetweens . . . tries to get a better look at something. 



 
16.4.1. Sphere Morph Vertex Shader 

The shader in Listing 16.2, developed by Philip Rideout, morphs between two objectsa square 
that is generated by the application and a sphere that is procedurally generated in the vertex 
shader. The sphere is defined entirely by a single valueits radiusprovided by the application 
through a uniform variable. The application passes the geometry defining the square to the 
vertex shader with the standard built-in attributes gl_Normal and gl_Vertex. The vertex shader 
computes the corresponding vertex and normal on the sphere with a subroutine called sphere. 
The application provides a time-varying variable (Blend) for morphing between these two 
objects. Because we are using the two input vertex values to compute a third, inbetween, 
value, we cannot use the ftransform function. We'll transform the computed vertex directly within 
the vertex shader. 

Listing 16.2. Vertex shader for morphing between a plane and a sphere 

Eight inbetweens . . . searches for the peanut butter on the kitchen 
shelf. 

Nine inbetweens . . . appraises, considering thoughtfully. 

Ten inbetweens . . . stretches a sore muscle. 

varying vec4 Color; 
 
uniform vec3 LightPosition; 
uniform vec3 SurfaceColor; 
 
const float PI = 3.14159; 
const float TWO_PI = PI * 2.0; 
 
uniform float Radius; 
uniform float Blend; 
 
vec3 sphere(vec2 domain) 
{ 
    vec3 range; 
    range.x = Radius * cos(domain.y) * sin(domain.x); 
    range.y = Radius * sin(domain.y) * sin(domain.x); 
    range.z = Radius * cos(domain.x); 
    return range; 
} 
 
void main() 
{ 
    vec2 p0 = gl_Vertex.xy * TWO_PI; 
    vec3 normal = sphere(p0);; 
    vec3 r0 = Radius * normal; 
    vec3 vertex = r0; 
 
    normal = mix(gl_Normal, normal, Blend); 
    vertex = mix(gl_Vertex.xyz, vertex, Blend); 
 
    normal = normalize(gl_NormalMatrix * normal); 
    vec3 position = vec3(gl_ModelViewMatrix * vec4(vertex, 1.0)); 
 
    vec3 lightVec = normalize(LightPosition - position); 
    float diffuse = max(dot(lightVec, normal), 0.0); 
 
    if (diffuse < 0.125) 



 

In this shader, a simple lighting model is used. The color value that is generated by the vertex 
shader is simply passed through the fragment shader to be used as our final fragment color. 

The sphere is somewhat unique in that it can be procedurally generated. Another way to morph 
between two objects is to specify the geometry for one object, using the normal OpenGL 
mechanisms, and to specify the geometry for the second object, using generic vertex attributes.
The shader then just has to blend between the two sets of geometry in the same manner as 
described for the sphere morph shader. 

         diffuse = 0.125; 
 
    Color = vec4(SurfaceColor * diffuse, 1.0); 
    gl_Position = gl_ModelViewProjectionMatrix * vec4(vertex,1.0); 
} 

 

  



16.5. Other Blending Effects 
Another blending effect gradually causes an object to disappear over a sequence of frames. The 
control value could be used as the alpha value to cause the object to be drawn totally opaque 
(alpha is 1.0), totally invisible (alpha is 0), or partially visible (alpha is between 0 and 1.0). 

You can also fade something in or out by using the discard keyword. The lattice shader 
described in Section 11.3 discards a specific percentage of pixels in the object each time it is 
drawn. You could vary this percentage from 0 to 1.0 to make the object appear, or vary from 
1.0 to 0 to make the object disappear. Alternatively, you could evaluate a noise function at 
each location on the surface, and compare with this value instead. In this way, you can cause 
an object to erode or rust away over time. 

  



16.6. Vertex Noise 
In the previous chapter, we talked about some of the interesting and useful things that can be 
done with noise. Listing 16.3 shows a vertex shader by Philip Rideout that calls the built-in 
noise3 function in the vertex shader and uses it to modify the shape of the object over time. The 
result is that the object changes its shape irregularly. 

Listing 16.3. Vertex shader using noise to modify and animate an 
object's shape 

The key to this shader is the call to noise3 with a value (Offset) that changes over time. The 
vertex itself is also used as input to the noise3 function so that the effect is repeatable. The 
ScaleIn and ScaleOut factors control the amplitude of the effect. The result of this computation is 
added to the incoming vertex position to compute a new vertex position. Because of this, the 
vertex shader must compute gl_Position by performing the transformation explicitly rather than 
by calling ftransform. 

uniform vec3  LightPosition; 
uniform vec3  SurfaceColor; 
uniform vec3  Offset; 
uniform float ScaleIn; 
uniform float ScaleOut; 
varying vec4  Color; 
 
void main() 
{ 
    vec3 normal = gl_Normal; 
    vec3 vertex = gl_Vertex.xyz + 
                  noise3(Offset + gl_Vertex.xyz * ScaleIn) * ScaleOut; 
 
    normal = normalize(gl_NormalMatrix * normal); 
    vec3 position = vec3(gl_ModelViewMatrix * vec4(vertex,1.0)); 
    vec3 lightVec = normalize(LightPosition - position); 
    float diffuse = max(dot(lightVec, normal), 0.0); 
 
    if (diffuse < 0.125) 
         diffuse = 0.125; 
 
    Color = vec4(SurfaceColor * diffuse, 1.0); 
    gl_Position = gl_ModelViewProjectionMatrix * vec4(vertex,1.0); 
} 

 

  



16.7. Particle Systems 
A new type of rendering primitive was invented by Bill Reeves and his colleagues at Lucasfilm in 
the early 1980s as they struggled to come up with a way to animate the fire sequence called 
"The Genesis Demo" in the motion picture Star Trek II: The Wrath of Khan. Traditional 
rendering methods were more suitable for rendering smooth, well-defined surfaces. What 
Reeves was after was a way to render a class of objects he called "fuzzy"things like fire, smoke, 
liquid spray, comet tails, fireworks, and other natural phenomena. 

These things are fuzzy because none of them have a well-defined boundary and the 
components typically change over time. 

The technique that Reeves invented to solve this problem was described in the 1983 paper, 
Particle SystemsA Technique for Modeling a Class of Fuzzy Objects. PARTICLE SYSTEMS had been 
used in rendering before, but Reeves realized that he could get the particles to behave the way 
he wanted them to by giving each particle its own set of initial conditions and by establishing a 
set of probabilistic rules that governed how particles would change over time. 

There are three main differences between particle systems and traditional surface-based 
rendering techniques. First, rather than an object being defined with polygons or curved 
surfaces, it is represented by a cloud of primitive particles that define its volume. Second, the 
object is considered dynamic rather than static. The constituent particles come into existence, 
evolve, and then die. During their lifetime, they can change position and form. Finally, objects 
defined in this manner are not completely specified. A set of initial conditions are specified, 
along with rules for birth, death, and evolution. Stochastic processes are used to influence all 
three stages, so the shape and appearance of the object is nondeterministic. 

Some assumptions are usually made to simplify the rendering of particle systems, among them, 

Particles do not collide with other particles. 

Particles do not reflect light; they emit light. 

Particles do not cast shadows on other particles. 

Particle attributes often include position, color, transparency, velocity, size, shape, and lifetime. 
For rendering a particle system, each particle's attributes are used along with certain global 
parameters to update its position and appearance at each frame. Each particle's position might 
be updated on the basis of the initial velocity vector and the effects from gravity, wind, friction, 
and other global factors. Each particle's color (including transparency), size, and shape can be 
modified as a function of global time, the age of the particle, its height, its speed, or any other 
parameter that can be calculated. 

What are the benefits of using particle systems as a rendering technique? For one thing, 
complex systems can be created with little human effort. For another, the complexity can easily 
be adjusted. And as Reeves says in his 1983 paper, "The most important thing about particle 
systems is that they move: good dynamics are quite often the key to making things look real." 

16.7.1. Application Setup 

For this shader, my goal was to produce a shader that acted like a "confetti cannon"something 
that spews out a large quantity of small, brightly colored pieces of paper. They don't come out 
all at once, but they come out in a steady stream until none are left. Initial velocities are 
somewhat random, but there is a general direction that points up and away from the origin. 



Gravity influences these particles and eventually brings them back to earth. 

The code in Listing 16.4 shows the C subroutine that I used to create the initial values for my 
particle system. To accomplish the look I was after, I decided that for each particle I needed its 
initial position, a randomly generated color, a randomly generated initial velocity (with some 
constraints), and a randomly generated start time. 

The subroutine createPoints lets you create an arbitrary-sized, two-dimensional grid of points for 
the particle system. There's no reason for a two-dimensional grid, but I was interested in seeing 
the effect of particles "popping off the grid" like pieces of popcorn. It would be even easier to 
define the particle system as a 1D array, and all of the vertex positions could have exactly the 
same initial value (for instance (0,0,0)). 

But I set it up as a 2D array, and so you can pass in a width and height to define the number of 
particles to be created. After the memory for the arrays is allocated, a nested loop computes 
the values for each of the particle attributes at each grid location. Each vertex position has a y-
coordinate value of 0, and the x and z coordinates vary across the grid. Each color component 
is assigned a random number in the range [0.5,1.0] so that mostly bright pastel colors are 
used. The velocity vectors are assigned random numbers to which I gave a strong upward bias 
by multiplying the y coordinate by 10. The general direction of the particles is aimed away from 
the origin by the addition of 3 to both the x- and the z- coordinates. Finally, each particle is 
given a start-time value in the range [0,10]. 

Listing 16.4. C subroutine to create vertex data for particles 

static GLint arrayWidth, arrayHeight; 
static GLfloat *verts = NULL; 
static GLfloat *colors = NULL; 
static GLfloat *velocities = NULL; 
static GLfloat *startTimes = NULL; 
 
void createPoints(GLint w, GLint h) 
{ 
    GLfloat *vptr, *cptr, *velptr, *stptr; 
    GLfloat i, j; 
 
    if (verts != NULL) 
        free(verts); 
 
    verts  = malloc(w * h * 3 * sizeof(float)); 
    colors = malloc(w * h * 3 * sizeof(float)); 
    velocities = malloc(w * h * 3 * sizeof(float)); 
    startTimes = malloc(w * h * sizeof(float)); 
 
    vptr = verts; 
    cptr = colors; 
    velptr = velocities; 
    stptr  = startTimes; 
 
    for (i = 0.5 / w - 0.5; i < 0.5; i = i + 1.0/w) 
        for (j = 0.5 / h - 0.5; j < 0.5; j = j + 1.0/h) 
        { 
            *vptr       = i; 
            *(vptr + 1) = 0.0; 
            *(vptr + 2) = j; 
            vptr += 3; 
 
            *cptr       = ((float) rand() / RAND_MAX) * 0.5 + 0.5; 
            *(cptr + 1) = ((float) rand() / RAND_MAX) * 0.5 + 0.5; 
            *(cptr + 2) = ((float) rand() / RAND_MAX) * 0.5 + 0.5; 



OpenGL has built-in attributes for vertex position, which we use to pass the initial particle 
position, and for color, which we use to pass the particle's color. We need to use generic vertex 
attributes to specify the particle's initial velocity and start time. Let's pick indices 3 and 4 and 
define the necessary constants: 

#define VELOCITY_ARRAY 3 
#define START_TIME_ARRAY 4 

 
After we have created a program object, we can bind a generic vertex attribute index to a 
vertex shader attribute variable name. (We can do this even before the vertex shader is 
attached to the program object.) These bindings are checked and go into effect at the time 
glLinkProgram is called. To bind the generic vertex attribute index to a vertex shader variable 
name, we do the following: 

glBindAttribLocation(ProgramObject, VELOCITY_ARRAY, "Velocity"); 
glBindAttribLocation(ProgramObject, START_TIME_ARRAY, "StartTime"); 

 
After the shaders are compiled, attached to the program object, and linked, we're ready to 
draw the particle system. All we need to do is call the drawPoints function shown in Listing 16.5. 
In this function, we set the point size to 2 to render somewhat larger points. The next four lines 
of code set up pointers to the vertex arrays that we're using. In this case, we have four: one for 
vertex positions (i.e., initial particle position), one for particle color, one for initial velocity, and 
one for the particle's start time (i.e., birth). After that, we enable the arrays for drawing by 
making calls to glEnableClientState for the standard vertex attributes and glEnableVertexAttribArray 
for the generic vertex attributes. Next we call glDrawArrays to render the points, and finally, we 
clean up by disabling each of the enabled vertex arrays. 

Listing 16.5. C subroutine to draw particles as points 

            cptr += 3; 
 
            *velptr       = (((float) rand() / RAND_MAX)) + 3.0; 
            *(velptr + 1) = ((float) rand() / RAND_MAX) * 10.0; 
            *(velptr + 2) = (((float) rand() / RAND_MAX)) + 3.0; 
            velptr += 3; 
 
            *stptr = ((float) rand() / RAND_MAX) * 10.0; 
            stptr++; 
        } 
    arrayWidth  = w; 
    arrayHeight = h; 
} 

 

void drawPoints() 
{ 
 
    glPointSize(2.0); 
 
    glVertexPointer(3, GL_FLOAT, 0, verts); 
    glColorPointer (3, GL_FLOAT, 0, colors); 
    glVertexAttribPointer(VELOCITY_ARRAY,  3, GL_FLOAT, 
                                 GL_FALSE, 0, velocities); 
    glVertexAttribPointer(START_TIME_ARRAY, 1, GL_FLOAT, 
                                 GL_FALSE, 0, startTimes); 



To achieve the animation effect, the application must communicate its notion of time to the 
vertex shader, as shown in Listing 16.6. Here, the variable ParticleTime is incremented once each 
frame and loaded into the uniform variable Time. This allows the vertex shader to perform 
computations that vary (animate) over time. 

Listing 16.6. C code snippet to update the time variable each frame 

16.7.2. Confetti Cannon Vertex Shader 

The vertex shader (see Listing 16.7) is the key to this example of particle system rendering. 
Instead of simply transforming the incoming vertex, we use it as the initial position to compute 
a new position based on a computation involving the uniform variable Time. It is this newly 
computed position that is actually transformed and rendered. 

This vertex shader defines the attribute variables Velocity and StartTime. In the previous section, 
we saw how generic vertex attribute arrays were defined and bound to these vertex shader 
attribute variables. As a result of this, each vertex has an updated value for the attribute 
variables Velocity and StartTime, as well as for the standard vertex attributes specified by gl_Vertex 
and gl_Color. 

The vertex shader starts by computing the age of the particle. If this value is less than zero, the 
particle has not yet been born. In this case, the particle is just assigned the color provided 
through the uniform variable Background. (If you actually want to see the grid of yet-to-be-born 
particles, you could provide a color value other than the background color. And if you want to 
be a bit more clever, you could pass the value t as a varying variable to the fragment shader 
and let it discard fragments for which t is less than zero. For our purposes, this wasn't 
necessary.) 

If a particle's start time is less than the current time, the following kinematic equation is used 
to determine its current position: 

 
    glEnableClientState(GL_VERTEX_ARRAY); 
    glEnableClientState(GL_COLOR_ARRAY); 
    glEnableVertexAttribArray(VELOCITY_ARRAY); 
    glEnableVertexAttribArray(START_TIME_ARRAY); 
 
    glDrawArrays(GL_POINTS, 0, arrayWidth * arrayHeight); 
 
    glDisableClientState(GL_VERTEX_ARRAY); 
    glDisableClientState(GL_COLOR_ARRAY); 
    glDisableVertexAttribArray(VELOCITY_ARRAY); 
    glDisableVertexAttribArray(START_TIME_ARRAY); 
} 

 

if (DoingParticles) 
{ 
    location = glGetUniformLocation(ProgramObject, "Time"); 
    ParticleTime += 0.001f; 
    glUniform1f(location, ParticleTime); 
    CheckOglError(); 
} 

 



 

 
In this equation Pi represents the initial position of the particle, v represents the initial velocity, t 
represents the elapsed time, a represents the acceleration, and P represents the final computed 
position. For acceleration, we use the value of acceleration due to gravity on Earth, which is 9.8 
meters per second2. In our simplistic model, we assume that gravity affects only the particle's 
height (y coordinate) and that the acceleration is negative (i.e., the particle is slowing down 
and falling back to the ground). The coefficient for the t2 term in the preceding equation 
therefore appears in our code as the constant 4.9, and it is applied only to vert.y. 

After this, all that remains is to transform the computed vertex and store the result in gl_Position. 

Listing 16.7. Confetti cannon (particle system) vertex shader 

The value computed by the vertex shader is simply passed through the fragment shader to 
become the final color of the fragment to be rendered. Some frames from the confetti cannon 
animation sequence are shown in Figure 16.1. 

Figure 16.1. Several frames from the animated sequence produced by 
the particle system shader. In this animation, the particle system 

contains 10,000 points with randomly assigned initial velocities and 
start times. The position of the particle at each frame is computed 

entirely in the vertex shader according to a formula that simulates the 
effects of gravity. (3Dlabs, Inc.) 

uniform float Time;           // updated each frame by the application 
uniform vec4 Background;      // constant color equal to background 
 
attribute vec3 Velocity;      // initial velocity 
attribute float StartTime;    // time at which particle is activated 
 
varying vec4 Color; 
 
void main() 
{ 
    vec4 vert; 
    float t = Time - StartTime; 
 
    if (t >= 0.0) 
    { 
        vert = gl_Vertex + vec4(Velocity * t, 0.0); 
        vert.y -= 4.9 * t * t; 
        Color = gl_Color; 
    } 
    else 
    { 
        vert = gl_Vertex;     // Initial position 
        Color = Background;   // "pre-birth" color 
    } 
 
    gl_Position = gl_ModelViewProjectionMatrix * vert; 
} 

 



 

 

 
16.7.3. Further Enhancements 

There's a lot that you can do to make this shader more interesting. You might pass the t value 
from the vertex shader to the fragment shader as suggested earlier and make the color of the 
particle change over time. For instance, you could make the color change from yellow to red to 
black to simulate an explosion. You could reduce the alpha value over time to make the particle 
fade out. You might also provide a "time of death" and extinguish the particle completely at a 
certain time or when a certain distance from the origin is reached. Instead of drawing the 
particles as points, you might draw them as short lines so that you could blur the motion of 
each particle. You could also vary the size of the point (or line) over time to create particles 
that grow or shrink. You can make the physics model a lot more sophisticated than the one 
illustrated. To make the particles look better, you could render them as point sprites, another 
new feature in OpenGL 2.0. (A point sprite is a point that is rendered as a textured quadrilateral 
that always faces the viewer.) 

The real beauty in doing particle systems within a shader is that the computation is done 
completely in graphics hardware rather than on the host CPU. If the particle system data is 
stored in a vertex buffer object, there's a good chance that it will be stored in the on-board 
memory of the graphics hardware, so you won't even be using up any I/O bus bandwidth as 
you render the particle system each frame. With the OpenGL Shading Language, the equation 
for updating each particle can be arbitrarily complex. And, because the particle system is 
rendered like any other 3D object, you can rotate it around and view it from any angle while it 
is animating. There's really no end to the effects (and the fun!) that you can have with particle 
systems. 

  



16.8. Wobble 
The previous three examples discussed animating the geometry of an object and used the 
vertex processor to achieve this animation (because the geometry of an object cannot be 
modified by the fragment processor). The fragment processor can also create animation effects. 
The main purpose of most fragment shaders is to compute the fragment color, and any of the 
factors that affect this computation can be varied over time. In this section, we look at a shader 
that perturbs the texture coordinates in a time-varying way to achieve an oscillating or 
wobbling effect. With the right texture, this effect can make it very simple to produce an 
animated effect to simulate a gelatinous surface or a "dancing" logo. 

This shader was developed to mimic the wobbly 2D effects demonstrated in some of the real-
time graphics demos that are available on the Web (see http://www.scene.org for some 
examples). Its author, Antonio Tejada, wanted to use the OpenGL Shading Language to create 
a similar effect. 

The central premise of the shader is that a sine function is used in the fragment shader to 
perturb the texture coordinates before the texture lookup operation. The amount and frequency 
of the perturbation can be controlled through uniform variables sent by the application. Because 
the goal of the shader was to produce an effect that looked good, the accuracy of the sine 
computation was not critical. For this reason and because the sine function had not been 
implemented at the time he wrote this shader, Antonio chose to approximate the sine value by 
using the first two terms of the Taylor series for sine. The fragment shader would have been 
simpler if the built-in sin function had been used, but this approach demonstrates that numerical 
methods can be used as needed within a shader. (As to whether using two terms of the Taylor 
series would result in better performance than using the built-in sin function, it's hard to say. It 
probably varies from one graphics hardware vendor to the next, depending on how the sin 
function is implemented.) 

For this shader to work properly, the application must provide the frequency and amplitude of 
the wobbles, as well as a light position. In addition, the application increments a uniform 
variable called StartRad at each frame. This value is used as the basis for the perturbation 
calculation in the fragment shader. By incrementing the value at each frame, we animate the 
wobble effect. The application must provide the vertex position, the surface normal, and the 
texture coordinate at each vertex of the object to be rendered. 

The vertex shader for the wobble effect is responsible for a simple lighting computation based 
on the surface normal and the light position provided by the application. It passes along the 
texture coordinate without modification. This is exactly the same as the functionality of the 
Earth vertex shader described in Section 10.2.2, so we can simply use that vertex shader. 

The fragment shader to achieve the wobbling effect is shown in Listing 16.8. It receives as input 
the varying variable LightIntensity as computed by the vertex shader. This variable is used at the 
very end to apply a lighting effect to the fragment. The uniform variable StartRad provides the 
starting point for the perturbation computation in radians, and it is incremented by the 
application at each frame to animate the wobble effect. We can make the wobble effect go 
faster by using a larger increment value, and we can make it go slower by using a smaller 
increment amount. We found that an increment value of about 1° gave visually pleasing results. 

The frequency and amplitude of the wobbles can be adjusted by the application with the 
uniform variables Freq and Amplitude. These are defined as vec2 variables so that the x and y 
components can be adjusted independently. The final uniform variable defined by this fragment 
shader is WobbleTex, which specifies the texture unit to be used for accessing the 2D texture that 
is to be wobbled. 

For the Taylor series approximation for sine to give more precise results, it is necessary to 



ensure that the value for which sine is computed is in the range [π/2,π/2]. The constants C_PI 
(π), C_2PI (2π), C_2PI_I (1/2π), and C_PI_2 (π/2) are defined to assist in this process. 

The first half of the fragment shader computes a perturbation factor for the x direction. We 
want to end up with a perturbation factor that depends on both the s and the t components of 
the texture coordinate. To this end, the local variable rad is computed as a linear function of the 
s and t values of the texture coordinate. (A similar but different expression computes the y 
perturbation factor in the second half of the shader.) The current value of StartRad is added. 
Finally, the x component of Freq is used to scale the result. 

The value for rad increases as the value for StartRad increases. As the scaling factor Freq.x 
increases, the frequency of the wobbles also increases. The scaling factor should be increased 
as the size of the texture increases on the screen to keep the apparent frequency of the 
wobbles the same at different scales. You can think of the Freq uniform variable as the Richter 
scale for wobbles. A value of 0 results in no wobbles whatsoever. A value of 1.0 results in 
gentle rocking, a value of 2.0 causes jiggling, a value of 4.0 results in wobbling, and a value of 
8.0 results in magnitude 8.0 earthquake-like effects. 

The next seven lines of the shader bring the value of rad into the range [π/2,π/2]. When this is 
accomplished, we can compute sin(rad) by using the first two terms of the Taylor series for 
sine, which is just x x3/3! The result of this computation is multiplied by the x component of 
Amplitude. The value for the computed sine value will be in the range [-1,1]. If we just add this 
value to the texture coordinate as the perturbation factor, it will really perturb the texture 
coordinate. We want a wobble, not an explosion! Multiplying the computed sine value by a 
value of 0.05 results in reasonably sized wobbles. Increasing this scale factor makes the 
wobbles bigger, and decreasing it makes them smaller. You can think of this as how far the 
texture coordinate is stretched from its original value. Using a value of 0.05 means that the 
perturbation alters the original texture coordinate by no more than ±0.05. A value of 0.5 means 
that the perturbation alters the original texture coordinate by no more than ±0.5. 

With the x perturbation factor computed, the whole process is repeated to compute the y 
perturbation factor. This computation is also based on a linear function of the s and t texture 
coordinate values, but it differs from that used for the x perturbation factor. Computing the y 
perturbation value differently avoids symmetries between the x and y perturbation factors in 
the final wobbling effect, which doesn't look as good when animated. 

With the perturbation factors computed, we can finally do our (perturbed) texture access. The 
color value that is retrieved from the texture map is multiplied by LightIntensity to compute the 
final color value for the fragment. Several frames from the animation produced by this shader 
are shown in Color Plate 29. These frames show the shader applied to a logo to illustrate the 
perturbation effects more clearly in static images. But the animation effect is also quite striking 
when the texture used looks like the surface of water, lava, slime, or even animal/monster skin. 

Listing 16.8. Fragment shader for wobble effect 

// Constants 
const float C_PI    = 3.1415; 
const float C_2PI   = 2.0 * C_PI; 
const float C_2PI_I = 1.0 / (2.0 * C_PI); 
const float C_PI_2  = C_PI / 2.0; 
 
varying float LightIntensity; 
 
uniform float StartRad; 
uniform vec2  Freq; 
uniform vec2  Amplitude; 
 
uniform sampler2D WobbleTex; 



 

 
void main() 
{ 
    vec2  perturb; 
    float rad; 
    vec3  color; 
 
    // Compute a perturbation factor for the x-direction 
    rad = (gl_TexCoord[0].s + gl_TexCoord[0].t - 1.0 + StartRad) * Freq.x;
 
    // Wrap to -2.0*PI, 2*PI 
    rad = rad * C_2PI_I; 
    rad = fract(rad); 
    rad = rad * C_2PI; 
 
    // Center in -PI, PI 
    if (rad >  C_PI) rad = rad - C_2PI; 
    if (rad < -C_PI) rad = rad + C_2PI; 
 
    // Center in -PI/2, PI/2 
    if (rad >  C_PI_2) rad =  C_PI - rad; 
    if (rad < -C_PI_2) rad = -C_PI - rad; 
 
    perturb.x = (rad - (rad * rad * rad / 6.0)) * Amplitude.x; 
 
    // Now compute a perturbation factor for the y-direction 
    rad = (gl_TexCoord[0].s - gl_TexCoord[0].t + StartRad) * Freq.y; 
 
    // Wrap to -2*PI, 2*PI 
    rad = rad * C_2PI_I; 
    rad = fract(rad); 
    rad = rad * C_2PI; 
 
    // Center in -PI, PI 
    if (rad >  C_PI) rad = rad - C_2PI; 
    if (rad < -C_PI) rad = rad + C_2PI; 
 
    // Center in -PI/2, PI/2 
    if (rad >  C_PI_2) rad =  C_PI - rad; 
    if (rad < -C_PI_2) rad = -C_PI - rad; 
 
    perturb.y = (rad - (rad * rad * rad / 6.0)) * Amplitude.y; 
 
    color = vec3(texture2D(WobbleTex, perturb + gl_TexCoord[0].st)); 
 
    gl_FragColor = vec4(color * LightIntensity, 1.0); 
} 

 

  



16.9. Summary 
With the fixed functionality in previous versions of OpenGL, animation effects were strictly in 
the domain of the application and had to be computed on the host CPU. With programmability, 
it has become easy to specify animation effects within a shader and let the graphics hardware 
do this work. Just about any aspect of a shaderposition, shape, color, texture coordinates, and 
lighting, to name just a fewcan be varied according to a global definition of current time. 

When you develop a shader for an object that will be in motion, you should also consider how 
much of the animation effect you can encode within the shader. Encoding animation effects 
within a shader can offload the CPU and simplify the code in the application. This chapter 
described some simple ways for doing this. On and off, scrolling, and threshold effects are quite 
easy to do within a shader. Key-frame interpolation can be supported in a simple way through 
the power of programmability. Particles can be animated, including their position, color, 
velocity, and any other important attributes. Objects and textures can be made to oscillate, 
move, grow, or change based on mathematical expressions. 

Animation is a powerful tool for conveying information, and the OpenGL Shading Language 
provides another avenue for expressing animation effects. 

  



16.10. Further Information 
If you're serious about animated effects, you really should read Disney Animation: The Illusion 
of Life, by two of the "Nine Old Men" of Disney animation fame, Frank Thomas and Ollie 
Johnston (1981). This book is loaded with color images and insight into the development of the 
animation art form at Disney Studios. It contains several decades worth of information about 
making great animated films. If you can, try to find a used copy of the original printing from 
Abbeville Press rather than the reprint by Hyperion. A softcover version was also printed by 
Abbeville, but this version eliminates much of the history of Disney Studios. A brief 
encapsulation of some of the material in this book can be found in the 1987 SIGGRAPH paper, 
Principles of Traditional Animation Applied to 3D Computer Animation, by John Lasseter. 

Rick Parent's 2001 book, Computer Animation: Algorithms and Techniques, contains 
descriptions of a variety of algorithms for computer animation. The book Game Programming 
Gems, edited by Mark DeLoura (2000), also has several pertinent sections on animation. 

Particle systems were first described by Bill Reeves in his 1983 SIGGRAPH paper, Particle 
SystemsA Technique for Modeling a Class of Fuzzy Objects. In 1998, Jeff Lander wrote an easy-
to-follow description of particle systems, titled "The Ocean Spray in Your Face," in his column 
for Game Developer Magazine. He also made source code available for a simple OpenGL-based 
particle system demonstration program that he wrote. 
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Chapter 17. Antialiasing Procedural 
Textures 
Jaggies, popping, sparkling, stair steps, strobing, and marching ants. They're all names used to 
describe the anathema of computer graphicsALIASING. Anyone who has used a computer has 
seen it. For still images, it's not always that noticeable or objectionable. But as soon as you put 
an object in motion, the movement of the jagged edges catches your eye and distracts you. 
From the early days of computer graphics, the fight to eliminate these nasty artifacts has been 
called ANTIALIASING. 

This chapter does not contain a thorough description of the causes of aliasing, nor the methods 
used to combat it. But it does introduce the reasons the problem occurs and the facilities within 
the OpenGL Shading Language for antialiasing. Armed with this knowledge, you should be well 
on your way to fighting the jaggies in your own shaders. 

  



17.1. Sources of Aliasing 
The human eye is extremely good at noticing edges. This is how we comprehend shape and 
form and how we recognize letters and words. Our eye is naturally good at it, and we spend our 
whole lives practicing it, so naturally it is something we do very, very well. 

A computer display is limited in its capability to present an image. The display is made up of a 
finite number of discrete elements called pixels. At a given time, each pixel can produce only 
one color. This makes it impossible for a computer display to accurately represent detail that is 
smaller than one pixel in screen space, such as an edge. 

When you combine these two things, the human eye's ability to discern edges and the 
computer graphics display's limitations in replicating them, you have a problem, and this 
problem is known as aliasing. In a nutshell, aliasing occurs when we try to reproduce a signal 
with an insufficient sampling frequency. With a computer graphics display, we'll always have a 
fixed number of samples (pixels) with which to reconstruct our image, and this will always be 
insufficient to provide adequate sampling, so we will always have aliasing. We can reduce it to 
the point that it's not noticeable, or we can transform it into some other problem that is less 
objectionable, like blurriness or noise. 

The problem is illustrated in Figure 17.1. In this diagram, we show the results of trying to draw 
a gray object. The intended shape is shown in Figure 17.1 (A). The computer graphics display 
limits us to a discrete sampling grid. If we choose only one location within each grid square 
(usually the center) and determine the color to be used by sampling the desired image at that 
point, we see some apparent artifacts. This is called POINT SAMPLING and is illustrated in Figure 
17.1 (B). The result is ugly aliasing artifacts for edges that don't line up naturally with the 
sampling grid (see Figure 17.1 (C)). (The drawing is idealized because pixels on a standard CRT 
do not produce light in the shape of a square, but the artifacts are obvious even when the 
sampled points are reconstructed as overlapping circles on the computer display.) 

Figure 17.1. Aliasing artifacts caused by point sampling. The gray 
region represents the shape of the object to be rendered (A). The 

computer graphics display presents us with a limited sampling grid (B). 
The result of choosing to draw or not draw gray at each pixel results in 

jaggies, or aliasing artifacts (C). 

 

 
Aliasing takes on other forms as well. If you are developing a sequence of images for an 
animation and you don't properly sample objects that are in motion, you might notice TEMPORAL 

ALIASING. This is caused by objects that are moving too rapidly for the sampling frequency being 
used. Objects may appear to stutter as they move or blink on and off. The classic example of 
temporal aliasing comes from the movies: A vehicle (car, truck, or covered wagon) in motion is 
going forward, but the spokes of its wheels appear to be rotating backwards. This effect is 
caused when the sampling rate (movie frames per second) is too low relative to the motion of 
the wheel spokes. In reality, the wheel may be rotating two- and three-quarter revolutions per 



 

frame, but on film it looks like it's rotating one-quarter revolution backwards each frame. 

To render images that look truly realistic rather than computer generated, we need to develop 
techniques for overcoming the inherent limitations of the graphics display. 

  



17.2. Avoiding Aliasing 
One way to achieve good results without aliasing is to avoid situations in which aliasing occurs. 

For instance, if you know that a particular object will always be a certain size in the final 
rendered image, you can design a shader that looks good while rendering that object at that 
size. This is the assumption behind some of the shaders presented previously in this book. The 
smoothstep, mix, and clamp functions are handy functions to use to avoid sharp transitions and to 
make a procedural texture look good at a particular scale. 

Aliasing is often a problem when you are rendering an object at different sizes. Mipmap 
textures address this very issue, and you can do something similar with shaders. If you know 
that a particular object must appear at different sizes in the final rendering, you can design a 
shader for each different size. Each of these shaders would provide an appropriate level of 
detail and avoid aliasing for an object of that size. For this to work, the application must 
determine the approximate size of the final rendered object before it is drawn and then install 
the appropriate shader. In addition, if a continuous zoom (in or out) is applied to a single 
object, some "popping" will occur when the level of detail changes. 

You can avoid aliasing in some situations by using a texture instead of computing something 
procedurally. This lets you take advantage of the FILTERING (i.e., antialiasing) support that is 
built into the texture-mapping hardware. However, there are issues with using stored textures 
as opposed to doing things procedurally, as discussed in Chapter 11. 

  



17.3. Increasing Resolution 
The effects of aliasing can be reduced through a brute force method called SUPERSAMPLING that 
performs sampling at several locations within a pixel and averages the result of those samples. 
This is exactly the approach supported in today's graphics hardware with the multisample 
buffer. This method of antialiasing replaces a single point sampling operation with several, so it 
doesn't actually eliminate aliasing, but it can reduce aliasing to the point that it is no longer 
objectionable. You may be able to ignore the issue of aliasing if your shaders will always be 
used in conjunction with a multisample buffer. 

But this approach does use up hardware resources (graphics board memory for storing the 
multisample buffer), and even with hardware acceleration, it still may be slower than 
performing the antialiasing as part of the procedural texture-generation algorithm. And, 
because this approach doesn't eliminate aliasing, your texture is still apt to exhibit signs of 
aliasing, albeit at a higher frequency than before. 

Supersampling is illustrated in Figure 17.2. Each of the pixels is rendered by sampling at four 
locations rather than at one. The average of the four samples is used as the value for the pixel. 
This averaging provides a better result, but it is not sufficient to eliminate aliasing because 
high-frequency components can still be misrepresented. 

Figure 17.2. Supersampling with four samples per pixel yields a better 
result, but aliasing artifacts are still present. The shape of the object to 
be rendered is shown in (A). Sampling occurs at four locations within 
each pixel as shown in (B). The results are averaged to produce the 
final pixel value as shown in (C). Some samples that are almost half 

covered were sampled with just one supersample point instead of two, 
and one pixel contains image data that was missed entirely, even with 

supersampling. 

 

 
Supersampling can also be implemented within a fragment shader. The code that is used to 
produce the fragment color can be constructed as a function, and this function can be called 
several times from within the main function of the fragment shader to sample the function at 
several discrete locations. The returned values can be averaged to create the final value for the 
fragment. Results are improved if the sample positions are varied stochastically rather than 
spaced on a regular grid. Supersampling within a fragment shader has the obvious downside of 
requiring N times as much processing per fragment, where N is the number of samples 
computed at each fragment. 

There will be times when aliasing is unavoidable and supersampling is infeasible. If you want to 
perform procedural texturing and you want a single shader that is useful at a variety of scales, 
there's little choice but to address the aliasing issue and take steps to counteract aliasing in 
your shaders. 



17.4. Antialiased Stripe Example 
Aliasing does not occur until we attempt to represent a continuous image in screen space. This 
conversion occurs during rasterization; therefore, our attempts to mitigate its effects always 
occur in the fragment shader. The OpenGL Shading Language has several functions for this 
purpose that are available only to fragment shaders. To help explain the motivation for some of 
the language facilities for filter estimation, we develop a "worst case" scenarioalternating black 
and white stripes drawn on a sphere. Developing a fragment shader that performs antialiasing 
enables us to further illustrate the aliasing problem and the methods for reducing aliasing 
artifacts. Bert Freudenberg developed the first version of the GLSL shaders discussed in this 
section during the process of creating the antialiased hatching shader described in Section 18.1. 

17.4.1. Generating Stripes 

The antialiasing fragment shader determines whether each fragment is to be drawn as white or 
black to create lines on the surface of an object. The first step is to determine the method to be 
used for drawing lines. We use a single parameter as the basis for our stripe pattern. For 
illustration, let's assume that the parameter is the s coordinate of the object's texture 
coordinate. We have the vertex shader pass this value to us as a floating-point varying variable 
named V, eventually giving us a method for creating vertical stripes on a sphere. Figure 17.3 
(A) shows the result of using the s texture coordinate directly as the intensity (grayscale) value 
on the surface of the sphere. The viewing position is slightly above the sphere, so we are 
looking down at the "north pole." The s texture coordinate starts off at 0 (black) and increases 
to 1 (white) as it goes around the sphere. The edge where black meets white can be seen at 
the pole, and it runs down the back side of the sphere. The front side of the sphere looks 
mostly gray, but increases from left to right. 

Figure 17.3. Using the s texture coordinate to create stripes on a 
sphere. In (A), the s texture coordinate is used directly as the intensity 
(gray) value. In (B), a modulus function creates a sawtooth function. 
In (C), the absolute value function turns the sawtooth function into a 

triangle function. (Courtesy of Bert Freudenberg, University of 
Magdeburg, 2002) 

 

 
We create a sawtooth wave by multiplying the s texture coordinate by 16 and taking the 
fractional part (see Figure 17.3 (B)). This causes the intensity value to start at 0, rise quickly to 
1, and then drop back down to 0. (To get a feel for what a sawtooth wave looks like, see the 
illustrations for the built-in functions fract (refer to Figure 5.6) and mod (refer to Figure 5.7)). 
This sequence is repeated 16 times. The OpenGL shader code to implement this is 

float sawtooth = fract(V * 16.0); 



 
This isn't quite the stripe pattern we're after. To get closer, we employ the absolute value 
function (see Figure 17.3 (C)). By multiplying the value of sawtooth by 2 and subtracting 1, we 
get a function that varies from [1,1]. Taking the absolute value of this function results in a 
function that goes from 1 down to 0 and then back to 1 (i.e., a triangle wave). The line of code to 
do this is 

float triangle = abs(2.0 * sawtooth - 1.0); 

 
A stripe pattern is starting to appear, but either it's too blurry or our glasses need adjustment. 
We make the stripes pure black and white by using the step function. When we compare our 
triangle variable to 0.5, this function returns 0 whenever triangle is less than or equal to 0.5, and 
1 whenever triangle is greater than 0.5. This could be written as 

float square = step(0.5, triangle); 

 
This effectively produces a square wave, and the result is illustrated in Figure 17.4 (A). We can 
modify the relative size of the alternating stripes by adjusting the threshold value provided in 
the step function. 

Figure 17.4. Antialiasing the stripe pattern. We can see that the square 
wave produced by the step function produces aliasing artifacts (A). The 
smoothstep function with a fixed-width filter produces too much blurring 

near the equator but not enough at the pole (B). An adaptive approach 
provides reasonable antialiasing in both regions (C). (Courtesy of Bert 

Freudenberg, University of Magdeburg, 2002) 

 

 
17.4.2. Analytic Prefiltering 

In Figure 17.4 (A), we see that the stripes are now distinct, but aliasing has reared its ugly 
head. The step function returns values that are either 0 or 1, with nothing in between, so the 
jagged edges in the transitions between white and black are easy to spot. They will not go away 
if we increase the resolution of the image; they'll just be smaller. The problem is caused by the 
fact that the step function introduced an immediate transition from white to black or an edge 
with infinite frequency (see Figure 5.11). There is no way to sample this transition at a high 
enough frequency to eliminate the aliasing artifacts. To get good results, we need to take steps 
within our shader to remove such high frequencies. 

A variety of antialiasing techniques rely on eliminating extremely high frequencies before 
sampling. This is called LOW-PASS FILTERING because low frequencies are passed through 
unmodified, whereas high frequencies are eliminated. The visual effect of low-pass filtering is 
that the resulting image is blurred. 



To eliminate the high frequencies from the stripe pattern, we use the smoothstep function. We 
know that this function produces a smooth transition between white and black. It requires that 
we specify two edges, and a smooth transition occurs between those two edges. Figure 17.4 (B) 
illustrates the result from the following line of code: 

float square = smoothstep(0.4, 0.6, triangle); 

 
17.4.3. Adaptive Analytic Prefiltering 

Analytic prefiltering produces acceptable results in some regions of the sphere but not in others. 
The size of the smoothing filter (0.2) is defined in parameter space. But the parameter does not 
vary at a constant rate in screen space. In this case, the s texture coordinate varies quite 
rapidly in screen space near the poles and less rapidly at the equator. Our fixed-width filter 
produces blurring across several pixels at the equator and very little effect at the poles. What 
we need is a way to determine the size of the smoothing filter adaptively so that transition can 
be appropriate at all scales in screen space. This requires a measurement of how rapidly the 
function we're interested in is changing at a particular position in screen space. 

Fortunately, the OpenGL Shading Language provides a built-in function that can give us the rate 
of change (derivative) of any parameter in screen space. The function dFdx gives the rate of 
change in screen coordinates in the x direction, and dFdy gives the rate of change in the y 
direction. Because these functions deal with screen space, they are available only in a fragment 
shader. These two functions can provide the information needed to compute a GRADIENT VECTOR 
for the position of interest. 

Given a function f(x,y), the gradient of f at the position (x, y) is defined as the vector 

 

 
In English, the gradient vector comprises the partial derivative of function f with respect to x 
(i.e., the measure of how rapidly f is changing in the x direction) and the partial derivative of 
the function f with respect to y (i.e., the measure of how rapidly f is changing in the y 
direction). The important properties of the gradient vector are that it points in the direction of 
the maximum rate of increase of the function f(x,y) (the gradient direction) and that the 
magnitude of this vector equals the maximum rate of increase of f(x,y) in the gradient 
direction. (These properties are useful for image processing too, as we see later.) The built-in 
functions dFdx and dFdy give us exactly what we need to define the gradient vector for functions 
used in fragment shaders. 

The magnitude of the gradient vector for the function f(x,y) is commonly called the GRADIENT of 
the function f(x,y). It is defined as 

mag[G[f(x,y)]] = sqrt(( f/ x)2 + ( f/ x)2)

 

In practice, it is not always necessary to perform the (possibly costly) square root operation. 
The gradient can be approximated with absolute values: 

mag[G[f(x,y)]]  abs(f(x,y) - f(x + 1, y)) + abs(f(x,y) - f(x,y + 1)) 



This is exactly what is returned by the built-in function fwidth. The sum of the absolute values is 
an upper bound on the width of the sampling filter needed to eliminate aliasing. If it is too 
large, the resulting image looks somewhat more blurry than it should, but this is usually 
acceptable. 

The two methods of computing the gradient are compared in Figure 17.5. As you can see, there 
is little visible difference. Because the value of the gradient was quite small for the function 
being evaluated on this object, the values were scaled so that they would be visible. 

Figure 17.5. Visualizing the gradient. In (A), the magnitude of the 
gradient vector is used as the intensity (gray) value. In (B), the 

gradient is approximated with absolute values. (Actual gradient values 
are scaled for visualization.) (Courtesy of Bert Freudenberg, University 

of Magdeburg, 2002) 

 

 
To compute the actual gradient for a varying variable V within a fragment shader, we use 

float width = length(vec2(dFdx(V), dFdy(V))); 

 
To approximate it, we use the potentially higher performance calculation: 

float width = fwidth(V); 

 
We then use the filter width within our call to smoothstep as follows: 

float edge   = width * 32.0; 
float square = smoothstep(0.5 - edge, 0.5 + edge, triangle); 

 
If we put this all together in a fragment shader, we get Listing 17.1. 

Listing 17.1. Fragment shader for adaptive analytic antialiasing 

varying float V;                    // generic varying 
varying float LightIntensity; 
 
uniform float Frequency;            // Stripe frequency = 6 
 
void main() 



If we scale the frequency of our texture, we must also increase the filter width accordingly. 
After the value of the function is computed, it is replicated across the red, green, and blue 
components of a vec3 and used as the color of the fragment. The results of this adaptive 
antialiasing approach are shown in Figure 17.4 (C). The results are much more consistent 
across the surface of the sphere. A simple lighting computation is added, and the resulting 
shader is applied to the teapot in Figure 17.6. 

Figure 17.6. Effect of adaptive analytical antialiasing on striped 
teapots. On the left, the teapot is drawn with no antialiasing. On the 
right, the adaptive antialiasing shader is used. A small portion of the 

striped surface is magnified 200% to make it easier to see the 
difference. 

 

 
This approach to antialiasing works well until the filter width gets larger than the frequency. 
This is the situation that occurs at the north pole of the sphere. The stripes very close to the 
pole are much thinner than one pixel, so no step function will produce the correct gray value 
here. In such regions, you need to switch to integration or frequency clamping, both of which 
are discussed in subsequent sections. 

17.4.4. Analytic Integration 

The weighted average of a function over a specified interval is called a CONVOLUTION. The values 
that do the weighting are called the CONVOLUTION KERNEL or the CONVOLUTION FILTER. In some cases, 
we can reduce or eliminate aliasing by determining the convolution of a function ahead of time 
and then sampling the convolved function rather than the original function. The convolution can 
be performed over a fixed interval in a computation that is equivalent to convolving the input 
function with a box filter. A box filter is far from ideal, but it is simple and easy to compute and 
often good enough. 

This method corresponds to the notion of antialiasing by AREA SAMPLING. It is different from point 
sampling or supersampling in that we attempt to calculate the area of the object being rendered 
relative to the sampling region. Referring to Figure 17.2, if we used an area sampling 
technique, we would get more accurate values for each of the pixels, and we wouldn't miss that 
pixel that just had a sliver of coverage. 

{ 
    float sawtooth = fract(V * Frequency); 
    float triangle = abs(2.0 * sawtooth - 1.0); 
    float dp = length(vec2(dFdx(V), dFdy(V))); 
    float edge = dp * Frequency * 2.0; 
    float square = smoothstep(0.5 - edge, 0.5 + edge, triangle); 
    gl_FragColor = vec4(vec3(square), 1.0); 
} 

 



In Advanced RenderMan: Creating CGI for Motion Pictures, Apodaca and Gritz (1999) explain 
how to perform analytic antialiasing of a periodic step function, sometimes called a PULSE TRAIN. 
Darwyn Peachey described how to apply this method to his procedural brick RenderMan shader 
in Texturing and Modeling: A Procedural Approach, and Dave Baldwin published a GLSL version 
of this shader in the original paper on the OpenGL Shading Language. We use this technique to 
analytically antialias the procedural brick GLSL shader we described back in Chapter 6. Recall 
that the simple brick example used the step function to produce the periodic brick pattern. The 
function that creates the brick pattern in the horizontal direction is illustrated in Figure 17.7. 
From 0 to BrickPct.x (the brick width fraction), the function is 1.0. At the value of BrickPct.x, there 
is an edge with infinite slope as the function drops to 0. At the value 1, the function jumps back 
up to 1.0, and the process is repeated for the next brick. 

Figure 17.7. The periodic step function, or pulse train, that defines the 
horizontal component of the procedural brick texture 

 

 
The key to antialiasing this function is to compute its integral, or accumulated, value. We have 
to consider the possibility that, in areas of high complexity, the filter width that is computed by 
fwidth will cover several of these pulses. By sampling the integral rather than the function itself, 
we get a properly weighted average and avoid the high frequencies caused by point sampling 
that would produce aliasing artifacts. 

So what is the integral of this function? It is illustrated in Figure 17.8. From 0 to BrickPct.x, the 
function value is 1, so the integral increases with a slope of 1. From BrickPct.x to 1.0, the function 
has a value of 0, so the integral stays constant in this region. At 1, the function jumps back to 
1.0, so the integral increases until the function reaches BrickPct.x + 1. At this point, the integral 
changes to a slope of 0 again, and this pattern of ramps and plateaus continues. 

Figure 17.8. Periodic step function (pulse train) and its integral 



 

 
We perform antialiasing by determining the value of the integral over the area of the filter, and 
we do that by evaluating the integral at the edges of the filter and subtracting the two values. 
The integral for this function consists of two parts: the sum of the area for all the pulses that 
have been fully completed before the edge we are considering and the area of the possibly 
partially completed pulse for the edge we are considering. 

For our procedural brick shader, we use the variable position.x as the basis for generating the 
pulse function in the horizontal direction. So the number of fully completed pulses is just floor
(position.x). Because the height of each pulse is 1.0, the area of each fully completed pulse is just 
BrickPct.x. Multiplying floor(position.x) by BrickPct.x gives the area for all the fully completed pulses. 
The edge that we're considering may be in the part of the function that is equal to 0, or it may 
be in the part of the function that is equal to 1. We can find out by computing fract(position.x) (1.0 
BrickPct.x). If the result of this subtraction is less than 0, we were in the part of the function that 
returns 0, so nothing more needs to be done. But if the value is greater than zero, we are 
partway into a region of the function that is equal to 1. Because the height of the pulse is 1, the 
area of this partial pulse is fract(position.x) (1.0 BrickPct.x). Therefore, the second part of our 
integral is the expression max(fract(position.x) (1.0 BrickPct.x), 0.0). 

We use this integral for both the horizontal and vertical components of our procedural brick 
pattern. Because the application knows the brick width and height fractions (BrickPct.x and 
BrickPct.y), it can easily compute 1.0 BrickPct.x and 1.0 BrickPct.y and provide them to our fragment 
shader as well. This keeps us from unnecessarily computing these values several times for 
every fragment that is rendered. We call these values the mortar percentage. Because we 
evaluate this expression twice with different arguments, we define it as a macro or a function 
for convenience: 

#define Integral(x, p, notp) ((floor(x)*(p)) + max(fract(x)-(notp), 0.0)) 

 
The parameter p indicates the value that is part of the pulse (i.e., when the function is 1.0), and 
notp indicates the value that is not part of the pulse (i.e., when the function is 0). Using this 
macro, we can write the code to compute the value of the integral over the width of the filter as 



 

follows: 

vec2 fw, useBrick; 
 
fw = fwidth(position); 
 
useBrick = (Integral(position + fw, BrickPct, MortarPct) - 
            Integral(position, BrickPct, MortarPct)) / fw; 

 
The result is divided by the area of the filter (a box filter is assumed in this case) to obtain the 
average value for the function in the selected interval. 

17.4.5. Antialiased Brick Fragment Shader 

Now we can put all this to work to build better bricks. We replace the simple point sampling 
technique used in the example in Chapter 6 with analytic integration. The resulting shader is 
shown in Listing 17.2. The difference between the aliased and antialiased brick shaders is 
shown in Color Plate 35. 

Listing 17.2. Source code for an antialiased brick fragment shader 

uniform vec3  BrickColor, MortarColor; 
uniform vec2  BrickSize; 
uniform vec2  BrickPct; 
uniform vec2  MortarPct; 
 
varying vec2  MCposition; 
varying float LightIntensity; 
 
#define Integral(x, p, notp) ((floor(x)*(p)) + max(fract(x)-(notp), 0.0))
 
void main() 
{ 
    vec2 position, fw, useBrick; 
    vec3 color; 
 
    // Determine position within the brick pattern 
    position = MCposition / BrickSize; 
 
    // Adjust every other row by an offset of half a brick 
    if (fract(position.y * 0.5) > 0.5) 
        position.x += 0.5; 
 
    // Calculate filter size 
    fw = fwidth(position); 
 
    // Perform filtering by integrating the 2D pulse made by the 
    // brick pattern over the filter width and height 
    useBrick = (Integral(position + fw, BrickPct, MortarPct) - 
                Integral(position, BrickPct, MortarPct)) / fw; 
 
    // Determine final color 
    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y); 
    color *= LightIntensity; 
    gl_FragColor = vec4(color, 1.0); 
} 

 



17.5. Frequency Clamping 
Certain functions do not have an analytic solution, or they are just too difficult to solve. If this is 
the case, you might try a technique called frequency clamping. In this technique, the average 
value of the function replaces the actual value of the function when the filter width is too large. 
This is convenient for functions such as sine and noise whose average is known. 

17.5.1. Antialiased Checkerboard Fragment Shader 

The checkerboard pattern is the standard measure of the quality of an antialiasing technique 
(see Figure 17.9). Larry Gritz wrote a checkerboard RenderMan shader that performs 
antialiasing by frequency sampling, and Dave Baldwin translated this shader to GLSL. Listing 
17.3 shows a fragment shader that produces a procedurally generated, antialiased 
checkerboard pattern. The vertex shader transforms the vertex position and passes along the 
texture coordinate, nothing more. The application provides values for the two colors of the 
checkerboard pattern, the average of these two colors (the application can compute this and 
provide it through a uniform variable, rather than having the fragment shader compute it for 
every fragment), and the frequency of the checkerboard pattern. 

Figure 17.9. Checkerboard pattern rendered with the antialiased 
checkerboard shader. On the left, the filter width is set to 0, so aliasing 

occurs. On the right, the filter width is computed using the fwidth 
function. 

 

 
The fragment shader computes the appropriate size of the filter and uses it to perform smooth 
interpolation between adjoining checkerboard squares. If the filter is too wide (i.e., the varying 
parameter is changing too quickly for proper filtering), the average color is substituted. Even 
though this fragment shader uses a conditional statement, care is taken to avoid aliasing. In 
the transition zone between the if clause and the else clause, a smooth interpolation is 



 

performed between the computed color and the average color. 

Listing 17.3. Source code for an antialiased checkerboard fragment 
shader 

uniform vec3  Color1; 
uniform vec3  Color2; 
uniform vec3  AvgColor; 
uniform float Frequency; 
 
varying vec2  TexCoord; 
 
void main() 
{ 
    vec3 color; 
 
    // Determine the width of the projection of one pixel into s-t space 
    vec2 fw = fwidth(TexCoord); 
 
    // Determine the amount of fuzziness 
    vec2 fuzz = fw * Frequency * 2.0; 
 
    float fuzzMax = max(fuzz.s, fuzz.t); 
 
    // Determine the position in the checkerboard pattern 
    vec2 checkPos = fract(TexCoord * Frequency); 
 
    if (fuzzMax < 0.5) 
    { 
 
        // If the filter width is small enough, compute the pattern color 
        vec2 p = smoothstep(vec2(0.5), fuzz + vec2(0.5), checkPos) + 
                (1.0 - smoothstep(vec2(0.0), fuzz, checkPos)); 
 
        color = mix(Color1, Color2, p.x * p.y + (1.0 - p.x) * (1.0 - p.y));
 
        // Fade in the average color when we get close to the limit 
        color = mix(color, AvgColor, smoothstep(0.125, 0.5, FuzzMax)); 
    } 
    else 
    { 
        // Otherwise, use only the average color 
        color = AvgColor; 
    } 
 
    gl_FragColor = vec4(color, 1.0); 
} 

 

  



17.6. Summary 
With increased freedom comes increased responsibility. The OpenGL Shading Language permits 
the computation of procedural textures without restriction. It is quite easy to write a shader 
that exhibits unsightly aliasing artifacts (using a conditional or a step function is all it takes), 
and it can be difficult to eliminate these artifacts. After describing the aliasing problem in 
general terms, this chapter explored several options for antialiasing procedural textures. 
Facilities in the language, such as the built-in functions for smooth interpolation (smoothstep), for 
determining derivatives in screen space (dFdx, dFdy), and for estimating filter width (fwidth) can 
assist in the fight against jaggies. These functions were fundamental components of shaders 
that were presented to perform antialiasing by prefiltering, adaptive prefiltering, integration, 
and frequency clamping. 

  



17.7. Further Information 
Most signal processing and image processing books contain a discussion of the concepts of 
sampling, reconstruction, and aliasing. Books by Glassner, Wolberg, and Gonzalez and Woods 
can be consulted for additional information on these topics. Technical memos by Alvy Ray Smith 
address the issues of aliasing in computer graphics directly. 

The book Advanced RenderMan: Creating CGI for Motion Pictures by Tony Apodaca and Larry 
Gritz (1999) contains a chapter that describes shader antialiasing in terms of the RenderMan 
shading language, and much of the discussion is germane to the OpenGL Shading Language as 
well. Darwyn Peachey has a similar discussion in Texturing & Modeling: A Procedural Approach, 
Third Edition by David Ebert et al. (2002). 

Bert Freudenberg developed an OpenGL shader to do adaptive antialiasing and presented this 
work at the SIGGRAPH 2002 in San Antonio, Texas. In this chapter, I've recreated the images 
Bert used in his talk, but he deserves the credit for originally developing the images and the 
shaders to illustrate some of the topics I've covered. This subject is also covered in his Ph.D. 
thesis, Real-Time Stroke-based Halftoning. 
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Chapter 18. Non-Photorealistic Shaders 
A significant amount of computer graphics research has been aimed at achieving more and 
more realistic renditions of synthetic scenes. A longtime goal has been to render a scene so 
perfectly that it is indistinguishable from a photograph of the real scene, hence the term 
PHOTOREALISM. With the latest graphics hardware, some photorealistic effects are becoming 
possible in real-time rendering. 

This quest for realism is also reflected in graphics APIs such as OpenGL. The OpenGL 
specification defines specific formulas for calculating effects such as illumination from light 
sources, material properties, and fog. These formulas attempt to define effects as realistically 
as possible while remaining relatively easy to implement in hardware, and they have duly been 
cast into silicon by intrepid graphics hardware designers. 

But the collection of human art and literature shows us that photorealism is not the only 
important style for creating images. The availability of low-cost programmable graphics 
hardware has sparked the growth of an area called NON-PHOTOREALISTIC RENDERING, or NPR. 
Researchers and practitioners in this field are attempting to use computer graphics to produce a 
wide range of artistic effects other than photorealism. In this chapter, we look at a few 
examples of shaders whose main focus is something other than generating results that are as 
realistic as possible. 

  



18.1. Hatching Example 
Bert Freudenberg of the University of Magdeburg in Germany was one of the first people outside
3Dlabs to come up with a unique OpenGL shader. His area of research has been to use 
programmable hardware to produce real-time NPR effects such as hatching and half-toning. He 
experimented with a prototype implementation of the OpenGL Shading Language in the summer
of 2002 and produced a hatching shader that he agreed to share with us for this book. 

This shader has a few unique features, and the steps involved in designing this shader are 
described in Bert's Ph.D. thesis, Real-Time Stroke-based Halftoning (2003). Bert's hatching 
shader is based on a woodblock printing shader by Scott Johnston that is discussed in Advanced 
RenderMan: Creating CGI for Motion Pictures by Tony Apodaca and Larry Gritz (1999). 

The goal in a hatching shader is to render an object in a way that makes it look hand-drawn, for 
instance with strokes that look like they may have been drawn with pen and ink. Each stroke 
contributes to the viewer's ability to comprehend the tone, texture, and shape of the object 
being viewed. The effect being sought in this shader is that of a woodcut print. In a woodcut, a 
wooden block carved with small grooves is covered with ink and pressed onto a surface. The 
image left on the surface is the mirror image of the image carved into the wood block. No ink is 
left where the grooves are cut, only where the wood is left uncut. Lighting is simulated by 
varying the width of the grooves according to light intensity. 

We face a number of challenges in developing a shader that simulates the look of a woodcut 
print. The first thing we need is a way of generating stripes that defines the tone and texture of 
the object. Alternating white and black lines provides the highest contrast edges and thus 
represents a worst-case scenario for aliasing artifacts; thus antialiasing is a prime consideration.
We also want our lines to "stay put" on the object so that we can use the object in an animation 
sequence. Finally, the lines in a woodcut print are not always perfectly straight and uniform as 
though they were drawn by a computer. They are cut into the wood by a human artist, so they 
have some character. We'd like the lines that our shader generates to have some character as 
well. 

18.1.1. Application Setup 

The application needs to send vertex positions, normals, and a single set of texture coordinates 
to the hatching shader. The normals are used in a simple lighting formula, and the texture 
coordinates are used as the base for procedurally defining the hatching pattern. The light 
position is passed in as a uniform variable, and the application also updates the value of the Time
uniform variable at each frame so that the behavior of the shader can be modified slightly each 
frame. What do you suppose we use to give our lines some character? You guessed itthe noise 
function. In this case, we have the application generate the noise values that are needed and 
store the results in a 3D texture. For this reason, the value for a uniform variable of type 
sampler3D is provided by the application to inform the fragment shader which texture unit should 
be accessed to obtain the noise values. 

18.1.2. Vertex Shader 

The hatch vertex shader is shown in Listing 18.1. The first line is the only line that looks 
different from shaders we've discussed previously. The varying variable ObjPos is the basis for 
our hatching stroke computation in the fragment shader. To animate the wiggle of the lines, the 
vertex shader adds the uniform variable Time to the z coordinate of the incoming vertex position.
This makes it appear as though the wiggles are "flowing" along the z-axis. A scaling value is 
also used to make the hatching strokes match the scale of the object being rendered. (To 
accommodate a variety of objects, we should probably replace this value with a uniform 
variable.) The remainder of the vertex shader performs a simple diffuse lighting equation, 



copies the t coordinate of the incoming texture coordinate into the varying variable V, and 
computes the value of the built-in variable gl_Position. 

Listing 18.1. Vertex shader for hatching 

18.1.3. Generating Hatching Strokes 

The purpose of our fragment shader is to determine whether each fragment is to be drawn as 
white or black in order to create lines on the surface of the object. As we mentioned, there are 
some challenges along the way. To prepare for the full-blown hatching shader, we develop 
some of the techniques we need and illustrate them on a simple object: a sphere. 

We start with the same code that was presented in Section 17.4.1 for generating vertical 
stripes, namely, 

float sawtooth = fract(V * 16.0); 
float triangle = abs(2.0 * sawtooth - 1.0); 
float square = step(0.5, triangle); 

 
Recall that V was a varying variable passed from the vertex shader. It was equal to the s 
texture coordinate if we wanted to generate vertical stripes and equal to the t texture 
coordinate if we wanted to generate horizontal stripes. We chose the number 16 to give us 16 
white stripes and 16 black stripes. The result of this code is illustrated in Figure 18.1. We can 
modify the relative size of the white and black stripes by adjusting the threshold value provided 
in the step function. 

Figure 18.1. A sphere with a stripe pattern generated procedurally 
based on the s texture coordinate (Courtesy of Bert Freudenberg, 

University of Magdeburg, 2002) 

uniform vec3  LightPosition; 
uniform float Time; 
 
varying vec3  ObjPos; 
varying float V; 
varying float LightIntensity; 
 
void main() 
{ 
    ObjPos          = (vec3(gl_Vertex) + vec3(0.0, 0.0, Time)) * 0.2; 
 
    vec3 pos        = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - pos); 
 
    LightIntensity  = max(dot(lightVec, tnorm), 0.0); 
 
    V = gl_MultiTexCoord0.t;  // try .s for vertical stripes 
 
    gl_Position = ftransform(); 
} 

 



 

 
18.1.4. Obtaining Uniform Line Density 

We now have reasonable-looking stripes, but they aren't of uniform width. They appear fatter 
along the equator and pinched in at the pole. We'd like to end up with lines that are of roughly 
equal width in screen space. This requires the use of the dFdx and dFdy functions: 

float dp = length(vec2(dFdx(V), dFdy(V))); 

 
As we learned in Section 17.4.3, this computation provides us with the gradient (i.e., how 
rapidly V is changing at this point on the surface). We can use this value to adjust the density of 
lines in screen space. 

Computing the actual gradient with the length function involves a potentially costly square root 
operation. Why not use the approximation to the gradient discussed in Section 17.4.3? In this 
case we must compute the actual gradient because the approximation to the gradient isn't quite 
good enough for our purposes. We're not using this value to estimate the filter width for 
antialiasing; instead we're using it to compute the stripe frequency. This computation needs to 
be rotationally invariant so that our stripes don't jump around just because we rotate the 
object. For this reason, we need to compute the actual length of the gradient vector, not just 
the sum of the absolute values of the two components of the gradient vector. 

So, we use the base 2 logarithm of this value (shown applied to the sphere in Figure 18.2 (A)) 
to adjust the density in discrete stepseach time dp doubles, the number of lines doubles unless 
we do something about it. The stripes get too thin and too dense if doubling occurs. To 
counteract this effect (because we are interested in getting a constant line density in screen 
space), we decrease the number of stripes when the density gets too high. We do this by 
negating the logarithm. 

Figure 18.2. Adjusting the stripe frequency. The integer part of the 
logarithm of the gradient (A) is the basis for determining stripe 

frequency. First, the sphere is shown with a higher frequency of stripes 
(B). The integer part of the logarithm then adjusts the stripe frequency 
in (C), and the effect of tapering the ends is shown in (D). (Courtesy of 

Bert Freudenberg, University of Magdeburg, 2002) 



 

 
float logdp     = -log2(dp); 
float ilogdp    = floor(logdp); 
float frequency = exp2(ilogdp); 
float sawtooth  = fract(V * 16.0 * frequency); 

 
A sphere with a higher stripe frequency is shown in Figure 18.2 (B). As you can see, the lines 
look reasonable in the lower part of the sphere, but there are too many at the pole. By applying 
the stripe frequency adjustment, we end up with stripes of roughly equal width across the 
sphere (see Figure 18.2 (C)). Notice the correlation between Figure 18.2 (A) and Figure 18.2 
(C). 

The next issue to address is the abrupt changes that occur as we jump from one stroke 
frequency to the next. Our eyes detect a distinct edge along these transitions, and we need to 
take steps to soften this edge so that it is less distracting. We can accomplish this by using the 
fractional part of logdp to do a smooth blend between two frequencies of the triangle wave. This 
value is 0 at the start of one frequency, and it increases to 1.0 at the point where the jump to 
the next frequency occurs. 

float transition = logdp - ilogdp; 

 
As we saw earlier, we can generate a triangle wave with frequency double that of a triangle 
wave with frequency t by taking abs (2.0 * t 1.0). We can use the value of transition to linearly 
interpolate between t and abs (2.0 * t 1.0) by computing (1.0 transition) * t + transition * abs (2.0 * 
t 1.0). This is exactly the same as if we did mix (abs (2.0 * t 1.0), t, transition). But instead of 
using mix, we note that this is equivalent to abs ((1.0 transition) * t - transition). Using the 
previously computed value for our base frequency (triangle), we end up with the following code: 

triangle = abs((1.0 - transition) * triangle - transition); 

 



The result of drawing the sphere with uniform stripe density and tapered ends is shown in 
Figure 18.2 (D). 

18.1.5. Simulating Lighting 

To simulate the effect of lighting, we'd like to make the dark stripes more prominent in regions 
that are in shadow and the white stripes more prominent in regions that are lit. We can do this 
by using the computed light intensity to modify the threshold value used in the step function. In 
regions that are lit, the threshold value is decreased so that black stripes get thinner. In regions 
that are in shadow, the threshold value is increased so that the black stripes get wider. 

const float edgew = 0.2;            // width of smooth step 
 
float edge0  = clamp(LightIntensity - edgew, 0.0, 1.0); 
float edge1  = clamp(LightIntensity, 0.0, 1.0); 
float square = 1.0 - smoothstep(edge0, edge1, triangle); 

 
Once again, we use the smoothstep function to antialias the transition. Because our stripe pattern 
is a (roughly) constant width in screen space, we can use a constant filter width rather than an 
adaptive one. The results of the lighting effect can be seen in Figure 18.3. 

Figure 18.3. Applying lighting to the sphere. In (A), the sphere is lit 
with a simple lighting model and no stripes. In (B), the light intensity 
modulates the width of the stripes to simulate the effect of lighting. 

(Courtesy of Bert Freudenberg, University of Magdeburg, 2002) 

 

 
18.1.6. Adding Character 

If a woodcut block is made by a human artist and not by a machine, the cuts in the wood aren't 
perfect in thickness and spacing. How do we add some imperfections into our mathematically 
perfect description of hatching lines? With noise (see Chapter 15). For this shader, we don't 
need anything fancy; we just want to add some "wiggle" to our otherwise perfect lines or 
perhaps some "patchiness" to our simple lighting equation. We can use a tileable 3D texture 
containing Perlin noise in the same way for this shader as for the shaders in Chapter 15. 

To add wiggle to our lines, we modify the sawtooth generation function: 

float sawtooth = fract((V + noise * 0.1) * frequency * stripes); 

 
The result of noise added to our stripe pattern is illustrated in Figure 18.4. 



Figure 18.4. Adding noise to the hatching algorithm. In (A), the Perlin 
noise function is applied directly to the sphere's surface. In (B), it 

modulates the parameter that defines the frequency of the hatching 
strokes. (Courtesy of Bert Freudenberg, University of Magdeburg, 

2002) 

 

 
18.1.7. Hatching Fragment Shader 

The pieces described in the preceding sections are put together in the general-purpose hatching 
shader shown in Listing 18.2. It bases its hatching stroke computation on the t texture 
coordinate, so the result is horizontal stripes rather than vertical ones. The results of applying 
this shader to the teapot model are shown in Figure 18.5. 

Figure 18.5. Woodcut-style teapot rendered with the hatching shader 
(Courtesy of Bert Freudenberg, University of Magdeburg, 2002) 

 

 
Listing 18.2. Fragment shader for woodcut-style rendering 

const float frequency = 1.0; 
 
varying vec3  ObjPos;               // object space coord (noisy) 
varying float V;                    // generic varying 
varying float LightIntensity; 
 
uniform sampler3D Noise;            // value of Noise = 3; 



 

 
void main() 
{ 
    float dp       = length(vec2(dFdx(V), dFdy(V))); 
    float logdp    = -log2(dp * 8.0); 
    float ilogdp   = floor(logdp); 
    float stripes  = exp2(ilogdp); 
 
    float noise    = texture3D(Noise, ObjPos).x; 
 
    float sawtooth = fract((V + noise * 0.1) * frequency * stripes); 
    float triangle = abs(2.0 * sawtooth - 1.0); 
 
    // adjust line width 
    float transition = logdp - ilogdp; 
 
    // taper ends 
    triangle = abs((1.0 + transition) * triangle - transition); 
 
    const float edgew = 0.3;            // width of smooth step 
 
    float edge0  = clamp(LightIntensity - edgew, 0.0, 1.0); 
    float edge1  = clamp(LightIntensity, 0.0, 1.0); 
    float square = 1.0 - smoothstep(edge0, edge1, triangle); 
 
    gl_FragColor = vec4(vec3(square), 1.0); 
} 

 

  



18.2. Technical Illustration Example 
Pick up just about any instruction manual, technical book, or encyclopedia and you will see a 
variety of illustrations other than photographs or photorealistic graphics. Technical illustrators 
have learned various techniques over the years to convey relevant information as simply and as 
clearly as possible. Details that do not contribute to understanding are omitted, and details that 
are crucial to understanding are clear and straightforward. This style of illustration differs from 
mainstream computer graphics for which an enormous amount of detail may be presented in an 
image to make it look more realistic. The effort to convey information as succinctly as possible 
in a technical illustration is summed up by a strategy referred to by Edward Tufte (1997) as 
"the smallest effective difference." In his book, Visual Explanations, Tufte says, "Make all visual 
distinctions as subtle as possible, but still clear and effective." 

Various NPR practitioners are attempting to develop algorithms to create technical illustrations. 
The goal is to simplify or even automate the task of creating high-quality technical illustrations 
according to time-honored illustration techniques. Much of our comprehension about an object's 
shape comes from lighting. Yet the traditional lighting equation is deficient at conveying shape 
information in areas that are not lit directly, because these areas appear flat. The only lighting 
in these areas comes from the ambient term, which is constant. Technical illustrations also 
highlight important edges in black so that they are distinct and clearly convey the shape of the 
object. If a small ambient term is used in the traditional lighting model, black edge highlights 
typically are indistinguishable from unlit regions of the object, which are also very near black. 

In 1998, Bruce and Amy Gooch, Peter Shirley, and Elaine Cohen surveyed illustrations and 
came up with a list of common characteristics for color illustrations done with airbrush and pen. 

Surface boundaries, silhouette edges, and discontinuities in the surface of an object are 
usually drawn with black curves. 

A single light source is used, and it produces a white highlight on objects. 

The light source is usually positioned above the object so that the diffuse reflection term 
varies from [0,1] across the visible portion of the object. 

Effects that add complexity (realism) such as shadows, reflections, and multiple light 
sources are not shown. 

Matte objects are shaded with intensities far from white and black so as to be clearly 
distinct from (black) edges and (white) highlights. 

The warmth or coolness of the color indicates the surface normal (and hence the 
curvature of the surface). 

These characteristics were incorporated into a "low dynamic range artistic tone algorithm" that 
we now refer to as GOOCH SHADING. 

One of the important aspects of Gooch shading is the generation of black curves that represent 
important edges. There are a number of techniques for rendering such edges. Perhaps the best 
method is to have them identified during the modeling process by the person designing the 
model. In this case, the edges can be rendered as antialiased black lines that are drawn on top 
of the object itself, that is, in a second rendering pass that draws the edges after the objects in 
the scene have been completely rendered. 

If important edges have not been identified during the modeling process, several methods can 



generate them automatically. Quality of results varies according to the method used and the 
characteristics of the objects in the scene. Interior boundary or crease edges should also be 
identified, and these are sometimes critical to comprehension. A technique that identifies 
boundary or crease edges as well as silhouette edges involves using vertex and fragment 
shaders to write world-space normals and depth values into the framebuffer. The result is 
stored as a texture, and a subsequent rendering pass with different vertex and fragment 
shaders can use an edge detection algorithm on this "image" to detect discontinuities (i.e., 
edges) in the scene (Jason Mitchell (2002)). 

A technique for drawing silhouette edges for simple objects, described by Jeff Lander (2000) in 
Under the Shade of the Rendering Tree, requires drawing the geometry twice. First, we draw 
just the front-facing polygons using filled polygons and the depth comparison mode set to 
GL_LESS. The Gooch shaders are active when we do this. Then, we draw the back-facing 
polygons as lines with the depth comparison mode set to GL_LEQUAL. This has the effect of 
drawing lines such that a front-facing polygon shares an edge with a back-facing polygon. We 
draw these lines in black, using fixed functionality OpenGL with polygon mode set so that back-
facing polygons are drawn as lines. The OpenGL calls to do this are shown in Listing 18.3. 

Listing 18.3. C code for drawing silhouette edges on simple objects 

A second aspect of Gooch shading is that specular highlights are computed with the exponential 
specular term of the Phong lighting model and are rendered in white. Highlights convey 
information about the curvature of the surface, and choosing white as the highlight color 
ensures that highlights are distinct from edges (which are black) and from the colors shading 
the object (which are chosen to be visually distinct from white or black). 

A third aspect of the algorithm is that a limited range of luminance values is used to convey 
information about the curvature of the surfaces that are being rendered. This part of the 
shading uses the color of the object, which is typically chosen to be an intermediate value that 
doesn't interfere visually with white or black. 

Because the range of luminance values is limited, a warm-to-cool color gradient is also added to 
convey more information about the object's surface. Artists use "warm" colors (yellow, red, and 
orange) and "cool" colors (blue, violet, and green) to communicate a sense of depth. Warm 
colors, which appear to advance, indicate objects that are closer. Cool colors, which appear to 
recede, indicate objects that are farther away. 

The actual shading of the object depends on two factors. The diffuse reflection factor generates 

// Enable culling 
glEnable(GL_CULL_FACE); 
 
// Draw front-facing polygons as filled using the Gooch shader 
glPolygonMode(GL_FRONT, GL_FILL); 
glDepthFunc(GL_LESS); 
glCullFace(GL_BACK); 
glUseProgramObjectARB(ProgramObject); 
drawSphere(0.6f, 64); 
 
// Draw back-facing polygons as black lines using standard OpenGL 
glLineWidth(5.0); 
glPolygonMode(GL_BACK, GL_LINE); 
glDepthFunc(GL_LEQUAL); 
glCullFace(GL_FRONT); 
glColor3f(0.0, 0.0, 0.0); 
glUseProgramObjectARB(0); 
drawSphere(0.6f, 64); 

 



luminance values in a limited range to provide one part of the shading. A color ramp that blends 
between two colors provides the other part of the shading. One of the two colors is chosen to 
be a cool (recessive) color, such as blue, to indicate surfaces that are angled away from the 
light source. The other color is chosen to be a warm (advancing) color, such as yellow, to 
indicate surfaces facing toward the light source. The blue-to-yellow ramp provides an undertone 
that ensures a cool-to-warm transition regardless of the diffuse object color that is chosen. 

The formulas used to compute the colors used for Gooch shading are as follows: 

 

 
kcool is the color for the areas that are not illuminated by the light source. We compute this 

value by adding the blue undertone color and the diffuse color of the object, kdiffuse. The value α 

is a variable that defines how much of the object's diffuse color will be added to the blue 
undertone color. kwarm is the color for the areas that are fully illuminated by the light source. 

This value is computed as the sum of the yellow undertone color and the object's diffuse color 
multiplied by a scale factor,β. 

The final color is just a linear blend between the colors kcool and kwarm based on the diffuse 

reflection term N · L, where N is the normalized surface normal and L is the unit vector in the 
direction of the light source. Since N · L can vary from [1,1], we add 1 and divide the result by 
2 to get a value in the range [0,1]. This value determines the ratio of kcool and kwarm to produce 

the final color value. 

18.2.1. Application Setup 

We implement this shading algorithm in two passes (i.e., we draw the geometry twice). We use 
the Lander technique to render silhouette edges in black. In the first pass, we cull back-facing 
polygons and render the front-facing polygons with the Gooch shader. In the second pass, we 
cull all the front-facing polygons and use OpenGL fixed functionality to render the edges of the 
back-facing polygons in black. We draw the edges with a line width greater than one pixel so 
that they can be seen outside the object. For this shader to work properly, only vertex positions 
and normals need to be passed to the vertex shader. 

18.2.2. Vertex Shader 

The goals of the Gooch vertex shader are to produce a value for the (1 + N · L) / 2 term in the 
previous equations, and to pass on the reflection vector and the view vector so that the 
specular reflection can be computed in the fragment shader (see Listing 18.4). Other elements 
of the shader are identical to shaders discussed earlier. 

Listing 18.4. Vertex shader for Gooch matte shading 

uniform vec3  LightPosition;  // (0.0, 10.0, 4.0) 
 
varying float NdotL; 
varying vec3  ReflectVec; 



 

18.2.3. Fragment Shader 

The fragment shader implements the tone-based shading portion of the Gooch shading 
algorithm and adds the specular reflection component (see Listing 18.5). The colors and ratios 
are defined as uniform variables so that they can be easily modified by the application. The 
reflection and view vectors are normalized in the fragment shader because interpolation may 
have caused them to have a length other than 1.0. The result of rendering with the Gooch 
shader and the silhouette edge algorithm described by Lander is shown in Color Plate 28. 

Listing 18.5. Fragment shader for Gooch matte shading 

varying vec3  ViewVec; 
 
void main() 
{ 
    vec3 ecPos      = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPos); 
    ReflectVec      = normalize(reflect(-lightVec, tnorm)); 
    ViewVec         = normalize(-ecPos); 
    NdotL           = (dot(lightVec, tnorm) + 1.0) * 0.5; 
    gl_Position     = ftransform(); 
} 

 

uniform vec3  SurfaceColor;  // (0.75, 0.75, 0.75) 
uniform vec3  WarmColor;     // (0.6, 0.6, 0.0) 
uniform vec3  CoolColor;     // (0.0, 0.0, 0.6) 
uniform float DiffuseWarm;   // 0.45 
uniform float DiffuseCool;   // 0.45 
 
varying float NdotL; 
varying vec3  ReflectVec; 
varying vec3  ViewVec; 
 
void main() 
{ 
    vec3 kcool    = min(CoolColor + DiffuseCool * SurfaceColor, 1.0); 
    vec3 kwarm    = min(WarmColor + DiffuseWarm * SurfaceColor, 1.0); 
    vec3 kfinal   = mix(kcool, kwarm, NdotL); 
 
    vec3 nreflect = normalize(ReflectVec); 
    vec3 nview    = normalize(ViewVec); 
 
    float spec    = max(dot(nreflect, nview), 0.0); 
    spec          = pow(spec, 32.0); 
 
    gl_FragColor  = vec4(min(kfinal + spec, 1.0), 1.0); 
} 

 

  



18.3. Mandelbrot Example 
C'mon, now, what kind of a book on graphics programming would this be without an example of 
drawing the Mandelbrot set? 

Our last shader of the chapter doesn't fall into the category of attempting to achieve an artistic 
or painterly effect, but it's an example of performing a type of general-purpose computation on 
the graphics hardware for scientific visualization. In this case, the graphics hardware enables us 
to do real-time exploration of a famous mathematical function that computes the Mandelbrot 
set. In 1998, Michael Rivero created a RenderMan shader that creates the Mandelbrot set as a 
texture. Subsequently, Dave Baldwin adapted this shader for GLSL, Steve Koren then made 
some modifications to it to get it working on programmable hardware for the first time, and I've 
adapted this shader further for inclusion in this book. 

The point of including this shader is to emphasize the fact that with the OpenGL Shading 
Language, computations that were previously possible only in the realm of the CPU can now be 
executed on the graphics hardware. Performing the computations completely on the graphics 
hardware is a big performance win because the computations can be carried out on many pixels 
in parallel. Visualization of a complex mathematical function such as the Mandelbrot set barely 
begins to tap the potential for using programmable shader technology for scientific 
visualization. 

18.3.1. About the Mandelbrot Set 

To understand the Mandelbrot set, we must first recall a few things from our high school 
mathematics days. No real number, when multiplied by itself, yields a negative value. But the 
imaginary number called i is defined to be equal to the square root of 1. With i, the square root 
of any negative number can easily be described. For instance, 3i squared is 9, and conversely 
the square root of 9 is 3i. 

Numbers that consist of a real number and an imaginary number, such as 6 + 4i, are called 
complex numbers. Arithmetic operations can be performed on complex numbers just as on real 
numbers. The result of multiplying two complex numbers is as follows: 

 
Because complex numbers contain two parts, the set of complex numbers is two-dimensional. 
Complex numbers can be plotted on the complex number plane, which uses the horizontal axis 
to represent the real part and the vertical axis to represent the imaginary part (see Figure 
18.6). 

Figure 18.6. A portion of the complex number plane 

x = a + bi 

y = c + di 

xy = ac + adi + cbi - bd 

= (ac - bd) + (ad + bc)i 



 

 
In Figure 18.6, we see three symbols plotted on the complex number plane. A small square is 
plotted at the complex number 2 + i, a small circle is plotted at 1 + 2i, and a triangle is plotted 
at 1.5 0.5i. 

With the assistance of 1970s computer technology (quite inferior by today's consumer PC 
standards), a mathematician named Benoit Mandelbrot began studying a recursive function 
involving complex numbers: 

 

 
In this function, the value of Z is initialized to c, the value of the complex number being tested. 
For each iteration, the value of Z is squared and added to c to determine a new value for Z. This 
amazingly simple iterative formula produces what has been called the most complex object in 
mathematics, and perhaps the most complex structure ever seen! 

It turns out that for some values of c, the function eventually approaches infinity, and for other 
values it does not. Quite simply, values of c that go off to infinity are not part of the Mandelbrot 
set, and the rest are. If we use a computer (or an OpenGL Shading Language-capable graphics 
accelerator!) to test thousands of points on the complex number plane and assign a gray level 
to those that go off to infinity and black to those that don't, we see the following familiar 
cardioid/prickly pear shape start to appear (see Figure 18.7). 

Figure 18.7. Simple plot of the Mandelbrot set 



 

 
How exactly do we test whether these values go off to infinity? Well, Mandelbrot helped us out 
a bit here. He showed that if the magnitude of Z (its distance from the origin) was greater than 
2, the value of the function would go to infinity. To encode this function in a programming 
language, all we need to do is stop iterating when the magnitude of Z surpasses 2. Even easier, 
because we're always dealing with Z2, we can simply check to see if Z2 is greater than 4. 

The values inside the black region of Figure 18.7 do not go off to infinity in any reasonable 
number of iterations. How do we deal with these? To prevent our computer or graphics 
hardware from locking up in an infinite loop, we need to decide on the maximum number of 
iterations to allow before we give up and assume the point is inside the Mandelbrot set. With 
these two exit criteria, we can write a simple loop that computes the Mandelbrot set. 

The beauty of the Mandelbrot set can be enhanced if we color code the number of iterations 
needed to determine whether a particular point is inside the set. Values determined to be 
outside the set on the first iteration are given one color value, values determined to be outside 
the set on the second iteration are given another color value, and so on. In Figure 18.7, I've 
used gray levels to indicate the number of iterations. The medium gray on the outside 
represents values that are identified as outside the Mandelbrot set on the very first iteration. 
Values in white along the edge took 20 iterations to be identified as being outside the 
Mandelbrot set. 

The edges of the Mandelbrot set hold an infinite amount of self-similar variety. By continuing to 
zoom in on the edge detail, you can find complex numbers whose magnitude stayed below 2 for 
hundreds or even thousands of iterations of the function before finally exceeding the threshold 
and zooming off to infinity. 

Here are a few other deep thoughts that you can use to amaze and amuse your friends: 

The length of the border for the Mandelbrot set is infinite. 

All the regions inside the Mandelbrot set (i.e., the black regions) are connected. 

There is exactly one band surrounding the Mandelbrot set for each iteration value (e.g., a 
band that exceeded the threshold on the first iteration, a band that exceeded on the 
second iteration, and so on). The iteration bands go completely around the Mandelbrot 
set, do not break, and do not cross each other. When you've zoomed in to explore an 
edge region with amazing complexity, this is pretty astonishing. 

There are an infinite number of "mini-Mandelbrots" (regions that look like warped or 
transformed versions of the full Mandelbrot set) within the original. 

18.3.2. Vertex Shader 



The vertex shader for the Mandelbrot set (see Listing 18.6) is almost exactly the same as the 
vertex shader for the simple brick example that was described in Section 6.2. The only 
difference is that we assume that texture coordinates will be provided in the range of [0,1] for 
both s and t, and we map these values into the range [-2.5, 2.5] and store the result into a 
varying variable named Position. This enables the fragment shader to plot values directly onto a 
coordinate system that is just the right size for plotting the Mandelbrot set, and it has the point 
(0,0) in the middle. If the application draws a single polygon that is a screen-aligned square 
and has texture coordinate (0,0) in the lower-left corner and (1,1) in the upper right, the result 
is a standard representation of the Mandelbrot set. Of course, with our OpenGL Mandelbrot 
shader, the Mandelbrot set can be "textured" onto any geometry and we even apply a simple 
lighting model as an added bonus. 

Listing 18.6. Vertex shader for drawing the Mandelbrot set 

18.3.3. Fragment Shader 

The fragment shader implements the algorithm described in the previous section. Uniform 
variables establish the maximum number of iterations and the starting point for viewing the 
Mandelbrot set (center value and zoom factor). The application is given artistic license to use 
uniform variables to set one color for points inside the set and two colors to use for points 
outside the set. For values outside the set, the color gradient from OuterColor1 to OuterColor2 is 
broken into 20 separate bands, and the cycle is repeated if the number of iterations goes above 
20. It is repeated again if the number of iterations goes above 40, and so on. 

This shader maps the x coordinate of the computed position in the complex number plane (i.e., 
the value in Position.x) to the real number in the iterative function, and the y coordinate to the 
imaginary number. After the initial conditions have been established, the shader enters a loop 
with two exit criteriaif we reach the maximum number of iterations allowed or if the point 
proves to be outside the set. Within the loop, the function Z2 + c is computed for use in the next 
iteration. After the loop is exited, we compute the color of the fragment. If we're inside the set, 
we use the inside color. If we're on the edge or outside, we blend the edge color and the outer 
color, depending on the number of iterations that have occurred. 

uniform vec3 LightPosition; 
uniform float SpecularContribution; 
uniform float DiffuseContribution; 
uniform float Shininess; 
 
varying float LightIntensity; 
varying vec3  Position; 
 
void main() 
{ 
    vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex); 
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal); 
    vec3 lightVec   = normalize(LightPosition - ecPosition); 
    vec3 reflectVec = reflect(-lightVec, tnorm); 
    vec3 viewVec    = normalize(-ecPosition); 
    float spec      = max(dot(reflectVec, viewVec), 0.0); 
    spec            = pow(spec, Shininess); 
    LightIntensity  = DiffuseContribution * 
                      max(dot(lightVec, tnorm), 0.0) + 
                      SpecularContribution * spec; 
    Position        = vec3(gl_MultiTexCoord0 - 0.5) * 5.0; 
    gl_Position     = ftransform(); 
} 

 



The complete fragment shader is shown in Listing 18.7. 

Listing 18.7. Fragment shader for computing the Mandelbrot set 

There is obviously room for improvement in this shader. One thing you might do is improve the 
color selection algorithm. One possibility is to use a 1D texture to store a color lookup table. 
The number of iterations could be used to index into this table to obtain the color for drawing 
the fragment. 

After you've invented a pleasing coloring scheme, you can explore some of the popular 
Mandelbrot "tourist locations." Various books and Web sites have published the coordinates of 
interesting locations in the Mandelbrot set, and these shaders are set up so that you can plug 
those coordinates in directly and zoom in and see for yourself. Figure 18.8 shows a few that I 
explored. 

varying vec3  Position; 
varying float LightIntensity; 
 
uniform float MaxIterations; 
uniform float Zoom; 
uniform float Xcenter; 
uniform float Ycenter; 
uniform vec3  InnerColor; 
uniform vec3  OuterColor1; 
uniform vec3  OuterColor2; 
 
void main() 
{ 
    float   real  = Position.x * Zoom + Xcenter; 
    float   imag  = Position.y * Zoom + Ycenter; 
    float   Creal = real;   // Change this line. . . 
    float   Cimag = imag;   // . . .and this one to get a Julia set 
 
    float r2 = 0.0; 
    float iter; 
 
    for (iter = 0.0; iter < MaxIterations && r2 < 4.0; ++iter) 
    { 
        float tempreal = real; 
 
        real = (tempreal * tempreal) - (imag * imag) + Creal; 
        imag = 2.0 * tempreal * imag + Cimag; 
        r2   = (real * real) + (imag * imag); 
    } 
 
    // Base the color on the number of iterations 
 
    vec3 color; 
 
    if (r2 < 4.0) 
        color = InnerColor; 
    else 
        color = mix(OuterColor1, OuterColor2, fract(iter * 0.05)); 
 
    color *= LightIntensity; 
 
    gl_FragColor = vec4(color, 1.0); 
} 

 



Figure 18.8. Results from the Mandelbrot shader 

 

 
18.3.4. Julia Sets 

Julia sets are related to the Mandelbrot set. Each point in the Mandelbrot set can be used to 
generate a Julia set, and these are just as much fun to explore as the Mandelbrot set. The only 
difference is that the constant c in the equation term Z2 + c is initialized to the value of a point 
in the Mandelbrot set other than the one currently being plotted. To change the Mandelbrot 
shader into a fragment shader for doing Julia sets, change the two lines of code that initialize 
the value of c: 

float  Creal = -1.36;     // Now we'll see an interesting Julia set 
float  Cimag = 0.11; 

 
Figure 18.9 shows a few examples of the Julia sets that can be rendered with this shader. You 
might want to change this shader so that the values for Creal and Cimag can be passed in as 
uniform variables when you want to draw a Julia set. The numbers are no longer imaginary. 
Now we can do real-time exploration of the mathematical universe through the OpenGL Shading 
Language! 

Figure 18.9. Some Julia sets rendered with the Mandelbrot shader 

real = 0.765  
imag = 0.11 

real = 1.5  
imag = 0.0 

real = 0.32  
imag = 0.043 



 

 

 

  



18.4. Summary 
Realism is no longer the goal for all applications of interactive computer graphics. Because of 
the flexibility of programmable graphics hardware, we no longer have to settle for the classic 
"look" of computer graphics. A high-level procedural language such as the OpenGL Shading 
Language enables artists and practitioners to express algorithms for rendering in more artistic 
styles such as pen-and-ink, woodcut, and paints. A procedural hatching shader was presented 
and described to illustrate how such rendering can be accomplished. Various styles of technical 
illustration can be done interactively, as shown by the Gooch shader described in this chapter. 
It is also possible to write shaders that assist in the visualization of mathematical functions, as 
demonstrated by the Mandelbrot and Julia set shaders. 

The history of human art shows that there is an endless variety of artistic styles. The OpenGL 
Shading Language can be used to create shaders that emulate some of these styles and 
perhaps to invent new ones. 

  



18.5. Further Information 
Books devoted to the topic of non-photorealistic rendering include Non-Photorealistic Rendering 
by Amy Gooch and Bruce Gooch (2001) and Non-Photorealistic Computer Graphics by Thomas 
Strothotte and Stefan Schlechtweg (2002). 

The Gooch shading algorithm is defined and described in the SIGGRAPH 1998 paper, A Non-
Photorealistic Lighting Model for Automatic Technical Illustration, by Amy Gooch, Bruce Gooch, 
Peter Shirley, and Elaine Cohen. This paper draws on concepts presented by Edward Tufte in 
Visual Explanations (1997). A short discussion of NPR can be found in Real-Time Rendering, 
Second Edition, by Tomas Akenine-Möller and Eric Haines (2002). I've also included a lot of 
references to NPR resources in the main bibliography at the end of this book. 

The classic text on fractals and the Mandelbrot set is, of course, The Fractal Geometry of 
Nature, Updated and Augmented, by Benoit Mandelbrot (1983). In 1986, Heinz-Otto Peitgen 
and Peter Richter wrote The Beauty of Fractals, another book you can enjoy looking at as well 
as reading. Peitgen and Dietmer Saupe (1988) edited a book called The Science of Fractal 
Images, which contains numerous examples and algorithms and additional material by 
Mandelbrot, Richard Voss, and others. A couple of the Mandelbrot "tourist destinations" that 
I've listed were described by Paul Derbyshire on the now defunct Web site, PGD's Quick Guide 
to the Mandelbrot Set. 
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Chapter 19. Shaders for Imaging 
One of the longtime strengths of OpenGL relative to other graphics APIs is that it has always 
included facilities for both imaging and 3D rendering operations. Applications can take 
advantage of both capabilities as needed. For instance, a video effects application might exploit 
OpenGL's imaging capabilities to send a sequence of images (i.e., a video stream) to OpenGL 
and have the images texture-mapped onto a three-dimensional object. Color space conversion 
or color correction can be applied to the images as they are sent to OpenGL. Traditional 
graphics rendering effects such as lighting and fog can also be applied to the object. 

The initial release of the OpenGL Shading Language focused primarily on providing support for 
3D rendering operations. Additional imaging capabilities are planned for a future version. 
Nonetheless, many useful imaging operations can still be done with shaders, as we shall see. 

In this chapter, we describe shaders whose primary function is to operate on two-dimensional 
images rather than on three-dimensional geometric primitives. 

The rasterization stage in OpenGL can be split into five different units, depending on the 
primitive type being rasterized: point rasterization, line rasterization, polygon rasterization, 
pixel rectangle rasterization, and bitmap rasterization. The output of each of these five 
rasterization units can be the input to a fragment shader. This makes it possible to perform 
programmable operations not only on geometry data, but also on image data, making OpenGL 
an extremely powerful and flexible rendering engine. 

A fragment shader can be used either to process each fragment that is generated with glBitmap 
or glDrawPixels or to process texture values read from a texture map. We can divide imaging 
operations into two broad categories: those that require access to a single pixel at a time and 
those that require access to multiple pixels at a time. With the OpenGL Shading Language, you 
can easily implement in a fragment shader the imaging operations that require access to only a 
single pixel at a time. And within the fragment shader, you can read the varying variable gl_Color
to obtain the color value for fragments that were generated with glBitmap or glDrawPixels. 
Operations that require access to multiple pixels at a time require that the image first be stored 
in texture memory. You can then access the image multiple times from within a fragment 
shader to achieve the desired result. 

An OpenGL shader typically can perform imaging operations much faster on the graphics 
hardware than on the CPU because of the highly parallel nature of the graphics hardware. So 
we let the fragment shader handle the task. This approach also frees the CPU to perform other 
useful tasks. If the image to be modified is stored as a texture on the graphics accelerator, the 
user can interact with it in real time to correct color, remove noise, sharpen an image, and do 
other such operations, and all the work can be done on the graphics board, with very little 
traffic on the I/O bus. 

  



19.1. Geometric Image Transforms 
As part of its fixed functionality, OpenGL defines only one operation that modifies the geometric 
properties of an image: pixel zoom. This operation scales an image as it is sent to the display. 

If you want to rotate an image, the traditional response has always been "Load the image into 
texture memory, use it to draw a textured rectangle, and transform the rectangle." Although 
this approach does require an extra read and write of the image within the graphics systemthe 
image must be written into texture memory and then read as the rectangle is drawnthe speed 
and bandwidth of today's graphics accelerators make this an acceptable approach for all but the 
most demanding applications. With the OpenGL Shading Language, you can even provide the 
same rectangle coordinates every time you draw the image and let the vertex shader do the 
scaling, translation, or rotation of the rectangle. You can perform image warping by texturing a 
polygon mesh instead of a single rectangle. Hardware support for texture filtering can produce 
high-quality results for any of these operations. 

  



19.2. Mathematical Mappings 
A common imaging operation supported by OpenGL fixed functionality is scale-and-bias. In this 
operation, each incoming color component is multiplied by a scale factor, and a bias value is 
added. You can use the result to map color values from one linear range to another. This is 
straightforward in the OpenGL Shading Language with the use of the standard math operators. 
You can do more complex mathematical mappings on pixel values with built-in functions such 
as pow, exp2, and log2. 

The built-in dot product function (dot) can produce a single intensity value from a color value. 
The following code computes a CIE luminance value from linear RGB values defined according 
to ITU-R Recommendation BT.709 (the HDTV color standard): 

float luminance = dot(vec3(0.2125, 0.7154, 0.0721), rgbColor); 

 
This luminance mapping function is the standard used in manufacturing contemporary monitors, 
and it defines a linear RGB color space. The coefficients 0.299, 0.587, and 0.114 are often used 
to convert an RGB value to a luminance value. However, these values were established with the 
inception of the NTSC standard in 1953 to compute luminance for the monitors of that time, 
and they are used to convert nonlinear RGB values to luminance values. They do not accurately 
calculate luminance for today's CRT monitors, but they are still appropriate for computing 
nonlinear video luma from nonlinear RGB input values as follows: 

float luma = dot(vec3(0.299, 0.587, 0.114), rgbColor); 

 

  



19.3. Lookup Table Operations 
OpenGL defines a number of lookup tables as part of its fixed functionality. Several are defined 
as part of the imaging subset. Lookup tables are simply a way of mapping an input value to one 
or more output values. This operation provides a level of indirection that is often useful for 
processing color information. The fact that OpenGL has programmable processors means that 
you can compute the input values as part of a shader and use the output value as part of 
further computation within the shader. This creates a lot of new possibilities for lookup tables. 

A flexible and efficient way to perform lookup table operations with an OpenGL shader is to use 
a 1D texture map. The lookup table can be an arbitrary size (thus overcoming a common gripe 
about OpenGL lookup tables often being limited by implementations to 256 entries). You can 
use the lookup table to map a single input value to a single output value or to a two-, three-, or 
four-component value. If you want the values returned to be discrete values, set the 1D 
texture's filtering modes to GL_NEAREST. If you want interpolation to occur between 
neighboring lookup table values, use GL_LINEAR. 

You can use an intensity value in the range [0,1] as the texture coordinate for a 1D texture 
access. The built-in texture functions always return an RGBA value. If a texture with a single 
channel has been bound to the texture unit specified by the sampler, the value of that texture 
is contained in each of the red, green, and blue channels, so you can pick any of them: 

float color = texture1D(lut, intensity).r; // GL_PIXEL_MAP_I_TO_I 

 
You can perform an intensity-to-RGBA lookup with a single texture access: 

vec4 color = texture1D(lut, intensity);   // GL_PIXEL_MAP_I_TO_R,G,B,A 

 
An RGBA-to-RGBA lookup operation requires four texture accesses: 

vec4 colorOut; 
colorOut.r = texture1D(lut, colorIn.r).r;  // GL_PIXEL_MAP_R_TO_R 
colorOut.g = texture1D(lut, colorIn.g).g;  // GL_PIXEL_MAP_G_TO_G 
colorOut.b = texture1D(lut, colorIn.b).b;  // GL_PIXEL_MAP_B_TO_B 
colorOut.a = texture1D(lut, colorIn.a).a;  // GL_PIXEL_MAP_A_TO_A 

 
However, if you don't need alpha and you are willing to use a 3D texture to store the color 
table, you can do an RGB-to-RGB lookup with a single texture access: 

colorOut.rgb = texture3D(lut, colorIn.rgb).rgb; 

 
In this case, the variable lut must be defined as a sampler3d, whereas in the previous cases it 
needed to be defined as a sampler1d. 

  



19.4. Color Space Conversions 
A variety of color space conversions can be implemented in OpenGL shaders. In this section, we 
look at converting CIE colors to RGB, and vice versa. Conversions between other color spaces 
can be done similarly. 

The CIE system was defined in 1931 by the Committee Internationale de L'Éclairage (CIE). It 
defines a device-independent color space based on the characteristics of human color 
perception. The CIE set up a hypothetical set of primaries, XYZ, that correspond to the way the 
eye's retina behaves. After experiments based on color matching by human observers, the CIE 
defined the primaries so that all visible light maps into a positive mixture of X, Y, and Z and so 
that Y correlates approximately to the apparent lightness of a color. The CIE system precisely 
defines any color. With this as a standard reference, colors can be transformed from the native 
(device-dependent) color space of one device to the native color space of another device. 

A matrix formulation is convenient for performing such conversions. The HDTV standard as 
defined in ITU-R Recommendation BT.709 (1990) has the following CIE XYZ primaries and uses 
the D65 (natural sunlight) white point: 

 
Listing 19.1 shows the OpenGL shader code that transforms CIE color values to HDTV standard 
RGB values by using the D65 white point, and Listing 19.2 shows the reverse transformation. 

The matrices look like they are transposed compared to the colorimetry literature because in 
the OpenGL Shading Language, matrix values are provided in column major order. 

Listing 19.1. OpenGL shader code to transform CIE values to RGB 

Listing 19.2. OpenGL shader code to transform RGB values to CIE 

 R G B white 

x 0.640 0.300 0.150 0.3127 

y 0.330 0.600 0.060 0.3290 

z 0.030 0.100 0.790 0.3582 

const mat3 CIEtoRGBmat = mat3(3.240479, -0.969256,  0.055648, 
                             -1.537150,  1.875992, -0.204043, 
                             -0.498535,  0.041556,  1.057311); 
 
vec3 rgbColor = cieColor * CIEtoRGBmat; 

 

const mat3 RGBtoCIEmat = mat3(0.412453, 0.212671, 0.019334, 
                              0.357580, 0.715160, 0.119193, 
                              0.180423, 0.072169, 0.950227); 
 
vec3 cieColor = rgbColor * RGBtoCIEmat; 

 



19.5. Image Interpolation and Extrapolation 
In 1994, Paul Haeberli and Douglas Voorhies published an interesting paper that described 
imaging operations that could be performed with interpolation and extrapolation operations. 
These operations could actually be programmed on the high-end graphics systems of that time; 
today, thanks to the OpenGL Shading Language, they can be done quite easily on consumer 
graphics hardware. 

The technique is quite simple. The idea is to determine a target image that can be used 
together with the source image to perform interpolation and extrapolation. The equation is set 
up as a simple linear interpolation that blends two images: 

Imageout =(1α) .Imagetarget + α .Imagesource

 

The target image is actually an image that you want to interpolate or extrapolate away from. 
Values of alpha between 0 and 1 interpolate between the two images, and values greater than 1 
extrapolate between the two images. For instance, to adjust brightness, the target image is one 
in which every pixel is black. When alpha is 1, the result is the source image. When alpha is 0, the 
result is that all pixels are black. When alpha is between 0 and 1, the result is a linear blend of 
the source image and the black image, effectively darkening the image. When alpha is greater 
than 1, the image is brightened. 

Such operations can be applied to images (pixel rectangles in OpenGL jargon) with a fragment 
shader as they are being sent to the display. In cases in which a target image is really needed 
(in many cases, it is not needed, as we shall see), it can be stored in a texture and accessed by 
the fragment shader. If the source and target images are downloaded into memory on the 
graphics card (i.e., stored as textures), these operations can be blazingly fast, limited only by 
the memory speed and the fill rate of the graphics hardware. This should be much faster than 
performing the same operations on the CPU and downloading the image across the I/O bus 
every time it's modified. 

19.5.1. Brightness 

Brightness is the easiest example. The target image is composed entirely of black pixels (e.g., 
pixel values (0,0,0)). Therefore, the first half of the interpolation equation goes to zero, and the 
equation reduces to a simple scaling of the source pixel values. This is implemented with the 
fragment shader in Listing 19.3, and the results for several values of alpha are shown in Color 
Plate 30. 

Listing 19.3. Fragment shader for adjusting brightness uniform float 
Alpha; 

19.5.2. Contrast 

A somewhat more interesting example is contrast (see Listing 19.4). Here the target image is 
chosen to be a constant gray image with each pixel containing a value equal to the average 

void main() 
{ 
    gl_FragColor = gl_Color * Alpha; 
} 

 



luminance of the image. This value and the alpha value are assumed to be computed by the 
application and sent to the shader as uniform variables. The results of the contrast shader are 
shown in Color Plate 31. 

Listing 19.4. Fragment shader for adjusting contrast 

19.5.3. Saturation 

The target image for a saturation adjustment is an image containing only luminance information 
(i.e., a grayscale version of the source image). This image can be computed pixel-by-pixel by 
extraction of the luminance value from each RGB value. The proper computation depends on 
knowing the color space in which the RGB values are specified. For RGB values specified 
according to the HDTV color standard, you could use the coefficients shown in the shader in 
Listing 19.5. Results of this shader are shown in Color Plate 32. As you can see, extrapolation 
can provide useful results for values that are well above 1.0. 

Listing 19.5. Fragment shader for adjusting saturation 

19.5.4. Sharpness 

Remarkably, this technique also lends itself to adjusting any image convolution operation (see 
Listing 19.6). For instance, you can construct a target image by blurring the original image. 
Interpolation from the source image to the blurred image reduces high frequencies, and 
extrapolation (alpha greater than 1) increases them. The result is image sharpening through 
UNSHARP MASKING. The results of the sharpness fragment shader are shown in Color Plate 33. 

Listing 19.6. Fragment shader for adjusting sharpness 

uniform vec3  AvgLuminance; 
uniform float Alpha; 
 
void main() 
{ 
    vec3 color     = mix(AvgLuminance, gl_Color, Alpha); 
    gl_FragColor   = vec4(color, 1.0); 
} 

 

const vec3 lumCoeff = vec3(0.2125, 0.7154, 0.0721); 
uniform float Alpha; 
 
void main() 
{ 
    vec3 intensity = vec3(dot(gl_Color.rgb, lumCoeff)); 
    vec3 color     = mix(intensity, gl_Color.rgb, Alpha); 
    gl_FragColor   = vec4(color, 1.0); 
} 

 

uniform sampler2D Blurry; 
uniform float Alpha; 
 
void main() 



 

These examples showed the simple case in which the entire image is modified with a single alpha 
value. More complex processing is possible. The alpha value could be a function of other 
variables. A control texture could define a complex shape that indicates the portion of the 
image to be modified. A brush pattern could apply the operation selectively to small regions of 
the image. The operation could be applied selectively to pixels with a certain luminance range 
(e.g., shadows, highlights, or midtones). 

Fragment shaders can also interpolate between more than two images, and the interpolation 
need not be linear. Interpolation can be done along several axes simultaneously with a single 
target image. A blurry, desaturated version of the source image can be used with the source 
image to produce a sharpened, saturated version in a single operation. 

{ 
    vec3 blurred  = vec3(texture2D(Blurry, gl_TexCoord[0].st)); 
    vec3 color    = gl_Color.rgb * Alpha + blurred * (1.0 - Alpha); 
    gl_FragColor  = vec4(color, 1.0); 
} 

 

  



19.6. Blend Modes 
With the expressiveness of a high-level language, it is easy to combine, or blend, two images in 
a variety of ways. Both images can be stored in texture memory, or one can be in texture 
memory and one can be downloaded by the application with glDrawPixels. For example, here's a 
fragment shader that adds together two images: 

uniform sampler2D BaseImage; 
uniform sampler2D BlendImage; 
uniform float Opacity; 
 
void main (void) 
{ 
    vec4 base  = texture2D(BaseImage, gl_TexCoord[0].xy); 
    vec4 blend = texture2D(BlendImage, gl_TexCoord[0].xy); 
 
    vec4 result = blend + base; 
         result = clamp(result, 0.0, 1.0); 
 
    gl_FragColor = mix(base, result, Opacity); 
} 

 
The following sections contain snippets of OpenGL shader code that perform pixel-by-pixel 
blending for some of the common blend modes. In each case, 

base is a vec4 containing the RGBA color value from the base (original) image. 

blend is a vec4 containing the RGBA color value from the image that is being blended into 
the base image. 

result is a vec4 containing the RGBA color that results from the blending operation. 

If it's needed in the computation, white is a vec4 containing (1.0, 1.0, 1.0, 1.0). 

If it's needed in the computation, lumCoeff is a vec4 containing (0.2125, 0.7154, 0.0721, 
1.0). 

As a final step, base and result are combined by use of a floating-point value called Opacity, 
which determines the contribution of each. 

There is no guarantee that the results of the code snippets provided here will produce results 
identical to those of your favorite image editing program, but the effects should be similar. The 
OpenGL shader code for the various blend modes is based on information published by Jens 
Gruschel in his article Blend Modes, available at http://www.pegtop.net/delphi/blendmodes. 
Unless otherwise noted, the blend operations are not commutative (you will get different results 
if you swap the base and blend images). 

Results of the blend mode shaders are shown in Color Plate 34. 

19.6.1. Normal 

NORMAL is often used as the default blending mode. The blend image is placed over the base 
image. The resulting image equals the blend image when the opacity is 1.0 (i.e., the base 
image is completely covered). For opacities other than 1.0, the result is a linear blend of the 



two images based on Opacity. 

result = blend; 

 
19.6.2. Average 

The AVERAGE blend mode adds the two images and divides by two. The result is the same as 
NORMAL when the opacity is set to 0.5. This operation is commutative. 

result = (base + blend) * 0.5; 

 
19.6.3. Dissolve 

In the DISSOLVE mode, either blend or base is chosen randomly at every pixel. The value of 
Opacity is used as a probability factor for choosing the blend value. Thus, as the opacity gets 
closer to 1.0, the blend value is more likely to be chosen than the base value. If we draw the 
image as a texture on a rectangular polygon, we can use the texture coordinate values as the 
argument to noise1D to provide a value with which we can select in a pseudorandom, but 
repeatable, way. We can apply a scale factor to the texture coordinates to obtain noise of a 
higher frequency and give the appearance of randomness. The value returned by the noise 
function is in the range [-1,1] so we add 1 and multiply by 0.5 to get it in the range [0,1]. 

float noise = (noise1(vec2(gl_TexCoord[0] * noiseScale)) + 1.0) * 0.5; 
result = (noise < Opacity) ? blend : base; 

 
19.6.4. Behind 

BEHIND chooses the blend value only where the base image is completely transparent (i.e., base.a 
= 0.0). You can think of the base image as a piece of clear acetate, and the effect of this mode 
is as if you were painting the blend image on the back of the acetateonly the areas painted 
behind transparent pixels are visible. 

result = (base.a == 0.0) ? blend : base; 

 
19.6.5. Clear 

CLEAR always uses the blend value, and the alpha value of result is set to 0 (transparent). This 
blend mode is more apt to be used with drawing tools than on complete images. 

result.rgb = blend.rgb; 
result.a   = 0.0; 

 
19.6.6. Darken 

In DARKEN mode, the two values are compared, and the minimum value is chosen for each 
component. This operation makes images darker because the blend image can do nothing 
except make the base image darker. A blend image that is completely white (RGB = 1.0, 1.0, 
1.0) does not alter the base image. Regions of black (0, 0, 0) in either image cause the result 
to be black. It is commutativethe result is the same if the blend image and the base image are 
swapped. 



result = min(blend, base); 

 
19.6.7. Lighten 

LIGHTEN can be considered the opposite of DARKEN. Instead of taking the minimum of each 
component, we take the maximum. The blend image can therefore never do anything but make 
the result lighter. A blend image that is completely black (RGB = 0, 0, 0) does not alter the 
base image. Regions of white (1.0, 1.0, 1.0) in either image cause the result to be white. The 
operation is commutative because swapping the two images does not change the result. 

result = max(blend, base); 

 
19.6.8. Multiply 

In MULTIPLY mode, the two values are multiplied together. This produces a darker result in all 
areas in which neither image is completely white. White is effectively an identity (or 
transparency) operator because any color multiplied by white will be the original color. Regions 
of black (0, 0, 0) in either image cause the result to be black. The result is similar to the effect 
of stacking two color transparencies on an overhead projector. This operation is commutative. 

result = blend * base; 

 
19.6.9. Screen 

SCREEN can be thought of as the opposite of MULTIPLY because it multiplies the inverse of the 
two input values. The result of this multiplication is then inverted to produce the final result. 
Black is effectively an identity (or transparency) operator because any color multiplied by the 
inverse of black (i.e., white) will be the original color. This blend mode is commutative. 

result = white - ((white - blend) * (white - base)); 

 
19.6.10. Color Burn 

COLOR BURN darkens the base color as indicated by the blend color by decreasing luminance. 
There is no effect if the blend value is white. This computation can result in some values less 
than 0, so truncation may occur when the resulting color is clamped. 

result = white - (white - base) / blend; 

 
19.6.11. Color Dodge 

COLOR DODGE brightens the base color as indicated by the blend color by increasing 
luminance. There is no effect if the blend value is black. This computation can result in some 
values greater than 1, so truncation may occur when the result is clamped. 

result = base / (white - blend); 

 
19.6.12. Overlay 



OVERLAY first computes the luminance of the base value. If the luminance value is less than 
0.5, the blend and base values are multiplied together. If the luminance value is greater than 0.5, 
a screen operation is performed. The effect is that the base value is mixed with the blend value, 
rather than being replaced. This allows patterns and colors to overlay the base image, but 
shadows and highlights in the base image are preserved. A discontinuity occurs where 
luminance = 0.5. To provide a smooth transition, we actually do a linear blend of the two 
equations for luminance in the range [0.45,0.55]. 

float luminance = dot(base, lumCoeff); 
if (luminance < 0.45) 
    result = 2.0 * blend * base; 
else if (luminance > 0.55) 
    result = white - 2.0 * (white - blend) * (white - base); 
else 
{ 
    vec4 result1 = 2.0 * blend * base; 
    vec4 result2 = white - 2.0 * (white - blend) * (white - base); 
    result = mix(result1, result2, (luminance - 0.45) * 10.0); 
} 

 
19.6.13. Soft Light 

SOFT LIGHT produces an effect similar to a soft (diffuse) light shining through the blend image 
and onto the base image. The resulting image is essentially a muted combination of the two 
images. 

result = 2.0 * base * blend + base * base - 2.0 * base * base * blend; 

 
19.6.14. Hard Light 

HARD LIGHT mode is identical to OVERLAY mode, except that the luminance value is computed 
with the blend value rather than the base value. The effect is similar to shining a harsh light 
through the blend image and onto the base image. Pixels in the blend image with a luminance 
of 0.5 have no effect on the base image. This mode is often used to produce embossing effects. 
The mix function provides a linear blend between the two functions for luminance in the range 
[0.45,0.55]. 

float luminance = dot(blend, lumCoeff); 
if (luminance < 0.45) 
    result = 2.0 * blend * base; 
else if (luminance > 0.55) 
    result = white - 2.0 * (white - blend) * (white - base); 
else 
{ 
    vec4 result1 = 2.0 * blend * base; 
    vec4 result2 = white - 2.0 * (white - blend) * (white - base); 
    result = mix(result1, result2, (luminance - 0.45) * 10.0); 
} 

 
19.6.15. Add 

In the ADD mode, the result is the sum of the blend image and the base image. Truncation may 
occur because resulting values can exceed 1.0. The blend and base images can be swapped, 
and the result will be the same. 

result = blend + base; 



 

 
19.6.16. Subtract 

SUBTRACT subtracts the blend image from the base image. Truncation may occur because 
resulting values may be less than 0. 

result = base - blend; 

 
19.6.17. Difference 

In the DIFFERENCE mode, the result is the absolute value of the difference between the blend 
value and the base value. A result of black means the two initial values were equal. A result of 
white means they were opposite. This mode can be useful for comparing images because 
identical images produce a completely black result. An all-white blend image can be used to 
invert the base image. Blending with black produces no change. Because of the absolute value 
operation, this blend mode is commutative. 

result = abs(blend - base); 

 
19.6.18. Inverse Difference 

The INVERSE DIFFERENCE blend mode performs the "opposite" of DIFFERENCE. Blend values of 
white and black produce the same results as for DIFFERENCE (white inverts and black has no 
effect), but colors in between white and black become lighter instead of darker. This operation 
is commutative. 

result = white - abs(white - base - blend); 

 
19.6.19. Exclusion 

EXCLUSION is similar to DIFFERENCE, but it produces an effect that is lower in contrast 
(softer). The effect for this mode is in between the effects of the DIFFERENCE and INVERSE 
DIFFERENCE modes. Blending with white inverts the base image, blending with black has no 
effect, and colors in between become gray. This is also a commutative blend mode. 

result = base + blend - (2.0 * base * blend); 

 
19.6.20. Opacity 

In OPACITY mode, an opacity value in the range [0,1] can also specify the relative contribution 
of the base image and the computed result. The result value from any of the preceding formulas 
can be further modified to compute the effect of the opacity value as follows: 

finalColor = mix(base, result, Opacity); 

 

  



19.7. Convolution 
CONVOLUTION is a common image processing operation that filters an image by computing the 
sum of products between the source image and a smaller image called the CONVOLUTION KERNEL or 
the CONVOLUTION FILTER. Depending on the choice of values in the convolution kernel, a 
convolution operation can perform blurring, sharpening, noise reduction, edge detection, and 
other useful imaging operations. 

Mathematically, the discrete 2D convolution operation is defined as 

 

 
In this equation, the function F represents the base image, and G represents the convolution 
kernel. The double summation is based on the width and height of the convolution kernel. We 
compute the value for a particular pixel in the output image by aligning the center of the 
convolution kernel with the pixel at the same position in the base image, multiplying the values 
of the base image pixels covered by the convolution kernel by the values in the corresponding 
locations in the convolution kernel, and then summing the results. 

The imaging subset of OpenGL 2.0 contains support for a fixed functionality convolution 
operation, but implementations of this functionality always have limitations in the size of the 
kernel supported (typical maximum size is 3 x 3) and in the precision of the intermediate 
calculations. The flexibility of the OpenGL Shading Language enables convolution operations 
with arbitrary-sized kernels and full floating-point precision. Furthermore, the convolution 
operation can be written in an OpenGL shader such that the minimum number of multiplication 
operations is actually performed (i.e., kernel values equal to 0 do not need to be stored or used 
in the convolution computation). 

But there are a couple of hurdles to overcome. First, this operation seems naturally suited to 
implementation as a fragment shader, but the fragment shader is not allowed to access the 
values of any neighboring fragments. How can we perform a neighborhood operation such as 
convolution without access to the "neighborhood"? 

The answer to this dilemma is that we store the base image in texture memory and access it as 
a texture. We can draw a screen-aligned rectangle that's the same size on the screen as the 
base image and enable texturing to render the image perfectly. We can introduce a fragment 
shader into this process, and instead of sampling the image just once during the texturing 
process, we can access each of the values under the convolution kernel and compute the 
convolution result at every pixel. 

A second hurdle is that, although the OpenGL Shading Language supports loops, even nested 
loops, it does not currently support two-dimensional arrays. We can easily overcome this by 
"unrolling" the convolution kernel and storing it as a one-dimensional array. Each location in 
this array stores an x- and y-offset from the center of the convolution kernel and the value of 
the convolution kernel at that position. In the fragment shader, we process this array in a single 
loop, adding the specified offsets to the current texture location, accessing the base image, and 
multiplying the retrieved pixel value by the convolution kernel value. Storing the convolution 
kernel this way means that we can store the values in row major order, column major order, 
backwards, or all mixed up. We don't even need to include convolution kernel values that are 
zero, because they do not contribute to the convolved image. 



The interesting work for performing convolution is done with fragment shaders. The vertex 
shader is required to perform an identity mapping of the input geometry (a screen-aligned 
rectangle that is the size of the base image), and it is required to pass on texture coordinates. 
The texture coordinate (0,0) should be assigned to the lower-left corner of the rectangle, and 
the texture coordinate (1,1) should be assigned to the upper-right corner of the rectangle. 

One additional issue with convolution operations is deciding what to do when the convolution 
kernel extends beyond the edges of the base image. A convenient side effect of using OpenGL 
texture operations to perform the convolution is that the texture-wrapping modes defined by 
OpenGL map nicely to the common methods of treating convolution borders. Thus, 

To achieve the same effect as the GL_CONSTANT_BORDER, set the 
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T parameters of the texture containing 
the base image to GL_CLAMP_TO_BORDER. This method uses the border color when the 
convolution kernel extends past the image boundary. 

If the desired behavior is the same as GL_REPLICATE_BORDER, set the 
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T parameters of the texture containing 
the base image to GL_CLAMP_TO_EDGE. This method uses the pixel value at the edge of 
the image when the convolution kernel extends past the image boundary. 

If you want to mimic the GL_REDUCE convolution border mode, draw a rectangle that is 
smaller than the image to be convolved. For a 3 x 3 convolution kernel, the rectangle 
should be smaller by two pixels in width and two pixels in height. In this case, the texture 
coordinate of the lower-left corner is (1/width, 1/height) and the texture coordinate of the 
upper-right corner is (1 1/width, 1 1/height). 

The texture filtering modes should be set to GL_NEAREST to avoid unintended interpolation. 

19.7.1. Smoothing 

Image smoothing operations can attenuate high frequencies in an image. A common image 
smoothing operation is known as NEIGHBORHOOD AVERAGING. This method uses a convolution kernel 
that contains a weighting of 1.0 in each location. The final sum is divided by a value equal to 
the number of locations in the convolution kernel. For instance, a 3 x 3 neighborhood averaging 
convolution filter would look like this: 

 
The resulting sum would be divided by 9 (or multiplied by 1/9). Neighborhood averaging, as the 
name implies, has the effect of averaging all the pixels in a region with equal weighting. It 
effectively smears the value of each pixel to its neighbors, resulting in a blurry version of the 
original image. 

Because all the elements of the convolution kernel are equal to 1, we can write a simplified 
fragment shader to implement neighborhood averaging (see Listing 19.7). This shader can be 
used for neighborhood averaging for any kernel size where width * height is less than or equal to 
25 (i.e., up to 5 x 5). The results of this operation are shown in Figure 19.1 (B). 

Figure 19.1. Results of various convolution operations 
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Listing 19.7. Fragment shader for the neighborhood averaging 
convolution operation 

// maximum size supported by this shader 
const int MaxKernelSize = 25; 
 
// array of offsets for accessing the base image 
uniform vec2 Offset[MaxKernelSize]; 
 
// size of kernel (width * height) for this execution 
uniform int KernelSize; 
 
// final scaling value 
uniform vec4 ScaleFactor; 
 
// image to be convolved 
uniform sampler2D BaseImage; 
 
void main() 
{ 
    int i; 
    vec4 sum = vec4(0.0); 
 
    for (i = 0; i < KernelSize; i++) 
        sum += texture2D(BaseImage, gl_TexCoord[0].st + Offset[i]); 
 
    gl_FragColor = sum * ScaleFactor; 
} 

 



Image smoothing by means of convolution is often used to reduce noise. This works well in 
regions of solid color or intensity, but it has the side effect of blurring high frequencies (edges). 
A convolution filter that applies higher weights to values nearer the center can do a better job 
of eliminating noise while preserving edge detail. Such a filter is the Gaussian filter, which can 
be encoded in a convolution kernel as follows: 

 
Listing 19.8 contains the code for a more general convolution shader. This shader can handle 
convolution kernels containing up to 25 entries. In this shader, each convolution kernel entry is 
expected to have been multiplied by the final scale factor, so there is no need to scale the final 
sum. 

Listing 19.8. Fragment shader general convolution computation 

The original image in Figure 19.1 (A) has had uniform noise added to it to create the image in 
Figure 19.1 (C). The Gaussian smoothing filter is then applied to this image to remove noise, 
and the result is shown in Figure 19.1 (D). Notice in particular that the noise has been 
significantly reduced in areas of nearly constant intensity. 

As the size of the convolution kernel goes up, the number of texture reads that is required 
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// maximum size supported by this shader 
const int MaxKernelSize = 25; 
 
// array of offsets for accessing the base image 
uniform vec2 Offset[MaxKernelSize]; 
 
// size of kernel (width * height) for this execution 
uniform int KernelSize; 
 
// value for each location in the convolution kernel 
uniform vec4 KernelValue[MaxKernelSize]; 
 
// image to be convolved 
uniform sampler2D BaseImage; 
 
void main() 
{ 
    int i; 
    vec4 sum = vec4(0.0); 
 
    for (i = 0; i < KernelSize; i++) 
    { 
        vec4 tmp = texture2D(BaseImage, gl_TexCoord[0].st + Offset[i]); 
        sum += tmp * KernelValue[i]; 
    } 
    gl_FragColor = sum; 
} 

 



increases as the square of the kernel size. For larger kernels, this can become the limiting 
factor for performance. Some kernels, including the Gaussian kernel just described, are said to 
be separable because the convolution operation with a width x height kernel can be performed as 
two passes, with one-dimensional convolutions of size width x 1 and 1 x height. With this 
approach, there is an extra write for each pixel (the result of the first pass), but the number of 
texture reads is reduced from width x height to width + height. 

19.7.2. Edge Detection 

Another common use for the convolution operation is edge detection. This operation is useful 
for detecting meaningful discontinuities in intensity level. The resulting image can aid in image 
comprehension or can enhance the image in other ways. 

One method for detecting edges involves the Laplacian operator. 

 
We can plug the Laplacian convolution kernel into the fragment shader shown in Listing 19.8. 
This results in the image shown in Figure 19.2. 

Figure 19.2. Edge detection with the Laplacian convolution kernel 
(image scaled for display) 

 

 
19.7.3. Sharpening 

A common method of image sharpening is to add the results of an edge detection filter back 
onto the original image. To control the degree of sharpening, a scaling factor scales the edge 
image as it is added. 

One way to sharpen an image is with the negative Laplacian operator. This convolution filter is 
defined as 
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The fragment shader that implements image sharpening in this fashion is almost identical to the 
general convolution shader shown in the previous section (see Listing 19.9). The only difference 
is that the result of the convolution operation is added to the original image. Before it is added, 
the convolution result is scaled by a scale factor provided by the application through a uniform 
variable. The results of unsharp masking are shown in Figure 19.4 and Figure 19.3. 

Figure 19.3. Results of the unsharp masking shader. Original image is 
on the left, sharpened image on the right. 
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Figure 19.4. Results of the unsharp masking shader. (Laplacian image 

in center is scaled for display.) Zoomed views of the original and 
resulting images are shown in Figure 19.3. 

 

 
Listing 19.9. Fragment shader for unsharp masking 

-1 4 -1 

0 -1 0 

// maximum size supported by this shader 
const int MaxKernelSize = 25; 
 
// array of offsets for accessing the base image 
uniform vec2 Offset[MaxKernelSize]; 
 
// size of kernel (width * height) for this execution 
uniform int KernelSize; 
// value for each location in the convolution kernel 
uniform vec4 KernelValue[MaxKernelSize]; 
 
// scaling factor for edge image 
uniform vec4 ScaleFactor; 
 



 

// image to be convolved 
uniform sampler2D BaseImage; 
 
void main() 
{ 
    int i; 
    vec4 sum = vec4(0.0); 
 
    for (i = 0; i < KernelSize; i++) 
    { 
        vec4 tmp = texture2D(BaseImage, gl_TexCoord[0].st + Offset[i]); 
        sum += tmp * KernelValue[i]; 
    } 
 
    vec4 baseColor = texture2D(BaseImage, vec2(gl_TexCoord[0])); 
    gl_FragColor = ScaleFactor * sum + baseColor; 
} 

 

  



19.8. Summary 
In addition to support for rendering 3D geometry, OpenGL also contains a great deal of support 
for rendering images. The OpenGL Shading Language augments fixed functionality OpenGL 
imaging capabilities by allowing fully programmable processing of images. With this 
programmability and the parallel processing nature of the underlying graphics hardware, image 
processing operations can be performed orders-of-magnitude faster on the graphics accelerator 
than on the CPU. This programmability can be used to implement traditional image processing 
operations such as image blurring, sharpening, and noise removal; high-quality color 
correction; brightness, saturation, and contrast adjustment; geometric transformations such as 
rotation and warping; blending; and many other image processing operations. Furthermore, 
applications no longer need to be constrained to manipulating monochrome or color images. 
Multispectral processing and analysis are also possible. 

The world of digital imagery is exploding as a result of the rapid development and acceptance of 
consumer products for digital photography and digital video. The OpenGL Shading Language will 
undoubtedly be at the heart of many tools that support this revolution in the future. 

  



19.9. Further Information 
The OpenGL literature doesn't always do justice to the imaging capabilities of OpenGL. In 1996, 
I wrote a paper called Using OpenGL for Imaging that attempted to describe and highlight 
clearly the fixed functionality imaging capabilities of OpenGL, including the capabilities of 
several pertinent imaging extensions. This paper was published as part of the SPIE Medical 
Imaging '96 Image Display Conference in Newport Beach, CA, and is available on this book's 
companion Web site at http://3dshaders.com/pubs. Another good resource for understanding 
how to use OpenGL for imaging is the course notes for the SIGGRAPH '99 course, Advanced 
Graphics Programming Techniques Using OpenGL by Tom McReynolds and David Blythe. These 
can be found online at 
http://www.opengl.org/resources/tutorials/sig99/advanced99/notes/notes.html. This material 
has also been published in a recent book by Morgan Kaufmann. 

Charles Poynton (1997) is one of the luminaries (pun intended) of the color technology field, 
and his Frequently Asked Questions about Color and Frequently Asked Questions about Gamma 
are informative and approachable treatments of a variety of topics relating to color and 
imaging. I found these on the Web on Charles's home page at 
http://www.poynton.com/Poynton-color.html. 

The CIE color system is defined in Publication CIE 17.4 - 1987, International Lighting 
Vocabulary, Vienna, Austria, Central Bureau of the Committee Internationale de L'Éclairage, 
currently in its fourth edition. The HDTV color standard is defined in ITU-R BT.709-2 - 
Parameter Values for the HDTV Standards for Production and International Programme 
Exchange, Geneva: ITU, 1990. 

The paper Image Processing by Interpolation and Extrapolation by Paul Haeberli and Douglas 
Voorhies appeared in IRIS Universe Magazine in 1994. A slightly shorter version of this paper is 
available online at http://www.sgi.com/grafica/interp. 

A classic textbook on image processing is Digital Image Processing, Second Edition, by Rafael C. 
Gonzalez and Richard E. Woods, Addison-Wesley, 2002. An amazing little book (literally 
amazing, and literally little) is the Pocket Handbook of Image Processing Algorithms in C by 
Harley Myler and Arthur Weeks (1993). 
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Chapter 20. RealWorldz 
by Hugh Malan 

In 2004, as graphics hardware and OpenGL Shading Language compilers became capable of 
handling significantly complex shading tasks, 3Dlabs commissioned Pandromeda to develop a 
demo that would push the envelope of what was possible. The result was a demo called 
RealWorldz, where entire planets and everything on them were modeled mathematically and 
synthesized on-the-fly with OpenGL shaders. Even the shader source code was generated 
programmatically in this demo. 

Rather than look at the actual shader code, this chapter focuses more on the architecture, the 
algorithms, and the concepts that went into the RealWorldz demo. 

  



20.1. Features 
RealWorldz was conceived to be a real-time demonstration of the state of the art in OpenGL 
shader technology, capabilities, and performance. Through the use of fractal algorithms and 
complex mathematics, dynamic and changeable world landscapes are compiled and computed 
at runtime almost entirely on the graphics card and displayed at interactive rates. Every frame 
that is displayed is calculated on-the-fly; nothing is prerendered. 

This is not to say that RealWorldz does not use textures. On the contrary, textures provide the 
basic building blocks for many of the features available in RealWorldz: noise, sky color, 
atmospheric density, planetary texture, and much more. But these textures are quite basic by 
design and are used quite differently from traditional textures. It is up to programmable 
shading technology to transform and amplify the basic building blocks to the point that they 
become believable planetary landscapes. 

Because these planetary landscapes are procedurally generated and rendered except for the 
textures used as the basis for the mathematics, no fixed data set or database is used to create 
them. Such databases would require terabytes of data to produce the same effect. Instead, all 
rendered features are generated according to mathematical models with adjustable parameters 
and initial conditions. Some of these parameters can be adjusted interactively through a 
graphical user interface. The planetary and terrain features include 

Moving cloud layers with condensing and evaporating clouds 

Ocean levels 

Atmospheric density 

Accurate sun halos and cloud light diffusion 

Particles in valleys to produce perspective haze 

Darkening and flattening of the landscape contrast with distance 

Scattering of light in high atmosphere at the day/night terminator line 

Caustic reflections in water 

Plants with growth cycles 

Navigability anywhere on the world 

  



20.2. RealWorldz Internals 
Have you ever wanted to create your own personal planet? How would you go about this task? 
In this section, we go inside RealWorldz to examine the process of creating planets 
procedurally. We discuss the terrain-rendering structure, lighting and shadowing, fractal terrain 
generation, noise textures, tile set noise, surface normals, and height fields that allow for 
overhanging terrain. These concepts form the basis of the RealWorldz planetary rendering 
engine. 

20.2.1. Terrain-Rendering Structure 

RealWorldz uses a quadtree structure. Each node of the quadtree corresponds to a square patch 
of terrain and contains a vertex buffer object (VBO) and texture map for that patch. The four 
children of a node each cover one quarter of their parent's patch. 

Rendering the planet is straightforwardthe tree is walked, with a level-of-detail (LOD) check 
made at each node. If a particular node would look polygonal when rendered, recursion 
continues to that node's children if possible. This LOD test determines which nodes should be 
subdivided to increase the terrain resolution in that area and which nodes are unnecessary and 
can be culled. 

When a new node is created, the graphics accelerator generates the texture while the CPU 
generates the vertex data (in the future it is intended for the graphics hardware to generate the 
vertex data as well). To generate the texture for a new terrain node, the graphics hardware 
renders to the node's texture map using a specially constructed fragment shader. This fragment 
shader computes the fractal math needed to calculate the height and color of the terrain and 
carry out the lighting calculations, and it then outputs the final shaded color. The CPU and 
graphics hardware must carry out precisely the same calculations to compute the height and 
slope of each terrain pointif there's any difference, the terrain texture map will not follow the 
features of the terrain geometry. Imagine a planet with snow above a certain height. If the 
calculations to generate the texture map compute height in a different way from the 
calculations for the geometry, the snow line will obviously vary in height when the textured 
terrain is rendered. 

20.2.2. Shading 

No lighting is done when rendering terrainall lighting and shadowing is baked into the terrain 
texture map. This approach has several advantages: First, the fill rate for rendering terrain is 
improved because fewer calculations are done for each pixel, and only one texture map is read 
from (color) instead of two (color + normal). Second, this approach allows more complex 
lighting calculations since the lighting calculations are performed only once per texel, so they're 
not speed critical. Third, because the shading is completely separated from the geometry, the 
lighting does not change when the resolution of terrain geometry changes, that is, when terrain 
nodes are subdivided or collapsed. Therefore, the transition is less noticeable. Most 
significantly, this approach captures details at higher resolution than the geometry. (This idea is 
similar in spirit to normal maps.) However, the downside to the approach is that it cannot 
capture view-dependent lighting effects, such as specular highlights. But since terrain shading is
diffuse rather than specular, this restriction is not an issue. 

So, the fragment shader that generates the terrain texture maps calculates the color and 
surface normal for each texel, carries out the lighting calculations, and writes the resulting color 
to the texture map. When rendered, the color read from the texture map is affected only by 
atmospheric effects such as haze and fog. 

20.2.3. Fractal Terrains 



Fractal terrains are built by the combination of fractal functions, which themselves are built out 
of noise functions, such as those discussed in Chapter 15. The Perlin and Voronoi noise 
functions are particularly useful for creating fractal terrains. Perlin noise was described in 
Chapter 15. Voronoi noise (sometimes called cellular noise) is computed with the distance from 
points scattered randomly in space. This function produces a ridge along the line midway 
between two neighboring points. 

A noise function is a function that is statistically invariant under translation and rotation and 
that has a reasonably narrow frequency range. A multifractal is computed by combining noise 
functions sampled at several different scales. The method of combining the noise function 
samples is what distinguishes one multifractal from another. For instance, the value of a 
monofractal with n octaves, with a given lacunarity L (a measure of how much the scale is 
changed for each successive noise function), offset, and roughness at the point x is defined as 

 

 
Other multifractal types commonly used to define terrains are heterofractal and 
mountainfractal. They differ from monofractals in that the various noise samples are added or 
multiplied together in different ways. 

The creation of interesting terrain is an artistic rather than mathematical process. Pandromeda's 
MojoWorld application is the most advanced tool for fractal planet generation available and 
produces compelling landscapes. 

The landscapes in the images found on the MojoWorld gallery 
(http://www.pandromeda.com/gallery) are created by the combination of several multifractals, 
with the parameters of each multifractal carefully adjusted. The terrain shape is only a small 
part of the process: The terrain must also be colored, and the properties of the atmosphere, 
fog, clouds, water, stars, and sun edited to fit the artistic style of the terrain. The downside of 
having all this power available is that these images take hours to render. 

MojoWorld includes a wide range of tools for constructing fractal planets, but only the ones that 
are the most useful and best suited tools for real-time use are implemented in RealWorldz. 
Such tools can combine multifractals by means of various mathematical operations (+, -, *, 
average) and can use one multifractal function to perturb the parameters fed into another. 

In RealWorldz, the planet artist constructs a function tree to define the terrain. For instance, 
Figure 20.1 illustrates the function tree for the Ring world. This tree specifies a Voronoi 
mountainfractal distorted by the sine function, added to another distorted Voronoi multifractal, 
added to a Perlin heterofractal distorted by a monofractal. 

Figure 20.1. Function tree for the Ring world 
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The following node types are available for nodes in the RealWorldz function tree: 

1. MathPossible operations are addition, average, or multiplication of child nodes. 

2. MultifractalMonofractal, heterofractal, and mountainfractal types are available. This node 
could have a "distortion" child node too: in this case, the child node is evaluated and the 
result is used to perturb the parameter before the multifractal is evaluated. 

3. DLUArbitrary 2D function. This node has two child nodes and an image. The two child 
nodes are evaluated, and the values are interpreted as coordinates to sample the image. 
The value read from the image lookup is the result for the node. (This is not implemented 
in MojoWorld; it is a generalization of a simple way to generate long-period noise in a 
real-time fragment shader.) 

20.2.4. Fractal Terrains in RealWorldz 

Fractal terrains rely on noise functions; it's not unusual for planets in MojoWorld to make use of 
a hundred octaves of noise. The speed of the noise function is therefore critical. It is 
straightforward to implement Perlin noise in the OpenGL Shading Language, but a naive 
implementation will require at least eight texture reads. Voronoi noise is substantially more 
complex than Perlin noiseand therefore slower. Even if artists were expected to limit themselves 
to 50 octaves of noise for a planet, and use only Perlin noise, over 400 texture lookups would 
be required for each evaluation of the terrain function, which would be impossibly slow. 

The solution taken for RealWorldz is to use 2D instead of 3D noise, and instead of evaluating a 
2D noise function, to use a texture map containing a periodic image of Perlin/Voronoi/Sine or 
like noise. These texture maps are called noise textures. Therefore, instead of the Perlin noise 
function being evaluated with parameters (x, y), a noise texture image is sampled at position 
(fract(x/k), fract(y/k)), where the noise texture is defined over the unit square. k is a factor to 
account for the scale of the noise textureit measures the size of the region to which the noise 
texture corresponds, whether the noise texture appears to be a 5 x 5 area of Perlin noise or a 
50 x 50 area. 

When implemented as a fragment shader, the fract operation is unnecessary if the texture wrap 
mode is set to GL_REPEAT. 

It is easy to see the repeating pattern if a noise texture has only a handful of features, but with 
ten or more features along an axis, the repeating pattern is far more difficult to detect. On top 
of this, several noise textures of different periods will be combined in complex ways 
contributing to the shape of the terrain, obscuring the pattern even further. 

20.2.5. Noise Texture Creation 

The standard noise functions are Perlin, Voronoi, and Sine. Sine is periodic, so it is trivial to find 
a periodic 2D image of it. A ridged version of a noise function is created from the absolute value 
of the function to introduce ridges or is created from points at which the function folds back on 
itself (Perlin called this TURBULENCE). 

In a nutshell, 2D Perlin noise is defined by interpolation between "hash values" given at integer 
coordinates. The value of Perlin noise at (3.6, 9.2) is found in this way: the hash function is 
evaluated at (3.0, 9.0), (4.0, 9.0), (3.0, 10.0) and (4.0, 10.0), and the four resulting values are 
combined. Creating Perlin-esque periodic noise of period k is done with the parameters to the 
hash function taken modulo k. All the different Perlin noise variantsgradient Perlin noise, value-
gradient Perlin noise, ridged gradient Perlincan be handled this way. 

The various Voronoi noise variants are built around a fixed pseudorandom scattering of key 



points on the plane. Basic Voronoi noise is defined as the distance to the closest key point. 
Other variants are the distance to the second closest key point, the third closest key point, the 
difference between the closest and second-closest key point, and so on. Making the distribution 
of the key points periodic with period k also makes the resulting Voronoi noise periodic. 

20.2.6. Tile Set Noise 

The noise texture pattern can be obscured even more with tiling. Instead of a single periodic 
image of noise, a set of noise tiles that have an identical boundary can be generated. A set of 
four such tiles is shown in Figure 20.2. These tiles can then be arranged randomly on the plane; 
the result might look like Figure 20.3. Each tile occupies the region on the plane from (u, v) to 
(u+1, v+1) for some integer u, v. 

Figure 20.2. Four noise tiles with identical boundaries 

 

 
Figure 20.3. Arranging multiple noise tiles randomly to create a tile set 

 

 
Sampling the noise function is now a two-stage process. Our goal is to find the appropriate 
noise value for the point (x, y). To accomplish this, we must first find the containing tile, then 
we must find the location to sample within that tile. 

The containing tile is located by first taking the integer part of x and y. Because tiles 
cover the region (u, v) to (u+1, v+1) for integer u, v, the values u and v are found by 
rounding x and y down to integers. These values are hashed and the result is taken 
modulo the number of tiles. The result is the noise tile to be accessed. 

Once the appropriate tile has been found, the address within the tile is p, q where p = x 
u, q = y v. 

After these steps, we sample the appropriate tile and return the result. The implementation in a 
fragment shader is more efficient than this process might imply; it is described later. 



The tile set can be generated with an extension of the method used to create periodic tiles. For 
the Perlin noise variants, the boundary hash points are fixed, whereas the interior hash points 
vary from tile to tile within the set. That is, for a region of period k, the hash point (0, 0) takes 
the same value for all tiles in the set; the hash point (1, 0) takes the same value for all tiles in 
the set, . . ., the hash point (k, 0) takes the same value for all tiles in the set. Similarly, the 
hash points (z, k), (0, z), and (k, z) take the same value for all tiles in the set, for any integer z 
in [0, k]. For the tiles to be periodic, the left and right edges of the tiles must match, as must 
the top and bottom edges. That is, the hashed values of the points (0, z) and (k, z) must be 
identical, as must the hashed values for the points (z, 0) and (z, k), for 0 z k. 

Tile sets for the Voronoi noise variants can be generated similarly. The distribution of key points 
within a border region remains fixed for each tile in the set, while the distribution of key points 
in the rest of the tile varies from tile to tile. (This region in which the arrangement of key points 
changes from tile to tile is called the interior region.) The border region is found experimentally, 
by finding the smallest region such that the key points in the interior region of one tile have no 
effect on the noise function within a neighboring tile. For instance, if there are 33 key points 
within each tile, the border region is defined to be the region within 15% of the tile boundary. 
In other words: If the tile was unit sized, then the interior region is the points (x, y) for which 
x, y are in [0.15, 0.85), and the border region is the set of points (x, y) in the tile for which x or 
y is in [0, 0.15)  [0.85, 1.0). For 100 points, the fixed border size is 10%. 

20.2.7. Surface Normals 

The easiest way to compute surface normals of fractal terrains is numerically. Find the neighbor 
points of the point in question, then use that information to estimate the shape of the surface 
and to establish a surface normal. In practice, the surface is often evaluated with a grid of 
points in parameter space, so surface normals can be found by taking the cross-product of the 
vectors between the four neighbors. 

In a fragment shader, it is not possible to find the position of neighboring pointsthe 
environment is intentionally designed to allow fragment shaders for different fragments to 
execute in parallel. Also, the graphics card precision is 32-bit floating-point, and surface 
normals computed by subtraction of 32-bit floating-point positions have very noticeable banding 
patterns because work done in the range of magnitudes needed for large-scale terrain is 
imprecise. 

The solution is to compute the surface normal analytically. In addition to storing a function 
value, noise textures also store the partial derivatives. The partial derivatives are then 
computed alongside the terrain height, and a surface normal is reconstructed as needed for 
lighting calculations. 

For instance, a monofractal computed as described in Section 20.2.3 would have the 2D vector 
representing its partial derivative calculated as follows: 
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NoiseFunctionDerivative returns a 2D vector, where the x component is the partial derivative of 
the noise function with respect to x, and the y component is the partial derivative of the noise 
function with respect to y. 

20.2.8. Overhanging Terrain 



Some planets in RealWorldz have overhanging terrain, for instance, the AlienRockArt world as 
shown in Color Plate 36E. The method used to produce overhanging terrain addresses a more 
general problem: texture stretching on steep slopes of height field terrain. It is natural to 
texture-map a height field with a planar mapping; but on steep slopes the texture becomes 
very distorted. 

Figure 20.4 demonstrates the problem. The cross marks on the graph are at evenly spaced 
parameter values. To put it another way, if this curve were a cross-section of some terrain that 
had been texture-mapped with planar mapping, then the crosses would correspond to evenly 
spaced points on the texture map. If the spacing between the crosses is reasonably constant, 
the texture map is stretched evenly across the terrain. If the spacing between the crosses 
varies, the texture is stretched unevenly. 

Figure 20.4. A texture applied to a steep height field will be stretched 
unevenly 

 

 
In Figure 20.4, the distance between the crosses varies substantiallythe crosses on the steep 
parts are quite far apart compared to how close they are on the flat parts, which means that 
the texture will be quite distorted. The effect is that the steep parts of the terrain will seem to 
be quite blurry, while the flat parts of the terrain will have much a much sharper and cleaner 
appearance with more detail. 

The goal is to produce steep terrain without texture distortion, that is, with a reasonably even 
spacing between crosses. 

RealWorldz achieves the goal by postprocessing the height field terrain, making the terrain 
steeper. This step is called the "mushroom transformation." The two images in Figure 20.5 
show the effect. The left image shows what could be the cross-section of a moderately steep 
hill. The right-hand image shows the vertices in the upper half of the hill pushed outward and 
the vertices in the bottom half pulled inward. 

Figure 20.5. The "mushroom transformation" applied to a height field 

[View full size image] 



 

 
More precisely, the transformation acts as follows. The terrain is defined as a height field: z = f
(x, y). The terrain is made up of the set of points (x, y, f(x, y)). 

The partial derivatives df/dx and df/dy are known, as are the maximum and minimum values of 
z: zmin and zmax. The point (x, y, f(x, y)) is offset by 

 

 
where k is a constant specifying the degree of offset: 0 means no change. A larger value 
produced the right-hand image in Figure 20.5. Increasing the value still further gives a 
"mushroom look," so the constant k is called the "mushroom factor." 

This equation is simpler than it appears. The partial derivative is converted into the vector 
(df/dx, df/dy, 0); the rest of the equation maps the z value from the range [zmin,zmax] to 
[0,2π] and takes the sine of that value. This sine value is responsible for pushing vertices out 
on the upper half (where the sine function is negative), and pulling vertices in on the lower half 
(where the sine function is positive). Vertices at the top, middle, and bottom (i.e., zmin, 
(zmin+zmax)*0.5, and zmax) are not moved. Figure 20.6 shows the effect of increasing values. 

Figure 20.6. Varying the terrain by altering the "mushroom factor" 



 

 

 
The distance between successive crosses is reasonably constant, so the texture mapping is 
good. 

In practice, when this transformation is applied to a complex terrain, problems arise. If the 
terrain has high-frequency features, the derivatives vary considerably, and applying the 
mushroom transformation creates unrealistic horizontal spikes. The top of each hill won't 
achieve zmax, and the bottom of each valley won't reach zmin. For best results, the terrain 
should have a narrow frequency range. 

The solution is to separate the terrain into two partstwo separate terrain function trees. The 
first component produces terrain without high frequencies and without large low-frequency 
features either, so the mushroom transformation can be applied. The second component is 
added to the first and does not have the mushroom transformation applied, so it can contain 
high- and low-frequency effects. 

The Meran world (Color Plate 36C) is a good demonstration of how the two components are 
used. The shape of the stone lumps is defined by the first component, which has the mushroom 
transformation applied to give the bulblike shape. The second component of the terrain 
contributes everything else: the small ridges and wrinkles of the stone bulbs, and also the 
mountain ranges. 

The mushroom effect is used on most of the worlds in a more subtle way, to produce steep 
slopes without texture distortion. 

  



20.3. Implementation 
Now that we have discussed the internal design of RealWorldz, we can look more closely at 
some of the implementation details. This section covers a lot of ground: noise values and 
derivatives, tile sets, function trees, terrain coloring, altitude and gradient maps, lighting, and 
performance considerations. To fully explain the concepts, we look at specific texture examples 
used by some RealWorldz planets and describe some of the shader code that implements these 
concepts. 

20.3.1. Noise Values and Derivatives 

Noise textures are stored as 8-bit per-channel RGB textures, with the function value packed 
into the R channel, and the partial derivatives packed into the G and B channels. When a 
texture is read, the color components are in the range [0,1]. Noise functions range in value 
from -1 to 1, so unpacking the R channel from a [0,1] range to a [-1,1] range function value is 
done by subtracting 0.5 and then scaling by 2.0. 

The range of partial derivatives varies from noise texture to noise texture, depending on the 
scale of the noise texture. The partial derivatives of Voronoi noise textures often have a 
relatively large range; linearly packing the partial derivatives causes visible artifacts on the 
terrain because partial derivatives of small magnitude lack precision. The work-around is to 
take the cube root of the partial derivatives before they are packed. This means that there is 
less precision loss when partial derivatives of small magnitude are stored, and more precision 
loss for large derivativesbut visually, it is a great improvement. The derivatives are unpacked 
by cubing, which is efficient and doesn't require branching. So mapping from a [0,1] range to a 
[r,+r] range is done by subtracting 0.5, scaling, and cubing. 

Some graphics hardware can operate on vectors at the same speed as floating-point values, so 
it makes sense to pack the function value and derivatives into a vector. The function value is 
stored as the x component, with the derivatives being the y and z components. Unpacking a 
noise texture sample into function value and derivatives can then be done in a shader as 
follows: 

// Initially, the vector "noise" holds a color sampled from 
// a noise texture. All components are in the range [0, 1]. 
// The color has been implicitly converted to a vector with 
// red being X; green being Y; and blue being Z. 
 
// Subtracting 0.5 is the first step in unpacking both 
// value and derivative 
 
noise.xyz -= vec3(0.5, 0.5, 0.5); 
 
// Component-wise multiply. Unpack the value (x) by scaling 
// by 2.0. Unpack the derivatives (yz) by scaling by a 
// noise texture-dependent value. 
 
noise.xyz *= vec3(2.0, 4.566148, 4.566148); 
 
// Component-wise multiply. Cube the y and z values to complete 
// the unpacking of the partial derivatives. 
 
noise.yz = noise.yz * noise.yz * noise.yz; 

 
Graphics hardware that operates on vectors can perform this unpacking with one add and three 
multiplies. 



Storing the value and derivatives as a vector has some useful advantages. First, scaling a 
function value by v means scaling the partial derivatives by v as well. This can be done by 
scaling the entire vector by v since the value and derivatives are stored as components of a 
vector. Second, adding two values together means adding the partial derivatives as well. This 
can be done simply by adding the vectors together. 

20.3.2. Tile Sets 

A tile set reduces the appearance of repeating patterns by pregenerating a set of n 1 x 1 tiles 
and selecting a random tile from that set to cover each region (u, v)(u+1, v+1) on the plane, 
where u and v are integers. This can be implemented in a fragment shader in the following way. 

First, the tile set is packed into a texture map (see Color Plate 26A). Four tiles can be packed 
into a 2 x 2 arrangement; eight into a 4 x 2 arrangementany number that's the product of two 
powers-of-two is possible. Let this texture map be scaled up and translated so each of the tiles 
covers a unit square on the planethat is, the region (u, v)(u+1, v+1) for integers u and v. 

The pseudorandom selection of a tile for each unit square is done as follows. Another texture 
map is employed, filled with random values; it is called the "offset" texture (see Color Plate 
26B). It is sampled in nearest-neighbor mode and scaled up so each texel exactly overlaps a 
tile from the tile set texture map. The values read from the offset texture will be constant over 
the region of a tile; it is discontinuous only on the boundaries between tiles. As the name 
implies, the value read from the offset texture is used to offset the location at which the texture 
map containing all the tiles is sampled. The offset amount is an exact multiple of the tile size: 
for instance, if the tiles were packed into the texture map in a 4 x 4 arrangement, then the 
offset of each coordinate could be 0.0, 0.25, 0.5, 0.75,. . .. 

In pseudocode, it works as follows. (Details of scaling and translating the offset and tile set 
texture reads so the texture maps are aligned as described above have been omitted.) 

1. Let (px, py) be the point on the plane at which the noise texture tile set is required.

 

2. Read a value (r, g, b) from the offset texture at (px, py). Scale this value, or alter the 

texture read mode so r, g, and b are guaranteed to be integers. 

3. tx = px + (r / nx), where nx is the number of tiles across the width of the tile set texture 

map. 

4. ty = py + (g / n
y
), where ny is the number of tiles down the length of the tile set texture 

map. 

5. Read from the tile set texture map at location (tx, ty).
 

Color Plate 26 illustrates this process. Color Plate 26A shows the tile set image covering the 
plane, with tile edges emphasized. Color Plate 26B shows the offset texture, scaled up so that 
each texel exactly covers a tile. Color Plate 26C shows the tile set overlaid with the offset 
texture. The result of adding the tile set and the offset texture is shown in Color Plate 26Dtiles 
pseudorandomly scattered. 

20.3.3. The Function Tree 

The fragment shader code to evaluate the fractal terrain is programmatically generated from 
the terrain function tree. Each node in the terrain function tree becomes a procedure. A math 
node that sums, averages, or multiplies the values of its child nodes becomes a procedure that 
calls the procedures for each child, then combines those results. A distorted multifractal 
evaluates its child node (which defines the distortion) and applies the resulting offset to the 



parameter before evaluating the multifractal. 

In RealWorldz, the planet artist specifies the number of octaves of noise a multifractal should 
use. This is different from the standard practice, where smaller and smaller octaves of noise are 
evaluated until they have no effect on the rendered image. Because the multifractal uses a 
fixed number of octaves, the code for evaluating multifractals can have the summation loop 
unrolled. This allows almost all the coefficients in the evaluation code to be precomputed, which 
is a great advantage since it avoids calls to potentially expensive functions (such as pow) in the 
fragment shader. Another benefit is that the code makes no use of branches or loops. 

For instance, here is fragment shader code for evaluating a two-octave monofractal. Note the 
"Octave 0" and "Octave 1" commentsthey indicate each section of the unrolled multifractal 
evaluation loop. If the user specified a three-octave monofractal, another block of code to 
evaluate the third octave would be inserted immediately before the "Final scale and offset" 
comment. 

The variable currHdH is a vector storing height and the two partial derivatives of height, as the x, 
y, and z components, respectively. The eighteen-digit numbers are precalculated values, 
written to 18 decimal places for precision. (Current graphics hardware supports single-precision 
floating-point calculations at most, but there may come a day when double precision is 
supported as well. It is needed to support the dynamic range necessary for modeling on a 
planetary scale.) 

vec2  texCoord; 
vec3  currHdH = vec3(0,0,0); 
 
vec2  distParam = param; 
vec3  noise; 
float signal; 
float increment; 
vec3  newHdH; 
float mfOffset= -0.200000000000000010; 
 
// Octave 0 
texCoord = (distParam * 0.005000000000000000) + 
            vec2(1.090196078431372700, -0.588235294117647190); 
 
 
// Sample noise texture 0 at parameter "texCoord"; 
// put the result into "noise" 
 
texNT(noise, NT0, texCoord, 256); 
 
noise     -= vec3(0.5, 0.5, 0.5); 
 
noise.xyz *= vec3(2.0, 4.566148, 4.566148); 
noise.yz   = noise.yz * noise.yz * noise.yz; 
increment  = (noise.x - mfOffset) * 1.000000000000000000; 
newHdH.x   = currHdH.x + increment; 
newHdH.yz  = currHdH.yz + (noise.yz * 0.005000000000000000); 
currHdH    = newHdH; 
 
// Octave 1 
texCoord = (distParam * 0.010000000000000000) + 
           vec2 (0.949019607843137440, -0.964705882352941300); 
 
// Sample noise texture 0 at parameter "texCoord"; 
// put the result into "noise" 
 
texNT(noise, NT0, texCoord, 256); 
 
noise -    = vec3(0.5, 0.5, 0.5); 



noise.xyz *= vec3 2.0, 4.566148, 4.566148); 
noise.yz   = noise.yz * noise.yz * noise.yz; 
increment  = (noise.x - mfOffset) * 0.435275281648062060; 
newHdH.x   = currHdH.x + increment; 
newHdH.yz  = currHdH.yz + (noise.yz * 0.004352752816480621); 
currHdH    = newHdH; 
 
// Final scale and offset 
float heightScale  = 1.000000000000000000; 
float heightOffset = 0.000000000000000000; 
 
HdH    = currHdH * heightScale; 
HdH.x += heightOffset; 

 
All the exponentiations have been precalculated, reducing the mathematics to multiplies and 
addsthis is true for the other multifractals (heterofractal and mountainfractal) as well as for the 
monofractal used here. The texNT function does a bilinearly filtered texture read from the 
appropriate noise texture and handles the additional work if a tile set is in usethat is, an 
additional texture read, multiply, and add. 

So, the process of evaluating a multifractal has been reduced to operations for which graphics 
hardware is designed: 2D texture reads, multiplies, and adds. No branches are required, no 
slow or higher-order computations are done; and only one texture read is required per octave. 

20.3.4. Terrain Color 

In the preceding sections, the process for calculating the height and slope of the terrain has 
been described. The next step is to color and illuminate the terrain. 

The standard way to color fractal terrain is to create a function involving the terrain height and 
slope, then add texture with multifractals. A more hardware-friendly approach was taken for 
RealWorldz. Here, a 3D texture is used, where each slice is a different surface typefor example, 
sand, grass, snow, rock, or earth. The altitude and gradient are looked up in a 2D texture map 
called the "altgrad" map; it selects which slice from the 3D texture to use. 

Terrain with texture based on height or slope alone is very obvious; the idea behind the altgrad 
image was to complicate things so the texture transitions had a less obvious pattern, and to do 
so in a way that could be controlled by the planet artist. 

For accessing the altgrad map, height is Y and gradient is X. So a low point on the terrain 
means a low Y; mountaintops have a high Y; a perfectly level area has X = 0; a steep slope has 
high X. The color obtained from the altgrad map is used as the Z component for accessing the 
3D texture. 

20.3.5. AltGrad Map for Snow 

The altgrad map used for the Snow planet is shown as the second image in Color Plate 36A, and 
images of the planet are shown in Color Plate 36F, Color Plate 37E, and Color Plate 38A. 

The 3D texture has only two slices; one is snow, the other gray rock. The light gray in the 
altgrad image selects the snowy slice; the dark gray selects the gray rock texture slice. 

The light gray is restricted to the left-hand side of the image, which corresponds to flat areas. 
The width of the light gray area does vary slightly, but on the whole the effect is that flat 
terrain has snow, and areas that are too steep have bare rock. The abrupt transition between 
colors in the altgrad map means that there will be an abrupt change in texture. 



20.3.6. AltGrad Map for AlienRockArt 

The first image in Color Plate 36A is the altgrad texture used for the AlienRockArt planet, and 
Color Plate 36E is an image of the planet showing the rock art. 

The AlienRockArt altgrad texture is the means by which the orange rock art is created. The 
altgrad image has three colors: very dark gray, which selects the orange slice of the 3D 
texture; mid-gray, which selects the white limestone texture, and light gray, which selects the 
brown burned-grass texture. A point on the terrain is colored orange if in this altgrad map the 
height and slope correspond to a point that is darkest gray. The darkest gray in the altgrad map 
is deliberately confined to the bottom right-hand part of the altgrad map, restricting it to lowish 
and steepish terrain, but the shape of the dark gray color is deliberately complex so that the 
resulting combinations of height and slope that yield the orange color will be too complex for a 
pattern to be evident. The other deliberate choice made for painting the altgrad map was to 
make a hard edge between the darkest gray and mid-gray colors to create a sharp division 
between the limestone texture and the orange texture. 

The AlienRockArt planet started life as an experiment to reduce the repeating pattern of the 
limestone texture. Two different limestone textures were created, assigned to different slices of 
the 3D texture, and the altgrad map was edited so that there would be frequent transitions 
between two texturesthe idea being that the transitions would obscure the periodic features. To 
clarify where the transitions were, one of the limestone textures was colored orange, and the 
alien rock art pattern emerged. 

The light gray region is restricted to the triangle in the upper left, indicating flat and high areas. 
Low areas have to be fairly flat for there to be brown grass on them; but as the terrain gets 
higher, the brown grass appears on progressively steeper terrain. The gentle transition from 
mid-gray to light gray means that there is a smooth cross-fade between the limestone and the 
brown grass. 

The two mid-gray strokes cut into the light-gray region are responsible for the thin paths that 
can be seen at the boundaries of the grass. 

20.3.7. AltGrad Map for DragonRidges 

The altgrad map for the DragonRidges planet is the third image in Color Plate 36A, and an 
image of the planet is shown in Color Plate 36D. Four texture slices from this planet are shown 
in Color Plate 36B. From left to right, they are selected by the darkest gray to the lightest gray 
in the altgrad map. 

The four texture slices contain a carefully painted transition from bare rock to grass. The bare 
rock image has subtle darkenings due to the cracks in the second texture map, and the grassy 
areas in the third image follow the cracks too, so features can be followed across the transitions 
between the different texture maps. Even the grass in the third texture matches the texture of 
the grass in the fourth texture. 

The first texture slice has only subtle featureslighting and shadowing due to terrain shape 
overpowers the minor features of the texture, so it is difficult to see a repeating pattern when it 
is used. However, the other three texture slices have more obvious features, and so the 
repeating texture pattern is visible when the slices are used across a large area. The altgrad 
image that controls their use has been carefully painted so these textures don't cover areas 
large enough for the repeating pattern to be obvious. 

The image of DragonRidges (Color Plate 36D) shows the complex distribution of the grass and 
rock. The grass is affected by the shape of the terrain: Patches of grass are bounded by 
changes from flat to slope, or other terrain features. The rock changes from cracked to smooth 
depending on exposure. These effects result from the use of small patches of color in the 
altgrad map: anything more than a minor change to height or slope moves the sample point out 



 

of the color patch, meaning that the texture of the ground changes in response to those minor 
changes in height and slope. 

20.3.8. Lighting 

The fragment shader has now calculated the terrain color and the partial derivatives from which 
the surface normal is calculated. Since the fragment shader for doing all this work is 
programmatically generated, it is straightforward to allow the planet artist to write custom 
lighting calculation code and for this code to be inserted into the fragment shader code when it 
is generated. 

The default lighting code implements the Phong lighting equation, but since the code is specific 
to each planet, custom lighting effects are possible. For instance, the lighting code for the 
Cerberus planet (Color Plate 38B) lightens and reddens the ground color so that low-lying areas 
glow white-hot. The lighting code for the Tar planet adds back-lighting, to give the whitish color 
to the shaded sides of terrain. For the Meran planet (Color Plate 36C and Color Plate 38D), the 
gouges in the boulders are darkened. The lighting code for the Ring planet goes beyond just 
applying light effects and also calculates the base color, using the 3D texture slice as a source 
of noise. 

Allowing users to supply their own lighting code was relatively easy to implement, but turned 
out to be a powerful and useful tool. 

20.3.9. Performance Considerations 

RealWorldz has to render terrain with a high frame rate in addition to generating the new 
terrain texture maps. Even with each octave requiring just one texture read and some simple 
mathematics and planets pared to the bare minimum number of octaves, the fragment shader 
takes over a thirtieth of a second to generate a new 256 x 256 texture map. A period this long 
is unacceptable for real-time rendering. 

The solution is to spread the work of generating the new texture map across several frames by 
generating a subset of the new texture map during each frame. The more frames across which 
the work is split, the smaller the drop in frame ratebut taking longer to generate means that it 
will take longer before low-resolution terrain is replaced with higher-resolution terrain. In 
RealWorldz, the generation of each 256 x 256 texture map was spread across six frames. 

  



20.4. Atmospheric Effects 
Atmospheric effects are vital for giving pictures of terrain their sense of scale. This section 
describes the atmospheric effects of aerial perspective and sky shading. 

20.4.1. Aerial Perspective 

The change in appearance of objects with distance is called "aerial perspective." Briefly, the 
Earth's atmosphere scatters blue light more than red light, so a distant object affords more 
opportunities for blue light to be scattered in the direction of the viewerso the object turns 
slightly blue, for the same reason that the sky is blue. Distant objects also tend to be 
darkertheir reflected light is more likely to be blocked by particles in the atmosphere. 

The textbook method for calculating atmospheric scattering is described in the paper Display of 
The Earth Taking into Account Atmospheric Scattering, by T. Nishita, T. Shirai, K. Tadamura, E. 
Nakamae, in the SIGGRAPH '93 proceedings. 

The standard way to calculate a distant object's change in color due to atmospheric effects is as 
follows. The change is split into "inscattering" and "extinction." Inscattering is the scattering of 
light into the line from object to eyethis is an addition in the light intensity. Extinction refers to 
the absorption of lightthis is a scaling of the light intensity by some factor. If Lo is the radiance 

of the distant object and Ls is the radiance of the ray at the viewer, then Ls = CeLo + Ci where 

Ce is the extinction factor, and Ci is the inscattered light. 

In principle, this calculation should be done for each frequency of the light, but in practice it is 
acceptable to calculate the effect on only three wavelengthsthe standard red, green, and blue 
components. The extinction factor is calculated as Ce = exp(I · E · D) where I is the integral 

along the line from eye to object, E is the extinction ratio per unit length, and D is the density 
ratio. For a planet's atmosphere, the integrand is a spherically symmetric function. 

The calculation of Ci has a similar formthe inscattering at each point along the object-eye line is 

integrated. The inscatter for a given point is a function of the angle between the sunlight and 
the line from the object to the eye, the density of the atmosphere, and the intensity of the 
sunlight reaching that point. 

Leaving the mathematics at that point, we can see the extinction and inscattering contributions 
in Color Plate 37A, B, and C. 

Previous work on real-time atmospherics have focused on height fields rather than full spherical 
planets; see, for instance, Rendering Outdoor Light Scattering in Real Time by Hoffman and 
Preetham. After several different attempts to find approximations of the required integrals for 
spherical atmospheres failed, we fell back to a simple but effective model that has little relation 
to the mathematics but is fast to compute and good enough to fool the eye. A diagram 
illustrating our approach and the arrangement of the relevant objects is shown in Figure 20.7. 

Figure 20.7. Elements of the atmospheric shell model used to compute 
aerial perspective 



 

 
This function we use is an approximation to 1.0 exp(I), where I is the integral through a 
distribution from the viewer (denoted by v) to the point x. This function takes the value 0 if v 
and x are coincident and rises to 1.0 if the line from v to x passes through high-valued regions 
of the distribution. 

The function is made up of two components. The main termthe "atmospheric shell"follows the 
shape of the planet and provides a height-dependent effect, with distant objects more affected 
than close ones. The other term is a correction for the region near the viewer. 

The planet is centered at the point p. The radius of the highest point on the terrain is found and 
establishes a bounding sphere for the planet. The position of the viewer, the point p, and the 
point q are collinear. 

A function called the atmospheric shell is defined with center at the point q. Its value is a 
function of radius, taking the value 0 on the sphere marked "outer shell" and taking 1.0 on the 
"inner shell" sphere. Each shell's radius is fixed; the point q is chosen so that the outer shell is 
exactly tangent to the bounding sphere of the planet. The position of the point q is a function of 
viewer position. The radii of the inner and outer shell affect the distribution of the atmosphere; 
they are chosen by the planet artist. (They are exaggerated in Figure 20.7; in practice, the 
outer shell radius is usually not much more than the radius of the planet's bounding sphere.) 

The value of the atmospheric shell function F1 for a point x is
 

F1 = (a ·|x - q|2) + b

 



where a and b are constants; they are chosen so the function takes the value 0 and 1.0 on the 
inner and outer shells, respectively. If ro is the radius of the outer shell, and ri is the radius of 

the inner shell, then 

 

 
As described earlier, this function controls the amount by which the color is darkened and 
shifted to blue. A value of 0 causes no color changes; larger values cause a more pronounced 
color shift. 

This function emulates the atmospheric color shift, decreasing with height and increasing with 
distance. Since the shell radii are larger than the planet radius, distant mountains are more 
affected by the color shift than are closer mountains. (It is possible to choose shell radii so that 
the shell function value does not monotonically decrease with distance from the viewer; this 
problem is usually because the radii are too small.) 

But if the viewer approaches some terrain closely, then there should be no color shift; this 
function does not provide this effect, and so a second term was added to handle this case. The 
second term is a value proportional to exp(distance2): 

F2 = c · exp (|x - v|2) · d

 

The second term is subtracted from the first to provide the final value. The full fog calculation 
for a point x is as follows: 

Ffinal = (a ·|x - q|2) + b - (c · exp (|x - v|2) · d

 

where q is the center of the atmospheric shell function, a and b are calculated from the inner 
and outer shell radii with the formula given described above, v is the viewer position, and c and 
d are constants determining the shape of the local visibility correction. As a final step, the 
computed value is clamped to the range [0,1]. 

This approximation is valid only for points within the planet bounding sphere. Points outside this 
sphere can be handled by being projected onto a sphere centered at the viewer whose radius is 
such that it intersects the planet bounding sphere at the horizon. 

We tried several other atmospheric approximations without success. One common problem was 
that the value for a point on the terrain would change unrealistically as the viewer movedit did 
not monotonically increase or decrease as the viewer moved toward or away from the point; or 
the value did not monotonically decrease with terrain height. The atmospheric shell 
approximation described here is simply a fast function that displays the obvious characteristics 
a viewer expects, rather than an attempt to create a mathematically correct approximation. 

The effect of the atmospherics is most clearly seen on the Snow planet, on which the 
atmosphere parameters have been pushed to an extreme to produce dense low-lying fog 
instead of subtle haze and color shift (see Color Plate 37E). 

The transition from dense fog to clear air happens over a very short distance, so any problems 
with the atmospheric approximation function are more apparent. There are no artifacts or 
visible problems: The fog increases monotonically with height and with distance. There are no 
discontinuities, and the fog correctly follows the shape of the planet. Also, there are no 
temporal problems as the camera is moved. 



The atmospheric approximation is not mathematically correct, but it is stable, fast, easy to 
implement, reasonably intuitive to work with, and good enough to fool the eye. 

20.4.2. Sky Shading 

The color of the sky is more complex and is shaded by means of a completely different 
technique. In RealWorldz, the approximation is made that sky color is a function of optical 
depth and the angle between sun and view direction. The function is expressed as a lookup 
table (texture map). Some images of the sky from the DragonRidges world are shown in Color 
Plate 37MT. The sky color texture for this planet is shown in Color Plate 37I, and its 
atmospheric density texture is shown in Color Plate 37J. 

The sky color lookup table for DragonRidges produces a white sun, a blue sky, and a red 
sunset. The color of a pixel in a given direction, with a given optical depth is read from the sky 
color texture map. The y coordinate for the texture access is exp(O), where O is the optical 
depth. The resulting value is 1.0 for zero optical depth, and the function approaches zero as 
optical depth increases. The x coordinate for the texture access is the angle between the vector 
to the sun and the direction for the fragment in question, scaled to [0,1]. If the direction is 
exactly toward the sun, x is 0; if it is exactly away from the sun, x is 1.0. 

The white vertical bar on the left-hand side of the DragonRidges sky color lookup table 
corresponds to low anglesdirections nearly pointing to the sun. This provides the sun glare. The 
top of the image fades to black, corresponding to the atmosphere fading out as it gets thinner. 
The right-hand side of the image corresponds to directions away from the sun; it is shades of 
blue that are darker for lower optical depth and brighter for higher optical depth. The reds and 
oranges in the lower left give the sunset effects for vectors that are somewhat in the sun's 
direction and travel through high-density atmosphere. 

The alpha channel determines the blend between the cubemap with the stars and nebula and 
the atmosphere color. White means that the result is equal to the sky color; black means that 
the result is equal to the cubemap color. Grays indicate the different degrees of blend. This map 
is much the same for all the different atmospheres: white for the most part, with a smooth 
gradient establishing a transition to the star cubemap as optical depth decreases. A white bar 
runs the whole way up the left-hand side of the image so that the sun appears regardless of 
optical depth. 

The calculation of optical depth is expensive, so the sky is rendered by means of a sphere 
centered on the viewer, tessellated into rings of fixed latitude, and rotated so that the axis is in 
line with the planet center. This arrangement is chosen specifically so that for a given latitude, 
the optical depth for any ray is the same. That way, the optical depth needs to be calculated 
once for each latitude. 

For each vertex, exp(O) and direction are calculated. For the sky color texture map lookup in 
the fragment shader, two quantities are needed: the angle between the sun and the current 
direction for the x component, and exp(O) for the y component. It is sufficient to use the 
interpolated value provided by the vertex shader for the y component. Since finding the exact 
angle between two vectors with the acos function was deemed too slow, the x component is 
calculated as 0.25·|sd|2, where s is the normalized sun direction vector and d is the normalized 
current direction. (For instance, if s and d are parallel, the result is zero; when the two are 
antiparallel, the length of their difference squared is 4.0, so the resulting x component is 1.0.) 

This calculation is fast, but it yields a function that is quite dissimilar to the actual angle 
between two vectors. However, it is a monotonically increasing function of angle, so the inverse 
function can distort the texture map to compensate. For instance, the situation in which the sun 
and view direction are 18° apart corresponds to x = 18/180 = 0.1 in the above colormap. 
However, the x component calculation according to the new formula gives 0.09788. Therefore, 
the column of pixels at x = 0.1 is moved to x = 0.09788 to compensate. This resampling leads 
to a loss of detail in regions of low x; this loss is reduced when the corrected texture map is 



 

made twice the width of the source. 

The body of the fragment shader is as follows: 

// Vertex shader calculates s - d, and outputs deltaSD 
float u = dot(deltaSD, deltaSD); 
 
// expInvOpticalDepth = exp(-optical depth); this is the 
// value calculated by the CPU described above 
float v = expInvOpticalDepth; 
 
// Sample the sky color texture map 
vec4 atmosC = texture2D(skyColorTexturemap, vec2(u, v)); 
 
// Sample the star cubemap 
vec4 starC = textureCube(starCubemap, worldDir); 
 
// The blend between the sampled atmosphere color and the 
// cubemap color is actually more sophisticated than a simple 
// lerp: the star cubemap stores alpha as a measure of brightness, 
// where 0.0 is very bright and 1.0 is dark. This code causes 
// bright stars and moons to show through the atmosphere. 
 
vec4 color = atmosC + (1.0 - (atmosC.a * starC.a)) * starC; 
 
// colExtinction and colInscatter are due to atmospherics, and 
// are calculated in the vertex shader 
 
gl_FragColor = (color * colExtinction) + colInscatter; 

 
The sky color texture maps could be procedurally generated, but since the lookup table is an 
image, it is natural to work on it with a paint program. Actions such as changing the color of the 
sky in some way (reddening, lightening, reducing contrast, etc.) can be done by application of 
that operation to the whole sky color texture map, which is much more intuitive than tweaking 
the parameters of a procedural model. Some of the sky color texture maps in RealWorldz were 
started by back-projection of reference photos of skies or sunsetscalculating the mapping from 
sky color texture map to screen, matching a sunset photo (for instance) and reversing the 
mapping to build the sky color texture map that gives the sunset image. Thus was defined the 
content of a small region of the texture map, which was then extended outward by being 
painted. 

Painting the sky color texture map is very powerful, but it is not intuitive and has some pitfalls. 
For instance, finding the region of the texture map that controls the color of a particular piece 
of sky is not easy, so changing the color of one part of the sky without affecting anything else is 
difficult. One related problem is that the sky shader effectively distorts and smears the texture 
map to render the sky, so any sharp color changes in the texture cause very obvious lines in 
the sky. All such discontinuities have to be removed, but finding the problem area on the 
texture map is often the most time-consuming part of the process. 

One example of an artistic effect that would be substantially more difficult to produce with a 
physically based atmosphere model is the halo around the sun on the Snow planet, as shown in 
Color Plate 37K. The rainbow around the sun was painted onto the texture; it is the subtle 
vertical rainbow visible on the left-hand side of the sky color texture map shown in Color Plate 
37L. 

  



20.5. Ocean 
The reflective ocean is rendered in two steps. The image of the reflected terrain and sky is 
rendered (Color Plate 37U), reflected (Color Plate 37V), and then composited to create the final 
image (Color Plate 37W). The reflection image contains only the terrain and sky. 

20.5.1. Reflections 

Because the ocean is a sphere, the reflection must be spherical. Figure 20.8 shows a screenshot 
of the AlienRockArt planet with a high water level: You can see that the terrain on different 
sides of the planet is reflected in different directions. This effect cannot be achieved with simple 
planar reflection. Rendering the reflection image means drawing the terrain reflected in the 
sphere. Figure 20.9 shows the requirements. 

Figure 20.8. Reflections from a spherical surface reflected in different 
directions, as shown in the circled regions 

 

 
Figure 20.9. The geometry of reflections on a spherical object 



 

 
Given the eye and object position, the point R must be found such that the angle of incidence 
equals the angle of reflection. (These two angles are the arcs on the diagram.) Once R is found, 
the reflected point is be such that the line from it to the eye passes through R. (The location of 
the reflected point is not exactly defined, since for rendering a real-time reflection, the only 
constraint is that object order is preserved so that objects occlude each other properly. For 
instance, if a second object lies between R and the object, it would occlude the first object and 
so its reflected point must be closer to the eye than the first object's reflected point.) 

Finding the point R exactly involves solving a fourth-order polynomial; see Reflections on 
Spheres and Cylinders of Revolution by Georg Glaeser. Once again, this is a computation that 
would be prohibitively costly. For RealWorldz, the reflection needs only to be good enough to 
fool the human eye, so mathematical precision is unnecessary. A viewer would expect 
reflections to have the following properties: 

When an object touches the reflector, its reflection must meet it. 

When the viewer is close to the sphere, the local region is approximately planar, so the 
reflections of local objects should be similar to a plane. 

If an object appears just above the horizon, it must touch its reflection even if the object 
is far beyond the horizon (grazing reflection). For instance, a moon that appears just 
above the horizon should have a reflection. 

For the terrain, it is only necessary to consider points that are close to the planet surface. The 
sky is handled in a different way altogether, described in the next section. 

One complication is that the terrain is rendered with triangles, so some triangles will have 
vertices in regions hidden from the viewer. For instance, a triangle that penetrates the reflector 
will have a vertex inside the sphere. For the reflected triangle to be rendered correctly, these 
hidden vertices must be "reflected" to an appropriate position. 

Figure 20.10 shows the elements of a method that meets these criteria. 



Figure 20.10. Approximating reflections on a spherical object 



 
The view shown in Figure 20.10 is a cross-section of the situation for a given eye position. The 
reflector is centered at C, and the point H is on the horizon. That is, the point H is on the 
reflector sphere, and the line from H to the eye is at right angles to the line from H to C. The 
dark line is roughly the line in which points are reflected. 

Two infinite cones are defined. The "divider" cone has its tip at the point C, with its axis lying on 
the line from the eye to the point C. The surface of the cone passes through H. It is the shaded 
area in Figure 20.10B. 

The second cone, the "horizon" cone, has its tip at the point E, and its axis also lies on the line 
from the eye to the point C. Again, the surface of the cone passes through H. It is the shaded 
area in Figure 20.10C. 

The divider cone determines the method for reflecting a given point. If the point is within the 
cone, then its reflection is its inversion in the reflector sphere (the curved section of the bold 
line); if the point is outside the cone, then its reflection is its inversion in the horizon cone 
(represented by the straight sections of the bold line). 

By "inverting the point x in a surface S", we mean finding a point p on S with a surface normal 
n, such that p + kn = x, for some real k. Then the inverted location r is defined to be r = s kn. 
(Applying this definition to a plane surface gives the expected reflection transformation, that is, 
mirroring the points in the plane.) 

This method for finding reflected points fulfills the criteria given above. The inversion in a 
sphere takes care of the first two requirements; the horizon cone inversion case was added for 
the procedure to fulfill the last requirement. Although not mathematically correct, in practice it 
produces convincing spherical reflections. 

20.5.2. Reflected Sky 

Rendering the reflection of the sky is much less complex. The sphere of the sky is considered to 
be at infinity, which greatly simplifies the mathematics. As described in the previous section, 
the sky is rendered as a sphere tessellated with constant-latitude rings. The constant-latitude 
ring and spherical reflector are invariant under rotation about the polar axis, so the reflection 
calculations can be so set up that they need only be done once per latitude. 

20.5.3. Rendering the Ocean 

The final step is to composite the reflection image onto the scene. The water effects simulated 
are reflection, warping of reflection due to waves, underwater caustics, and water transparency. 

Underwater caustics are flickering light patterns on underwater surfacesthey are often seen at 
the bottom of swimming pools. They are due to the ripples and waves causing the light to 
refract in different directions. As a result, the light is not distributed evenly on the underwater 
surfaces; it is concentrated in some areas, which are the bright spots. 

In RealWorldz, the caustic effects are simulated with an animated texture map. Another 
application generated the animated texture map by defining a water surface with a periodic 
wave pattern and simulating the paths of millions of photons refracted by the surface. This 
produced a sequence of tileable texture maps that make up the animation. 

When the ocean is enabled, the caustic texture map is drawn on underwater terrain as the 
terrain is rendered; it fades out as the water depth decreases. This shader also sets the alpha 
component to indicate how much that pixel is occluded by the water. If the point is above 
water, the alpha is 0. The alpha value increases with depth and distance from the viewer, with 
1.0 indicating that the pixel is completely obscured by the ocean. When the ocean is drawn, this 



 

alpha value controls the blend between the reflective ocean and the underlying terrain. 

Another complication is that the ocean is drawn by re-rendering of the terrain and use of the 
vertex shader to project all the vertices onto the ocean sphere. Since the terrain patches 
overlap, some ocean pixels are drawn twice or more. Since the water is partially transparent, 
pixels that are drawn twice have the transparency effect applied twice, meaning that the ocean 
looks different in overlap regions. 

The solution was to use the OpenGL blend mode GL_ONE_MINUS_DEST_ALPHA, 
GL_DST_ALPHA. The source alpha value is always 1.0, so the blend function simplifies to the 
following: 

finalColor.rgb = source.rgb * (1-dest.a) + dest.rgb * dest.a; 
finalColor.a   = 1.0; 

 
where source is the RGBA value output by the fragment shader that renders the ocean; dest is the 
RGBA value presently in the framebuffer. 

After a pixel is rendered, the alpha value in the framebuffer is set to 1.0. When the alpha 
component of a pixel in the framebuffer is 1.0, no further changes are made to that pixel. This 
solves the overdraw problems due to the overlap areas, since only one change will be made to 
each pixel. 

The water ripples are produced by 2D warping of the reflection texture map. For each pixel, a 
"ripple" texture map is sampled; the R and G components of the sampled color perturb the read 
into the reflection texture map, giving the appearance of water ripples. At the edges of the 
screen, this could lead to the samples made off the edge of the reflection texture map. 
Clamping the perturbed texture coordinates to [0,1] fixes that problem but smears effects at 
the edge of the screen. A better solution is to render a reflection texture map corresponding to 
an area slightly larger than the visible screen area. This provides a border region, so the ripple 
offset is unlikely to result in a texture coordinate outside the [0,1] range, thereby fixing the 
smearing problem. 

  



20.6. Clouds 
Cloud lighting is dominated by scattering that is similar to atmospheric scattering, but much 
more complex. Light is scattered by the water vapor within the cloud. Low-density regions let 
most light through; high-density regions absorb or scatter most of the light that passes 
through. 

Some real clouds are shown in the photo in Color Plate 37D. These clouds are lit by vertical 
sunlight. In simplistic terms, the lighting effects can be explained as follows. Photons enter the 
cloud, and if they hit a water vapor molecule, they are scattered in a random direction. 
Therefore, parts of cloud that are directly illuminated by the sun are brightlots of sunlight 
reaches them, so proportionally more light is scattered toward the viewer. However, the clouds 
are dense and so light cannot penetrate far into the body of the cloud; little or no light reaches 
the bottom of the clouds and so they are dark. For the same reason, light from bright regions 
on the far side of the cloud body is blocked. 

At the fringes of the clouds, the clouds are less dense. So, sunlight scattered from those regions 
toward the eye is not completely blocked. For this reason, the edges of clouds tend to be bright. 

Figure 20.11 illustrates this effect. The cloud edge is light gray where the sunlight strikes; these 
are the bright areas. Light is scattered in all directions but is absorbed by the cloud body, 
depending how far it travels through the cloud and how dense the cloud is. 

Figure 20.11. Sunlight striking a cloud 

 

 
The clouds in RealWorldz simulate some of these effects. Color Plate 37G demonstrates the self-
shadowingthe darkening is much more subtle than it is in the photograph of real clouds. Color 
Plate 37H demonstrates the edge lighting. 

In RealWorldz, the clouds and smoke are rendered with a collection of 16 different billboard 
images generated by ray-marching a 3D monofractal. For each texel of the billboard image, an 
opacity and surface normal were generated. The alpha and color channels for a single billboard 



 

image are shown in Color Plate 37F. The upper image is the alpha channel; it stores the 
opacity. Black is 0, indicating complete transparency; white is 1.0, indicating complete opacity. 
The lower image is the RGB color channel holding the packed normal. The normal is unpacked 
in the usual waysubtraction of 0.5 and multiplication by 2.0. 

The opacity was calculated by numerical integration of the ray through the 3D monofractal. The 
surface normal was established by determination of the point at which the ray integral rose 
above a certain (small) value; corresponding points were found for rays in slightly different 
directions and a plane fitted to those points. The surface normal was defined to be normal to 
that plane. 

The surface normal is used to estimate whether the pixel is facing the sun; this provides the 
brightening of regions facing the sun and the self-shadowing effect. The opacity determines 
how much the cloudlet occludes objects behind itthe cloudlets are drawn in far-to-near order, so 
near cloudlets occlude more distant cloudlets. 

The fragment shader code to calculate the color and alpha of the cloudlet is given here. 
cloudletNormal is the unpacked normal vector; cloudletOpacity is the opacity. cloudletLightDir is the 
sunlight vector, transformed into the space in which the cloudlet normals are stored. alphaScalar 
is a value in the range [0,1] provided by the vertex shader: Normally it is 1.0, but 0 makes the 
cloudlet completely transparent. 

float d = 0.95 +(dot(cloudletLightDir, screenLightDir) * 
                                        0.3 * cloudletOpacity); 
vec3 baseCloudColor = vec3(1.0, 0.93, 0.9); 
gl_FragColor.rgb    = d * baseCloudColor; 
gl_FragColor.a      = cloudletOpacity * alphaScalar; 

 
Cloudlets that are too near or too far from the viewer are not drawn. So that cloudlets do not 
abruptly disappear when they leave the visible range, they become progressively more 
transparent as they near the boundaries of the visible region. This fadeout is implemented by 
the vertex shader calculating the cloudlet distance; alphaScalar takes the value 0 if the cloudlet is 
at the boundaries of the visible region, rising to 1.0 in the interior of the visible region. 

  



20.7. Summary 
The RealWorldz project allowed us to push the state-of-the-art for controlling graphics hardware 
through a high-level shading language. RealWorldz was demonstrated at SIGGRAPH 2004, 
running at interactive rates on 3Dlabs Wildcat Realizm hardware with all the features described 
in this chapter. Future hardware will make possible improved frame rates and increasingly 
complex effects. 

Textures are heavily used in RealWorldz, but they are used in unique ways as the basis for the 
mathematics necessary to achieve a variety of effects. They also provide an avenue for the 
inclusion of artists in the planet design process. A planet may be defined by 50100 megabytes 
of these basis textures. This data is amplified procedurally at runtime to the point that several 
terabytes of data would be required to prerender the planet. Every aspect of a planet can be 
modified, with real-time controls for waves, plants, clouds, atmospheric density, and sea level. 
Lighting calculations are done per pixel in real time. Planets are rendered with 20 or more 
shaders, which may have more than a hundred uniform variables. Some of these shaders are 
several hundred source lines long, yet still run with acceptable performance. 

The RealWorldz demo was made possible by the advent of high-performance programmable 
graphics hardware which has, quite literally, opened up new worlds for us to explore. 

  



20.8. Further Information 
The RealWorldz demo is available upon request from 3Dlabs. The Pandromeda Web site 
contains a large gallery of images and movies made with MojoWorld, a program that facilitates 
the creation and exploration of very high quality fractal worlds. A free trial version of MojoWorld 
is available. Ken Musgrave discusses some of the concepts behind MojoWorld in Texturing and 
Modeling: A Procedural Approach. Voronoi (cellular) noise is described by Steven Worley in his 
1996 SIGGRAPH paper, A Cellular Texture Basis Function. See also the references at the end of 
Chapter 15 for more information about noise functions. 

1. 3Dlabs developer Web site. http://developer.3dlabs.com 

2. Ebert, David S., John Hart, Bill Mark, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, 
and Steven Worley, Texturing and Modeling: A Procedural Approach, Third Edition, 
Morgan Kaufmann Publishers, San Francisco, 2002. 
http://www.texturingandmodeling.com 

3. Glaeser, Georg, Reflections on Spheres and Cylinders of Revolution, Journal for Geometry 
and Graphics, Volume 3 (1999), No. 2, pp. 121139. http://www.heldermann-
verlag.de/jgg/jgg01_05/jgg0312.pdf 

4. Hoffman, Nathaniel, and A. Preetham, Rendering Outdoor Light Scattering in Real Time, 
Game Developers Conference 2002. http://www.ati.com/developer/dx9/ATI-
LightScattering.pdf 

5. Nishita, Tomoyuki, Takao Sirai, Katsumi Tadamura, and Eihachiro Nakamae, Display of 
the Earth Taking into Account Atmospheric Scattering, Computer Graphics (SIGGRAPH '93 
Proceedings), pp. 175182, August 1993. http://nis-lab.is.s.u-
tokyo.ac.jp/~nis/abs_sig.html#sig93 

6. Pandromeda Web site. http://www.pandromeda.com 

7. Worley, Steven, A Cellular Texture Basis Function, Computer Graphics (SIGGRAPH '96 
Proceedings), pp. 291294, August 1996. 

  



Chapter 21. Language Comparison 
The OpenGL Shading Language is by no means the first graphics shading language ever 
defined. Here are a few other notable shading languages and a little about how each one 
compares to the OpenGL Shading Language. Compare the diagrams in this chapter with the 
OpenGL Shading Language execution model in Figure 2.4 for a visual summary. 

  



21.1. Chronology of Shading Languages 
Rob Cook and Ken Perlin are usually credited with being the first to develop languages to 
describe shading calculations. Both of these efforts targeted offline (noninteractive) rendering 
systems. Perlin's work included the definition of the noise function and the introduction of 
control constructs. Cook's work on shade trees at Lucasfilm (later Pixar) introduced the 
classification of shaders as surface shaders, light shaders, atmosphere shaders, and so on, and 
the ability to describe the operation of each through an expression. This work evolved into the 
effort to develop a full-featured language for describing shading calculations, which was taken 
up by Pat Hanrahan and culminated in the 1988 release of the first version of the RenderMan 
Interface Specification by Pixar. Subsequently, RenderMan became the de facto industry-
standard shading language for offline rendering systems for the entertainment industry. It 
remains in widespread use today. 

The first interactive shading language was demonstrated at the University of North Carolina on 
a massively parallel graphics architecture called PixelFlow that was developed over the decade 
of the 1990s. The shading language used on PixelFlow could render scenes with procedural 
shading at 30 frames per second or more. The shading language component of this system was 
described by Marc Olano in 1998. 

After leaving UNC, Olano joined a team at SGI that was defining and implementing an 
interactive shading language that would run on top of OpenGL and use multipass rendering 
methods to execute the shaders. This work culminated in the release in 2000 of a product from 
SGI called OpenGL Shader, the first commercially available real-time, high-level shading 
language. 

In June 1999, the Computer Graphics Laboratory at Stanford embarked on an effort to define a 
real-time shading language that could be accelerated by existing consumer graphics hardware. 
This language was called the Stanford Real-Time Shading Language. Results of this system 
were demonstrated in 2001. 

The OpenGL Shading Language, Microsoft's HLSL, and NVIDIA's Cg are all efforts to define a 
commercially viable, real-time, high-level shading language. The white paper that first 
described the shading language that would become the OpenGL Shading Language was 
published in October 2001 by Dave Baldwin of 3Dlabs. NVIDIA's Cg specification was published 
in June of 2002, and Microsoft's HLSL specification was published in November 2002, as part of 
the beta release of the DirectX 9.0 Software Development Kit. Some cross-pollination of ideas 
occurred among these three efforts because of the interrelationships of the companies involved. 

In subsequent sections, we compare the OpenGL Shading Language with other commercially 
available high-level shading languages. 

  



21.2. RenderMan 
In 1988, after several years of development, Pixar published the RenderMan Interface 
Specification. This was an interface intended to define the communications protocol between 
modeling programs and rendering programs aimed at producing images of photorealistic 
quality. The original target audience for this interface was animation production, and the 
interface has proved to be very successful for this market. It has been used as the interface for 
producing computer graphics special effects for films such as Jurassic Park, Star Wars Episode 
1: The Phantom Menace, The Lord of the Rings: The Two Towers, and others. It has also been 
used for films that have been done entirely with computer graphics such as Finding Nemo, Toy 
Story, A Bug's Life, and Monsters, Inc. 

One of the main differences between the OpenGL Shading Language and RenderMan is that 
RenderMan attempts to define the entire interface between modeling programs and rendering 
programs. It provides an entire graphics processing pipeline of its own that has no relationship 
to OpenGL. Although a hardware implementation was envisioned at the time RenderMan was 
first defined, it was primarily designed as a high-quality, realistic rendering interface; therefore, 
it provides no compromises for interactivity or direct hardware implementation on today's 
graphics hardware. RenderMan includes support for describing geometric primitives, hierarchical 
modeling, stacking geometric transformations, camera attributes, shading attributes, and 
constructive solid geometry. OpenGL already provides many of these capabilities; therefore, 
they need not be addressed in the OpenGL Shading Language. 

Figure 21.1. RenderMan execution environment 

 

 



 

Of particular interest, however, is the portion of RenderMan called the RenderMan Shading 
Language. This language completely describes arbitrary shaders that can be passed to a 
renderer through the RenderMan interface. This language was also based on C, and as such, it 
bears some resemblance to the OpenGL Shading Language. In a general way, the RenderMan 
interface is similar to OpenGL, and the RenderMan Shading Language is similar to the OpenGL 
Shading Language. The RenderMan interface and OpenGL both let you define the characteristics 
of a scene (viewing parameters, primitives to be rendered, etc.). Both shading languages 
compute the color, position, opacity, and other characteristics of a point in the scene. 

One of the main differences between the OpenGL Shading Language and the RenderMan 
Shading Language is in the abstraction of the shading problem. The OpenGL Shading Language 
closely maps onto today's commercial graphics hardware and has abstracted two types of 
shaders so far: vertex shaders and fragment shaders. The RenderMan Shading Language has 
always had uncompromising image quality as its fundamental goal, and it abstracts five shader 
types: light shaders, displacement shaders, surface shaders, volume shaders, and imager 
shaders. The RenderMan shader types lend themselves to the implementation of high-quality 
software rendering implementations, but they do not match up as well with hardware that has 
been designed to support interactive rendering with OpenGL. As a result, RenderMan 
implementations have typically been software based, but attempts to accelerate it in hardware 
have been made (read Interactive Multi-Pass Programmable Shading by Peercy, Olano, Airey, 
and Ungar, 2000). The OpenGL Shading Language was designed from the beginning for 
acceleration by commodity graphics hardware. 

There are some differences in the data types supported by the two languages. RenderMan 
supports native types that represent colors, points, and normals, whereas the OpenGL Shading 
Language includes the more generic vectors of 1, 2, 3, or 4 floating-point values that can 
support any of those. RenderMan goes a bit further in making the language graphics-specific by 
including built-in support for coordinate spaces named object, world, camera, NDC, raster, and 
screen. 

RenderMan supports a number of predefined surface shader variables, light source variables, 
volume shader variables, displacement shader variables, and imager shader variables. The 
OpenGL Shading Language contains built-in variables that are specific to OpenGL state values, 
some of which are similar to the RenderMan predefined variables. Because it is aimed at 
producing animation, RenderMan also has built-in variables to represent time. The OpenGL 
Shading Language does not, but such values can be passed to shaders through uniform 
variables to accomplish the same thing. 

On the other hand, the two languages have much in common. In a very real sense, the OpenGL 
Shading Language can be thought of as a descendant of the RenderMan Shading Language. The 
data type qualifiers uniform and varying were invented in RenderMan and have been carried 
forward to mean the same things in the OpenGL Shading Language. Expressions and 
precedence of operators in both languages are very much like C. Keywords such as if, else, 
while, for, break, and return are the same in both languages. The list of built-in math 
functions for the OpenGL Shading Language is largely similar to the list of built-in math 
functions for the RenderMan Shading Language. 

  



21.3. OpenGL Shader (ISL) 
OpenGL Shader was a software package developed by SGI and released in 2000. It was 
available as a commercial product for several years, but is no longer available. OpenGL Shader 
defined both a shading language (Interactive Shading Language, or ISL) and a set of API calls 
that defined shaders and used them in the rendering process. 

The fundamental premise of OpenGL Shader was that the OpenGL API could be used as an 
assembly language for executing programmable shaders (see Figure 21.2). Hardware with more 
features (e.g., multitexture and fragment programmability) could be viewed as having a more 
powerful assembly language. A sequence of statements in an ISL shader could end up being 
translated into one or more rendering passes. Each pass could be a geometry pass (geometry is 
drawn to use vertex, rasterization, and fragment operations), a copy pass (a region of the 
framebuffer is copied back into the same place in the framebuffer to use pixel, rasterization, 
and fragment operations), or a copy texture pass (a region of the framebuffer is copied to a 
texture to use pixel operations). Compiler optimization technology determined the type of pass 
required to execute a sequence of source code instructions and, if possible, to reduce the 
number of passes needed overall. The final version of OpenGL Shader was optimized for 
multiple hardware back ends and could exploit the features exposed on a particular platform to 
reduce the number of passes required. 

Figure 21.2. OpenGL Shader (ISL) execution environment 



 

 
Like every other shading language worth its salt, ISL is based on C. However, because of its 
fundamental premise, ISL shaders end up looking quite different from OpenGL shaders. Many of 
the instructions in an ISL shader end up look like directives to perform a rendering pass. For 
example, consider the following ISL source code: 

varying color b; 
FB  = diffuse(); 
FB *= color(.5, .2, 0, 1); 
b   = FB; 
FB  = specular(30.0); 
FB += b; 

 
The identifier FB specifies a result to be stored in the frame buffer. This sequence of operations 
first calls a subshader that executes a light shader to compute a diffuse color for the geometry 
being rendered. This value is multiplied by the color value (.5, .2, 0, 1), and the result is then 
stored in a region of texture memory called b. A specular reflection calculation is performed 
next, and finally the diffuse component and specular components are added together. Although 
it has the appearance of requiring multiple passes, this sequence of instructions can actually be 
executed in a single pass on a number of different graphics accelerators. 



 

ISL supports surface and light shaders, which are merged and compiled. In this regard, it is 
more similar to the RenderMan way of doing things than it is to the OpenGL distinction of vertex 
and fragment shaders. 

Another difference between the OpenGL Shading Language and ISL is that ISL was designed to 
provide portability for interactive shading by means of the OpenGL capabilities of both past and 
current hardware, whereas the OpenGL Shading Language was designed to expose the 
programmability of current and future hardware. The OpenGL Shading Language is not intended 
for hardware without a significant degree of programmability, but ISL executes shaders with the 
identical visual effect on a variety of hardware, including hardware with little or no explicit 
support for programmability. 

Yet another difference between ISL and the OpenGL Shading Language is that ISL was designed 
with the constraints of using the OpenGL API as an assembly language, without requiring any 
changes in the underlying hardware. The OpenGL Shading Language was designed to define 
new capabilities for the underlying hardware, and so it supports a more natural syntax for 
expressing graphics algorithms. The high-level language defined by the OpenGL Shading 
Language can be translated into the machine code native to the graphics hardware with an 
optimizing compiler written by the graphics hardware vendor. 

  



21.4. HLSL 
HLSL stands for High-Level Shader Language, and it was defined by Microsoft and introduced 
with DirectX 9 in 2002. In terms of its syntax and functionality, HLSL is much closer to the 
OpenGL Shading Language than either RenderMan or ISL. HLSL supports the paradigm of 
programmability at the vertex level and at the fragment level just as in the OpenGL Shading 
Language. An HLSL vertex shader corresponds to an OpenGL vertex shader, and an HLSL pixel 
shader corresponds to an OpenGL fragment shader. 

One of the main differences between the OpenGL Shading Language and HLSL is in the 
execution environment (see Figure 21.3). The HLSL compiler is really a translator that lives 
outside DirectX in the sense that HLSL programs are never sent directly to the DirectX 9 API for 
execution. Instead, the HLSL compiler translates HLSL source into assembly-level source or 
binary programs called vertex shaders and pixel shaders (in Microsoft DirectX parlance). 
Various levels of functionality have been defined for these assembly level shaders, and they are 
differentiated by a version number (e.g., Vertex Shader 1.0, 2.0, 3.0; Pixel Shader 1.1, 1.4, 
2.0, 3.0). 

Figure 21.3. Execution environment for Microsoft's HLSL 



 

 
One advantage of this approach is that HLSL programs can be translated offline, or long before 
the application is actually executed. However, the translation is done to a binary representation 
of assembly code. This binary representation may still need to be translated to native machine 
code at execution time. This is in contrast to the OpenGL Shading Language model, in which the 
compiler is part of the driver, and the graphics hardware vendor writes the compiler. Giving the 
graphics hardware vendor the responsibility of translating from high-level shading language 
source to machine code grants these vendors a lot of room for shader optimization and 
architectural innovation. 

HLSL is designed to make it easier for application developers to deal with the various levels of 
functionality found in these assembly-level shaders. Using HLSL and the support environment 
that has been built around it, application developers can write shaders in a high-level shading 
language and be reasonably confident that their shaders will run on hardware with widely 
varying capabilities. 

However, because HLSL is more expressive than the capabilities of graphics hardware that 
exists today and much more expressive than hardware shipped in the past, HLSL shaders are 
not guaranteed to run on every platform. Shader writers have two choices: They can write their 



 

shader for the lowest common denominator (i.e., hardware with very little programmability), or 
they can target their shader at a certain class of hardware by using a language feature called 
profiles. Microsoft provides supporting software called the DirectX Effects Framework to help 
developers organize and deploy a set of shaders that do the same thing for hardware with 
differing capabilities. 

The fundamental data types in HLSL are the same as those in the OpenGL Shading Language 
except for slight naming differences. HLSL also supports half- and double-precision floats. Like 
the OpenGL Shading Language, HLSL accommodates vectors, matrices, structures, and arrays. 
Expressions in HLSL are as in C/C++. User-defined functions and conditionals are supported in 
the same manner as in the OpenGL Shading Language. Looping constructs (for, do, and while) 
are defined in HLSL, but the current documentation states that they are not yet implemented. 
HLSL has a longer list of built-in functions than does the OpenGL Shading Language, but those 
that are in both languages are very similar or identical. 

One area of difference is the way in which values are passed between vertex shaders and pixel 
(HLSL) or fragment (OpenGL Shading Language) shaders. HLSL defines both input semantics 
and output semantics (annotations that identify data usage) for both vertex shaders and pixel 
shaders. This provides the same functionality as the OpenGL Shading Language varying and 
built-in variables. You are allowed to pass arbitrary data into and out of vertex and pixel 
shaders, but you must do so in named locations such as POSITION, COLOR[i], TEXCOORD[i], and so 
on. This requirement means that you may have to pass your light direction variable lightdir in a 
semantic slot named TEXCOORD[i], for instancea curious feature for a high-level language. The 
OpenGL Shading Language lets you use arbitrary names for passing values between vertex 
shaders and fragment shaders. 

Another obvious difference between HLSL and the OpenGL Shading Language is that HLSL was 
designed for DirectX, Microsoft's proprietary graphics API, and the OpenGL Shading Language 
was designed for OpenGL. Microsoft can add to and change DirectX, whereas OpenGL is an 
open, cross-platform standard that changes more slowly but retains compatibility with previous 
versions. 

  



21.5. Cg 
Cg is a high-level shading language that is similar to HLSL. Cg has been defined, implemented, 
and supported by NVIDIA. Comparing Cg to the OpenGL Shading Language is virtually the same 
as comparing HLSL to the OpenGL Shading Language. There are a few minor differences 
between Cg and HLSL (for instance, HLSL has a double data type but Cg does not), but Cg and 
HLSL were developed by Microsoft and NVIDIA working together, so their resulting products are 
very similar. 

One advantage that Cg has over both HLSL and the OpenGL Shading Language is that the Cg 
translator can generate either DirectX vertex shader/pixel shader assembly code or OpenGL 
vertex/fragment program (assembly-level) code. This provides the potential for using Cg 
shaders in either the DirectX environment or the OpenGL environment (see Figure 21.4). 
However, it also requires the application to make calls to a library provided by NVIDIA that sits 
between the application and the underlying graphics API (either OpenGL or DirectX). This 
library is called the Cg Runtime library. For simple applications, it can be a help in covering up 
the limitations of the underlying driver (for instance, it can cover up the fact that a DirectX 
driver supports multiple versions of vertex and pixel shaders and automatically selects the most 
appropriate version to use). But this intervening layer can also complicate things for more 
complicated applications because it covers up details of shader management. 

Figure 21.4. The Cg execution environment 



 

 

 
NVIDIA has its own version of the framework that surrounds the shading language. CgFX is a 
shader specification and interchange format whose file format is the same as that supported by 
the .fx Effect format for DirectX 9. The CgFX runtime library, like the Cg runtime library, 
supports both OpenGL and DirectX, so in this way the Microsoft and NVIDIA products differ. 

Because it is so similar to HLSL, the advantages and disadvantages of Cg with respect to the 
OpenGL Shading Language are also similar: proprietary versus standard (thus earlier to 
market), support for less capable hardware at the cost of hardware dependencies in shader 
source code, translation from high-level shading language to "standard" assembly interface 
offline versus a compiler embedded in the driver, a more complete shader development system 
but with the requirement of extra runtime libraries, and so on. 

  



21.6. Summary 
Shading languages have been around for some time now. The first shading languages were 
non-real-time languages aimed at producing photorealistic imagery. Graphics hardware capable 
of supporting an interactive shading language showed up in research labs in the 1990s, and 
today, this type of programmable graphics hardware is available at consumer price points. This 
has led to the development of several commercially available shading languages, notably, ISL, 
the OpenGL Shading Language, HLSL, and Cg. 

In the spectrum of programming languages, the last three are extremely similar. Each was 
designed to provide functionality available in RenderMan by the use of C/C++ as the basis for 
the language syntax. The result is that all three languages are similar in terms of syntax and 
capability. The single biggest technical difference is that HLSL and Cg sit on top of standard 
interfaces such as DirectX and OpenGL and translate high-level source code to assembly outside 
those APIs. The OpenGL Shading Language, on the other hand, translates high-level source 
code to machine code within the OpenGL driver. 

As far as nontechnical differences, the HLSL and CG specifications are controlled by Microsoft 
and NVIDIA, respectively. The OpenGL Shading Language is controlled by the OpenGL ARB, a 
standards body made up of representatives from a variety of graphics hardware and computer 
manufacturers. HLSL is designed for use in Microsoft's DirectX environment, and the OpenGL 
Shading Language is designed for use with OpenGL in a variety of operating environments. Cg 
is designed to be used in either DirectX or OpenGL environments. 

  



21.7. Further Information 
The RenderMan Shading Language is specified in Pixar's The RenderMan Interface Specification 
(2000), and its use is described in the books The RenderMan Companion: A Programmer's 
Guide to Realistic Computer Graphics (Upstill 1990) and Advanced RenderMan: Creating CGI for 
Motion Pictures (Apodaca and Gritz 1999). 

OpenGL Shader and ISL are described in the SIGGRAPH 2000 paper Interactive Multi-Pass 
Programmable Shading. The book Real-Time Shading by Olano, Hart, Heidrich, and McCool 
(2002) contains chapters describing various shading languages, including RenderMan, ISL, and 
shading languages defined and implemented by researchers at the University of North Carolina, 
Stanford, and the University of Waterloo. 

The Stanford Real-Time Shading Language is described in the SIGGRAPH 2001 paper, A Real-
Time Procedural Shading System for Programmable Graphics Hardware, and in the course notes 
for Real-Time Shading, Course 24, SIGGRAPH 2001. 

There are sure to be books out that describe Microsoft's HLSL, but at the time of this writing, 
the only documentation I could find is available from Microsoft on the DirectX 9 page of its Web 
site, http://www.microsoft.com/ directx. A good starting point is Introduction to the DirectX 9 
High-Level Shader Language by Craig Peeper and Jason Mitchell. This paper also appears as a 
chapter in the book ShaderX2: Shader Programming Tips and Tricks with DirectX 9.0 by 
Wolfgang Engel. 

Cg is described in documentation from NVIDIA in the book The Cg Tutorial: The Definitive Guide 
to Programmable Real-Time Graphics by Fernando and Kilgard (2003) and in the SIGGRAPH 
2003 paper Cg: A System for Programming Graphics Hardware in a C-like Language. 

The bibliography at the end of this book contains references to other notable noncommercial 
shading languages. 

1. Apodaca, Anthony A., and Larry Gritz, Advanced RenderMan: Creating CGI for Motion 
Pictures, Morgan Kaufmann Publishers, San Francisco, 1999. 
http://www.renderman.org/RMR/Books/arman/materials.html 
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2001. 
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223231, July 1984. 
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Appendix A. Language Grammar 
The grammar is fed from the output of lexical analysis. The tokens returned from lexical 
analysis are 

ATTRIBUTE CONST BOOL FLOAT INT 
BREAK CONTINUE DO ELSE FOR IF DISCARD RETURN 
BVEC2 BVEC3 BVEC4 IVEC2 IVEC3 IVEC4 VEC2 VEC3 VEC4 
MAT2 MAT3 MAT4 IN OUT INOUT UNIFORM VARYING 
SAMPLER1D SAMPLER2D SAMPLER3D 
SAMPLERCUBE SAMPLER1DSHADOW SAMPLER2DSHADOW 
STRUCT VOID WHILE 
 
IDENTIFIER TYPE_NAME FLOATCONSTANT INTCONSTANT BOOLCONSTANT 
FIELD_SELECTION 
LEFT_OP RIGHT_OP 
INC_OP DEC_OP LE_OP GE_OP EQ_OP NE_OP 
AND_OP OR_OP XOR_OP MUL_ASSIGN DIV_ASSIGN ADD_ASSIGN 
MOD_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN XOR_ASSIGN OR_ASSIGN 
SUB_ASSIGN 
 
LEFT_PAREN RIGHT_PAREN LEFT_BRACKET RIGHT_BRACKET 
LEFT_BRACE RIGHT_BRACE DOT 
COMMA COLON EQUAL SEMICOLON BANG DASH TILDE PLUS STAR SLASH PERCENT 
LEFT_ANGLE RIGHT_ANGLE VERTICAL_BAR CARET AMPERSAND QUESTION 

 
The following describes the grammar for the OpenGL Shading Language in terms of the 
preceding tokens. 

variable_identifier: 

IDENTIFIER 

primary_expression: 

variable_identifier 

INTCONSTANT 

FLOATCONSTANT 

BOOLCONSTANT 

LEFT_PAREN expression RIGHT_PAREN 

postfix_expression: 

primary_expression 

postfix_expression LEFT_BRACKET integer_expression RIGHT_BRACKET 

function_call 

postfix_expression DOT FIELD_SELECTION 



postfix_expression INC_OP 

postfix_expression DEC_OP 

integer_expression: 

expression 

function_call: 

function_call_generic 

function_call_generic: 

function_call_header_with_parameters RIGHT_PAREN 

function_call_header_no_parameters RIGHT_PAREN 

function_call_header_no_parameters: 

function_call_header VOID 

function_call_header 

function_call_header_with_parameters: 

function_call_header assignment_expression 

function_call_header_with_parameters COMMA assignment_expression 

function_call_header: 

function_identifier LEFT_PAREN 

function_identifier: 

constructor_identifier 

IDENTIFIER 

// Grammar Note: Constructors look like functions, but lexical analysis recognized most of them 
as keywords. 

constructor_identifier: 

FLOAT 

INT 

BOOL 

VEC2 

VEC3 



VEC4 

BVEC2 

BVEC3 

BVEC4 

IVEC2 

IVEC3 

IVEC4 

MAT2 

MAT3 

MAT4 

TYPE_NAME 

unary_expression: 

postfix_expression 

INC_OP unary_expression 

DEC_OP unary_expression 

unary_operator unary_expression 

// Grammar Note: No traditional style type casts. 

unary_operator: 

PLUS 

DASH 

BANG 

TILDE // reserved 

// Grammar Note: No '*' or '&' unary ops. Pointers are not supported. 
multiplicative_expression: 

unary_expression 

multiplicative_expression STAR unary_expression 

multiplicative_expression SLASH unary_expression 

multiplicative_expression PERCENT unary_expression // reserved 



additive_expression: 

multiplicative_expression 

additive_expression PLUS multiplicative_expression 

additive_expression DASH multiplicative_expression 

shift_expression: 

additive_expression 

shift_expression LEFT_OP additive_expression // reserved 

shift_expression RIGHT_OP additive_expression // reserved 

relational_expression: 

shift_expression 

relational_expression LEFT_ANGLE shift_expression 

relational_expression RIGHT_ANGLE shift_expression 

relational_expression LE_OP shift_expression 

relational_expression GE_OP shift_expression 

equality_expression: 

relational_expression 

equality_expression EQ_OP relational_expression 

equality_expression NE_OP relational_expression 

and_expression: 

equality_expression 

and_expression AMPERSAND equality_expression // reserved 

exclusive_or_expression: 

and_expression 

exclusive_or_expression CARET and_expression // reserved 

inclusive_or_expression: 

exclusive_or_expression 

inclusive_or_expression VERTICAL_BAR exclusive_or_expression // reserved 

logical_and_expression: 



inclusive_or_expression 

logical_and_expression AND_OP inclusive_or_expression 

logical_xor_expression: 

logical_and_expression 

logical_xor_expression XOR_OP logical_and_expression 

logical_or_expression: 

logical_xor_expression 

logical_or_expression OR_OP logical_xor_expression 

conditional_expression: 

logical_or_expression 

logical_or_expression QUESTION expression COLON assignment_expression 

assignment_expression: 

conditional_expression 

unary_expression assignment_operator assignment_expression 

assignment_operator: 

EQUAL 

MUL_ASSIGN 

DIV_ASSIGN 

MOD_ASSIGN // reserved 

ADD_ASSIGN 

SUB_ASSIGN 

LEFT_ASSIGN // reserved 

RIGHT_ASSIGN // reserved 

AND_ASSIGN // reserved 

XOR_ASSIGN // reserved 

OR_ASSIGN // reserved 

expression: 

assignment_expression 



expression COMMA assignment_expression 

constant_expression: 

conditional_expression 

declaration: 

function_prototype SEMICOLON 

init_declarator_list SEMICOLON 

function_prototype: 

function_declarator RIGHT_PAREN 

function_declarator: 

function_header 

function_header_with_parameters 

function_header_with_parameters: 

function_header parameter_declaration 

function_header_with_parameters COMMA parameter_declaration 

function_header: 

fully_specified_type IDENTIFIER LEFT_PAREN 

parameter_declarator: 

type_specifier IDENTIFIER 

type_specifier IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET 

parameter_declaration: 

type_qualifier parameter_qualifier parameter_declarator 

parameter_qualifier parameter_declarator 

type_qualifier parameter_qualifier parameter_type_specifier 

parameter_qualifier parameter_type_specifier 

parameter_qualifier: 

/* empty */ 

IN 

OUT 



INOUT 

parameter_type_specifier: 

type_specifier 

type_specifier LEFT_BRACKET constant_expression RIGHT_BRACKET 

init_declarator_list: 

single_declaration 

init_declarator_list COMMA IDENTIFIER 

init_declarator_list COMMA IDENTIFIER LEFT_BRACKET RIGHT_BRACKET 

init_declarator_list COMMA IDENTIFIER LEFT_BRACKET constant_expression 
RIGHT_BRACKET 

init_declarator_list COMMA IDENTIFIER EQUAL initializer 

single_declaration: 

fully_specified_type 

fully_specified_type IDENTIFIER 

fully_specified_type IDENTIFIER LEFT_BRACKET RIGHT_BRACKET 

fully_specified_type IDENTIFIER LEFT_BRACKET constant_expression 
RIGHT_BRACKET 

fully_specified_type IDENTIFIER EQUAL initializer 

// Grammar Note: No 'enum' or 'typedef'. 

fully_specified_type: 

type_specifier 

type_qualifier type_specifier 

type_qualifier: 

CONST 

ATTRIBUTE // Vertex only. 

VARYING 

UNIFORM 

type_specifier: 

VOID 



FLOAT 

INT 

BOOL 

VEC2 

VEC3 

VEC4 

BVEC2 

BVEC3 

BVEC4 

IVEC2 

IVEC3 

IVEC4 

MAT2 

MAT3 

MAT4 

SAMPLER1D 

SAMPLER2D 

SAMPLER3D 

SAMPLERCUBE 

SAMPLER1DSHADOW 

SAMPLER2DSHADOW 

struct_specifier 

TYPE_NAME 

struct_specifier: 

STRUCT IDENTIFIER LEFT_BRACE struct_declaration_list RIGHT_BRACE 

STRUCT LEFT_BRACE struct_declaration_list RIGHT_BRACE 

struct_declaration_list: 

struct_declaration 



struct_declaration_list struct_declaration 

struct_declaration: 

type_specifier struct_declarator_list SEMICOLON 

struct_declarator_list: 

struct_declarator 

struct_declarator_list COMMA struct_declarator 

struct_declarator: 

IDENTIFIER 

IDENTIFIER LEFT_BRACKET constant_expression RIGHT_BRACKET 

initializer: 

assignment_expression 

declaration_statement: 

declaration 

statement: 

compound_statement 

simple_statement 

// Grammar Note: No labeled statements; 'goto' is not supported. 

simple_statement: 

declaration_statement 

expression_statement 

selection_statement 

iteration_statement 

jump_statement 

compound_statement: 

LEFT_BRACE RIGHT_BRACE 

LEFT_BRACE statement_list RIGHT_BRACE 

statement_no_new_scope: 

compound_statement_no_new_scope 



simple_statement 

compound_statement_no_new_scope: 

LEFT_BRACE RIGHT_BRACE 

LEFT_BRACE statement_list RIGHT_BRACE 

statement_list: 

statement 

statement_list statement 

expression_statement: 

SEMICOLON 

expression SEMICOLON 

selection_statement: 

IF LEFT_PAREN expression RIGHT_PAREN selection_rest_statement 

selection_rest_statement: 

statement ELSE statement 

statement 

// Grammar Note: No 'switch'. Switch statements not supported. 

condition: 

expression 

fully_specified_type IDENTIFIER EQUAL initializer 

iteration_statement: 

WHILE LEFT_PAREN condition RIGHT_PAREN statement_no_new_scope 

DO statement WHILE LEFT_PAREN expression RIGHT_PAREN SEMICOLON 

FOR LEFT_PAREN for_init_statement for_rest_statement RIGHT_PAREN 
statement_no_new_scope 

for_init_statement: 

expression_statement 

declaration_statement 

conditionopt: 



 

condition 

/* empty */ 

for_rest_statement: 

conditionopt SEMICOLON 

conditionopt SEMICOLON expression 

jump_statement: 

CONTINUE SEMICOLON 

BREAK SEMICOLON 

RETURN SEMICOLON 

RETURN expression SEMICOLON 

DISCARD SEMICOLON // Fragment shader only. 

// Grammar Note: No 'goto'. Gotos are not supported. 

translation_unit: 

external_declaration 

translation_unit external_declaration 

external_declaration: 

function_definition 

declaration 

function_definition: 

function_prototype compound_statement_no_new_scope 

  



Appendix B. API Function Reference 
This section contains detailed information on the OpenGL commands that support the creation, 
compilation, linking, and usage of shaders written in the OpenGL Shading Language, as well as 
the OpenGL commands added to provide generic vertex attributes and user-defined uniform 
variables to such shaders. 

The reference pages in this section are copyrighted by 3Dlabs Inc., Ltd. © 20032005 and are 
reprinted with permission. 

  



Implementation-Dependent API Values for GLSL 
A number of new implementation-dependent values have been defined in OpenGL 2.0 to 
support the requirements of the OpenGL Shading Language. Each value can be queried with 
one of the variants of glGet. 

GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS 

Defines the total number of hardware units that can access texture maps from the 
vertex processor and the fragment processor combined. The minimum legal value is 
2. 

GL_MAX_DRAW_BUFFERS 

Defines the maximum number of buffers that can be simultaneously written into 
from within a fragment shader using the special output variable array gl_FragData. 
This constant effectively defines the size of the gl_FragData array. 

GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 

Defines the number of components (i.e., floating-point values) that are available for 
fragment shader uniform variables. The minimum legal value is 64. 

GL_MAX_TEXTURE_COORDS 

Defines the number of texture coordinate sets that are available. The minimum 
legal value is 2. 

GL_MAX_TEXTURE_IMAGE_UNITS 

Defines the total number of hardware units that can access texture maps from the 
fragment processor. The minimum legal value is 2. 

GL_MAX_VARYING_FLOATS 

Defines the number of floating-point variables available for varying variables. The 
minimum legal value is 32. 

GL_MAX_VERTEX_ATTRIBS 

Defines the number of active vertex attributes that are available. The minimum 
legal value is 16. 

GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS 

Defines the number of hardware units that can access texture maps from the vertex 
processor. The minimum legal value is 0. 

GL_MAX_VERTEX_UNIFORM_COMPONENTS 

Defines the number of components (i.e., floating-point values) that are available for 
vertex shader uniform variables. The minimum legal value is 512. 



Other Queriable Values for GLSL 
GL_CURRENT_PROGRAM 

Contains the name of the program object that is currently installed as part of 
current state. If no program object is active, this value is 0. This value can be 
obtained with one of the variants of glGet. 

GL_SHADING_LANGUAGE_VERSION 

Contains the OpenGL Shading Language version that is supported by the 
implementation. It is organized as a dot-delimited sequence of multidigit integers. 
This value can be obtained with glGetString. 

  



glAttachShader 
Name 

glAttachShader Attaches a shader object to a program object 

C Specification 

void glAttachShader(GLuint program, 
                    GLuint shader) 

 
Parameters 

 
Description 

For an executable to be created, there must be a way to specify the list of things that will be 
linked. Program objects provide this mechanism. Shaders that are to be linked in a program 
object must first be attached to that program object. glAttachShader attaches the shader object 
specified by shader to the program object specified by program. This signifies that shader will be 
included in link operations that will be performed on program. 

All operations that can be performed on a shader object are valid whether or not the shader 
object is attached to a program object. It is permissible to attach a shader object to a program 
object before source code has been loaded into the shader object or before the shader object 
has been compiled. It is permissible to attach multiple shader objects of the same type because 
each may contain a portion of the complete shader. It is also permissible to attach a shader 
object to more than one program object. If a shader object is deleted while it is attached to a 
program object, it is flagged for deletion, and deletion does not occur until glDetachShader is 
called to detach it from all program objects to which it is attached. 

Notes 

glAttachShader is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if either program or shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not of type GL_PROGRAM_OBJECT. 

GL_INVALID_OPERATION is generated if shader is not of type GL_SHADER_OBJECT. 

GL_INVALID_OPERATION is generated if shader is already attached to program. 

GL_INVALID_OPERATION is generated if glAttachShader is executed between the execution of 

program Specifies the program object to which a shader object will 
be attached. 

shader Specifies the shader object that is to be attached. 



 

glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetAttachedShaders with the handle of a valid program object 

glIsProgram 

glIsShader 

See Also 

glCompileShader, glDetachShader, glLinkProgram, glShaderSource 

  



glBindAttribLocation 
Name 

glBindAttribLocation Associates a generic vertex attribute index with a named attribute variable 

C Specification 

void glBindAttribLocation(GLuint program, 
                          GLuint index, 
                          const GLchar *name) 

 
Parameters 

 
Description 

glBindAttribLocation associates a user-defined attribute variable in the program object specified by 
program with a generic vertex attribute index. The name of the user-defined attribute variable is 
passed as a null terminated string in name. The generic vertex attribute index to be bound to this 
variable is specified by index. When program is made part of current state, values provided 
through the generic vertex attribute index modify the value of the user-defined attribute variable 
specified by name. 

If name refers to a matrix attribute variable, index refers to the first column of the matrix. Other 
matrix columns are then automatically bound to locations index+1 for a matrix of type mat2; 
index+1 and index+2 for a matrix of type mat3; and index+1, index+2, and index+3 for a matrix of type 
mat4. 

This command makes it possible for vertex shaders to use descriptive names for attribute 
variables rather than generic variables that are numbered from 0 to 
GL_MAX_VERTEX_ATTRIBS1. The values sent to each generic attribute index are part of current 
state, just like standard vertex attributes such as color, normal, and vertex position. If a 
different program object is made current by calling glUseProgram, the generic vertex attributes 
are tracked in such a way that the same values will be observed by attributes in the new 
program object that are also bound to index. 

Attribute variable name-to-generic attribute index bindings for a program object can be 
explicitly assigned at any time with glBindAttribLocation. Attribute bindings do not go into effect 
until glLinkProgram is called. After a program object has been linked successfully, the index 
values for generic attributes remain fixed (and their values can be queried) until the next link 
command occurs. 

program Specifies the handle of the program object in which the 
association is to be made. 

index Specifies the index of the generic vertex attribute to be 
bound. 

name Specifies a null terminated string containing the name of 
the vertex shader attribute variable to which index is to be 
bound. 



Applications are not allowed to bind any of the standard OpenGL vertex attributes with this 
command, because they are bound automatically when needed. Any attribute binding that 
occurs after the program object has been linked does not take effect until the next time the 
program object is linked. 

Notes 

glBindAttribLocation is available only if the GL version is 2.0 or greater. 

glBindAttribLocation can be called before any vertex shader objects are bound to the specified 
program object. It is also permissible to bind a generic attribute index to an attribute variable 
name that is never used in a vertex shader. 

If name was bound previously, that information is lost. Thus, you cannot bind one user-defined 
attribute variable to multiple indices, but you can bind multiple user-defined attribute variables 
to the same index. 

Applications are allowed to bind more than one user-defined attribute variable to the same 
generic vertex attribute index. This is called aliasing, and it is allowed only if just one of the 
aliased attributes is active in the executable program, or if no path through the shader 
consumes more than one attribute of a set of attributes aliased to the same location. The 
compiler and linker are allowed to assume that no aliasing is done and are free to employ 
optimizations that work only in the absence of aliasing. OpenGL implementations are not 
required to do error checking to detect aliasing. Because there is no way to bind standard 
attributes, it is not possible to alias generic attributes with conventional ones (except for 
generic attribute 0). 

Active attributes that are not explicitly bound are bound by the linker when glLinkProgram is 
called. The locations assigned can be queried with glGetAttribLocation. 

OpenGL copies the name string when glBindAttribLocation is called, so an application can free its 
copy of the name string immediately after the function returns. 

Errors 

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS. 

GL_INVALID_OPERATION is generated if name starts with the reserved prefix "gl_". 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not of type GL_PROGRAM_OBJECT. 

GL_INVALID_OPERATION is generated if glBindAttribLocation is executed between the execution 
of glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGet with argument GL_MAX_VERTEX_ATTRIBS 

glGetActiveAttrib with argument program 

glGetAttribLocation with arguments program and name 

glIsProgram 

 

See Also 

glDisableVertexAttribArray, glEnableVertexAttribArray, glUseProgram, glVertex-Attrib, glVertexAttribPointer 

  



glCompileShader 
Name 

glCompileShader Compiles a shader object 

C Specification 

void glCompileShader(GLuint shader) 

 
Parameters 

 
Description 

glCompileShader compiles the source code strings that have been stored in the shader object 
specified by shader. 

The compilation status is stored as part of the shader object's state. This value is set to 
GL_TRUE if the shader was compiled without errors and is ready for use, and GL_FALSE 
otherwise. It can be queried by calling glGetShader with arguments shader and 
GL_COMPILE_STATUS. 

Compilation of a shader can fail for a number of reasons, as specified by the OpenGL Shading 
Language Specification. Whether or not the compilation was successful, information about the 
compilation can be obtained from the shader object's information log by calling 
glGetShaderInfoLog. 

Notes 

glCompileShader is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if shader is not of type GL_SHADER_OBJECT. 

GL_INVALID_OPERATION is generated if glCompileShader is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetShaderInfoLog with argument shader 

glGetShader with arguments shader and GL_COMPILE_STATUS 

glIsShader 

shader Specifies the shader object to be compiled. 

 

See Also 

glCreateShader, glLinkProgram, glShaderSource 



glCreateProgram 
Name 

glCreateProgram Creates a program object 

C Specification 

GLuint glCreateProgram(void) 

 
Description 

glCreateProgram creates an empty program object and returns a non-zero value by which it can 
be referenced. A program object is an object to which shader objects can be attached. This 
provides a mechanism to specify the shader objects that will be linked to create a program. It 
also provides a means for checking the compatibility of the shaders that will be used to create a 
program (for instance, checking the compatibility between a vertex shader and a fragment 
shader). When no longer needed as part of a program object, shader objects can be detached. 

One or more executables are created in a program object by these actions: successfully 
attaching shader objects to the program object with glAttachShader, successfully compiling the 
shader objects with glCompileShader, and successfully linking the program object with 
glLinkProgram. These executables are made part of current state when glUseProgram is called. 
Program objects can be deleted with glDeleteProgram. The memory associated with the program 
object is deleted when it is no longer part of current rendering state for any context. 

Notes 

glCreateProgram is available only if the GL version is 2.0 or greater. 

Like display lists and texture objects, the name space for program objects may be shared 
across a set of contexts, as long as the server sides of the contexts share the same address 
space. If the name space is shared across contexts, any attached objects and the data 
associated with those attached objects are shared as well. 

Applications are responsible for synchronizing across API calls when objects are accessed from 
different execution threads. 

Errors 

This function returns 0 if an error occurs creating the program object. 

GL_INVALID_OPERATION is generated if glCreateProgram is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGet with the argument GL_CURRENT_PROGRAM 

glGetActiveAttrib with a valid program object and the index of an active attribute variable 



 

glGetActiveUniform with a valid program object and the index of an active uniform variable 

glGetAttachedShaders with a valid program object 

glGetAttribLocation with a valid program object and the name of an attribute variable 

glGetProgram with a valid program object and the parameter to be queried 

glGetProgramInfoLog with a valid program object 

glGetUniform with a valid program object and the location of a uniform variable 

glGetUniformLocation with a valid program object and the name of a uniform variable 

glIsProgram 

See Also 

glAttachShader, glBindAttribLocation, glCreateShader, glDeleteProgram, glDetachShader, glLinkProgram, 
glUniform, glUseProgram, glValidateProgram 

  



glCreateShader 
Name 

glCreateShader Creates a shader object 

C Specification 

GLuint glCreateShader(GLenum shaderType) 

 
Parameters 

 
Description 

glCreateShader creates an empty shader object and returns a non-zero value by which it can be 
referenced. A shader object maintains the source code strings that define a shader. shaderType 
specifies the type of shader to be created. Two types of shaders are supported. A shader of 
type GL_VERTEX_SHADER is a shader that is intended to run on the programmable vertex 
processor and replace the fixed functionality vertex processing in OpenGL. A shader of type 
GL_FRAGMENT_SHADER is a shader that is intended to run on the programmable fragment 
processor and replace the fixed functionality fragment processing in OpenGL. 

When created, a shader object's GL_SHADER_TYPE parameter is set to either 
GL_VERTEX_SHADER or GL_FRAGMENT_SHADER, depending on the value of shaderType. 

Notes 

glCreateShader is available only if the GL version is 2.0 or greater. 

Like display lists and texture objects, the name space for shader objects may be shared across 
a set of contexts, as long as the server sides of the contexts share the same address space. If 
the name space is shared across contexts, any attached objects and the data associated with 
those attached objects are shared as well. 

Applications are responsible for providing the synchronization across API calls when objects are 
accessed from different execution threads. 

Errors 

This function returns 0 if an error occurs creating the shader object. 

GL_INVALID_ENUM is generated if shaderType is not an accepted value. 

GL_INVALID_OPERATION is generated if glCreateShader is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

shaderType Specifies the type of shader to be created. Must be either 
GL_VERTEX_SHADER or GL_FRAGMENT_SHADER. 



 

Associated Gets 

glGetShader with a valid shader object and the parameter to be queried 

glGetShaderInfoLog with a valid shader object 

glGetShaderSource with a valid shader object 

glIsShader 

See Also 

glAttachShader, glCompileShader, glCreateProgram, glDeleteShader, glDetachShader, glShaderSource 

  



glDeleteProgram 
Name 

glDeleteProgram Deletes a program object 

C Specification 

void glDeleteProgram(GLuint program) 

 
Parameters 

 
Description 

glDeleteProgram frees the memory and invalidates the name associated with the program object 
specified by program. This command effectively undoes the effects of a call to glCreateProgram. 

If a program object is in use as part of current rendering state, it is flagged for deletion but is 
not deleted until it is no longer part of the current state for any rendering context. If a program 
object to be deleted has shader objects attached to it, those shader objects are automatically 
detached but not deleted unless they have already been flagged for deletion by a previous call 
to glDeleteShader. A value of 0 for program is silently ignored. 

To determine whether a program object has been flagged for deletion, call glGetProgram with 
arguments program and GL_DELETE_STATUS. 

Notes 

glDeleteProgram is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if glDeleteProgram is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGet with argument GL_CURRENT_PROGRAM 

glGetProgram with arguments program and GL_DELETE_STATUS 

glIsProgram 

See Also 

program Specifies the program object to be deleted. 

 
glCreateProgram, glCreateShader, glDetachShader, glUseProgram 

  



glDeleteShader 
Name 

glDeleteShader Deletes a shader object 

C Specification 

void glDeleteShader(GLuint shader) 

 
Parameters 

 
Description 

glDeleteShader frees the memory and invalidates the name associated with the shader object 
specified by shader. This command effectively undoes the effects of a call to glCreateShader. 

If a shader object to be deleted is attached to a program object, it is flagged for deletion but is 
not deleted until it is no longer attached to any program object, for any rendering context (i.e., 
it must be detached from wherever it was attached before it can be deleted). A value of 0 for 
shader is silently ignored. 

To determine whether an object has been flagged for deletion, call glGetShader with arguments 
shader and GL_DELETE_STATUS. 

Notes 

glDeleteShader is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if glDeleteShader is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetAttachedShaders with the program object to be queried 

glGetShader with arguments shader and GL_DELETE_STATUS 

glIsShader 

See Also 

glCreateProgram, glCreateShader, glDetachShader, glUseProgram 

shader Specifies the shader object to be deleted. 



glDetachShader 
Name 

glDetachShader Detaches a shader object from a program object to which it is attached 

C Specification 

void glDetachShader(GLuint program, 
                    GLuint shader) 

 
Parameters 

 
Description 

glDetachShader detaches the shader object specified by shader from the program object specified 
by program. This command undoes the effect of the command glAttachShader. 

If shader has already been flagged for deletion by a call to glDeleteShader and it is not attached to 
any other program object, it is deleted after it has been detached. 

Notes 

glDetachShader is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if either program or shader is a value that was not generated by 
OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if shader is not a shader object. 

GL_INVALID_OPERATION is generated if shader is not attached to program. 

GL_INVALID_OPERATION is generated if glDetachShader is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetAttachedShaders with the handle of a valid program object 

glGetShader with arguments shader and GL_DELETE_STATUS 

program Specifies the program object from which to detach the 
shader object. 

shader Specifies the shader object to be detached. 



 

glIsProgram 

glIsShader 

See Also 

glAttachShader 

  



glDrawBuffers 
Name 

glDrawBuffers Specifies a list of color buffers to be drawn into 

C Specification 

void glDrawBuffers(GLsizei n, 
                   const GLenum *bufs) 

 
Parameters 

 
Description 

glDrawBuffers defines an array of buffers into which fragment color values or fragment data will 
be written. If no fragment shader is active, rendering operations generate only one fragment 
color per fragment and that fragment is written into each of the buffers specified by bufs. If a 
fragment shader is active and it writes a value to the output variable gl_FragColor, then that 
value is written into each of the buffers specified by bufs. If a fragment shader is active and it 
writes a value to one or more elements of the output array variable gl_FragData[], then the value 
of gl_FragData[0] is written into the first buffer specified by bufs, the value of gl_FragData[1] is 
written into the second buffer specified by bufs, and so on up to gl_FragData[n-1]. The draw buffer 
used for gl_FragData[n] and beyond is implicitly set to be GL_NONE. 

The symbolic constants contained in bufs may be any of the following: 

GL_NONE 

The fragment color/data value is not written into any color buffer. 

GL_FRONT_LEFT 

The fragment color/data value is written into the front-left color buffer. 

GL_FRONT_RIGHT 

The fragment color/data value is written into the front-right color buffer. 

GL_BACK_LEFT 

The fragment color/data value is written into the back-left color buffer. 

GL_BACK_RIGHT 

n Specifies the number of buffers in bufs. 

bufs Points to an array of symbolic constants specifying the 
buffers into which fragment colors or data values will be 
written. 



 

The fragment color/data value is written into the back-right color buffer. 

GL_AUXi 

The fragment color/data value is written into auxiliary buffer i. 

Except for GL_NONE, the preceding symbolic constants may not appear more than once in bufs. 
The maximum number of draw buffers supported is implementation dependent and can be 
queried by calling glGet with the argument GL_MAX_DRAW_BUFFERS. The number of auxiliary 
buffers can be queried by calling glGet with the argument GL_AUX_BUFFERS. 

Notes 

glDrawBuffers is available only if the GL version is 2.0 or greater. 

It is always the case that GL_AUXi = GL_AUX0 + i. 

The symbolic constants GL_FRONT, GL_BACK, GL_LEFT, GL_RIGHT, and GL_FRONT_AND_BACK 
are not allowed in the bufs array since they may refer to multiple buffers. 

If a fragment shader writes to neither gl_FragColor nor gl_FragData, the values of the fragment 
colors following shader execution are undefined. For each fragment generated in this situation, 
a different value may be written into each of the buffers specified by bufs. 

Errors 

GL_INVALID_ENUM is generated if one of the values in bufs is not an accepted value. 

GL_INVALID_ENUM is generated if n is less than 0. 

GL_INVALID_OPERATION is generated if a symbolic constant other than GL_NONE appears 
more than once in bufs. 

GL_INVALID_OPERATION is generated if any entry in bufs (other than GL_NONE) indicates a 
color buffer that does not exist in the current GL context. 

GL_INVALID_VALUE is generated if n is greater than GL_MAX_DRAW_BUFFERS. 

GL_INVALID_OPERATION is generated if glDrawBuffers is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGet with argument GL_MAX_DRAW_BUFFERS 

glGet with argument GL_DRAW_BUFFERSi where i indicates the number of the draw buffer 
whose value is to be queried 

See Also 

glBlendFunc, glColorMask, glDrawBuffer, glIndexMask, glLogicOp, glReadBuffer 

  



glEnableVertexAttribArray 
Name 

glEnableVertexAttribArray, glDisableVertexAttribArray Enable or disable a generic vertex attribute 
array  

C Specification 

void glEnableVertexAttribArray(GLuint index) 
void glDisableVertexAttribArray(GLuint index) 

 
Parameters 

 
Description 

glEnableVertexAttribArray enables the generic vertex attribute array specified by index. 
glDisableVertexAttribArray disables the generic vertex attribute array specified by index. By default, 
all client-side capabilities are disabled, including all generic vertex attribute arrays. If enabled, 
the values in the generic vertex attribute array are accessed and used for rendering when calls 
are made to vertex array commands such as glDrawArrays, glDrawElements, glDrawRangeElements, 
glArrayElement, glMultiDrawElements, or glMultiDrawArrays. 

Notes 

glEnableVertexAttribArray and glDisableVertexAttribArray are available only if the GL version is 2.0 or 
greater. 

Errors 

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS. 

GL_INVALID_OPERATION is generated if either glEnableVertexAttribArray or glDisableVertexAttribArray 
is executed between the execution of glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGet with argument GL_MAX_VERTEX_ATTRIBS 

glGetVertexAttrib with arguments index and GL_VERTEX_ATTRIB_ARRAY_ENABLED 

glGetVertexAttribPointer with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER 

See Also 

glArrayElement, glBindAttribLocation, glDrawArrays, glDrawElements, glDrawRangeElements, 

index Specifies the index of the generic vertex attribute to be 
enabled or disabled. 

 

glMultiDrawArrays, glMultiDrawElements, glPopClientAttrib, glPushClientAttrib, glVertexAttrib, 
glVertexAttribPointer 



glGetActiveAttrib 
Name 

glGetActiveAttrib Returns information about an active attribute variable for the specified program 
object 

C Specification 

void glGetActiveAttrib(GLuint program, 
                       GLuint index, 
                       GLsizei bufSize, 
                       GLsizei *length, 
                       GLint *size, 
                       GLenum *type, 
                       GLchar *name) 

 
Parameters 

 
Description 

glGetActiveAttrib returns information about an active attribute variable in the program object 
specified by program. The number of active attributes can be obtained by calling glGetProgram with 
the value GL_ACTIVE_ATTRIBUTES. A value of 0 for index selects the first active attribute 
variable. Permissible values for index range from 0 to the number of active attribute variables 
minus 1. 

A vertex shader may use built-in attribute variables, user-defined attribute variables, or both. 
Built-in attribute variables have a prefix of "gl_" and reference conventional OpenGL vertex 
attributes (e.g., gl_Vertex, gl_Normal; see the OpenGL Shading Language specification for a 
complete list.) Userdefined attribute variables have arbitrary names and obtain their values 
through numbered generic vertex attributes. An attribute variable (either built-in or user-
defined) is considered active if during the link operation, the determination is made that the 
attribute variable can be accessed during program execution. Therefore, program should have 
previously been the target of a call to glLinkProgram, but it is not necessary for it to have been 
linked successfully. 

program Specifies the program object to be queried. 

index Specifies the index of the attribute variable to be queried. 

bufSize Specifies the maximum number of characters OpenGL is 
allowed to write in the character buffer indicated by name. 

length Returns the number of characters actually written by 
OpenGL in the string indicated by name (excluding the null 
terminator) if a value other than NULL is passed. 

size Returns the size of the attribute variable. 

type Returns the data type of the attribute variable. 

name Returns a null terminated string containing the name of 
the attribute variable. 



 

The size of the character buffer required to store the longest attribute variable name in program 
can be obtained by calling glGetProgram with the value GL_ACTIVE_ATTRIBUTE_MAX_LENGTH. 
This value should be used to allocate a buffer of sufficient size to store the returned attribute 
name. The size of this character buffer is passed in bufSize, and a pointer to this character buffer 
is passed in name. 

glGetActiveAttrib returns the name of the attribute variable indicated by index, storing it in the 
character buffer specified by name. The string returned is null terminated. The actual number of 
characters written into this buffer is returned in length, and this count does not include the null 
termination character. If the length of the returned string is not required, a value of NULL can 
be passed in the length argument. 

The type argument returns a pointer to the attribute variable's data type. The symbolic constants 
GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4, GL_FLOAT_MAT2, 
GL_FLOAT_MAT3, GL_FLOAT_MAT4 may be returned. The size argument returns the size of the 
attribute, in units of the type returned in type. 

The list of active attribute variables may include both built-in attribute variables (which begin 
with the prefix "gl_") as well as user-defined attribute variable names. 

This function returns as much information as it can about the specified active attribute variable. 
If no information is available, length is 0, and name is an empty string. This situation could occur if 
this function is called after a link operation that failed. If an error occurs, the return values 
length, size, type, and name are unmodified. 

Notes 

glGetActiveAttrib is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_VALUE is generated if index is greater than or equal to the number of active 
attribute variables in program. 

GL_INVALID_OPERATION is generated if glGetActiveAttrib is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

GL_INVALID_VALUE is generated if bufSize is less than 0. 

Associated Gets 

glGet with argument GL_MAX_VERTEX_ATTRIBS 

glGetProgram with argument GL_ACTIVE_ATTRIBUTES or GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 

glIsProgram 

See Also 

glBindAttribLocation, glLinkProgram, glVertexAttrib, glVertexAttribPointer 



glGetActiveUniform 
Name 

glGetActiveUniform Returns information about an active uniform variable for the specified program 
object 

C Specification 

void glGetActiveUniform(GLuint program, 
                        GLuint index, 
                        GLsizei bufSize, 
                        GLsizei *length, 
                        GLint *size, 
                        GLenum *type, 
                        GLchar *name) 

 
Parameters 

 
Description 

glGetActiveUniform returns information about an active uniform variable in the program object 
specified by program. The number of active uniform variables can be obtained by calling 
glGetProgram with the value GL_ACTIVE_UNIFORMS. A value of 0 for index selects the first active 
uniform variable. Permissible values for index range from 0 to the number of active uniform 
variables minus 1. 

Shaders may use built-in uniform variables, user-defined uniform variables, or both. Built-in 
uniform variables have a prefix of "gl_" and reference existing OpenGL state or values derived 
from such state (e.g., gl_Fog, gl_ModelViewMatrix; see the OpenGL Shading Language specification 
for a complete list.) User-defined uniform variables have arbitrary names and obtain their 
values from the application through calls to glUniform. A uniform variable (either built-in or user-
defined) is considered active if during the link operation, a determination is made that the 
uniform variable can be accessed during program execution. Therefore, program should have 
previously been the target of a call to glLinkProgram, but it is not necessary for it to have been 
linked successfully. 

program Specifies the program object to be queried. 

index Specifies the index of the uniform variable to be queried. 

bufSize Specifies the maximum number of characters OpenGL is 
allowed to write in the character buffer indicated by name. 

length Returns the number of characters actually written by 
OpenGL in the string indicated by name (excluding the null 
terminator) if a value other than NULL is passed. 

size Returns the size of the uniform variable. 

type Returns the data type of the uniform variable. 

name Returns a null terminated string containing the name of 
the uniform variable. 



The size of the character buffer required to store the longest uniform variable name in program 
can be obtained by calling glGetProgram with the value GL_ACTIVE_UNIFORM_MAX_LENGTH. This 
value should be used to allocate a buffer of sufficient size to store the returned uniform variable 
name. The size of this character buffer is passed in bufSize, and a pointer to this character buffer 
is passed in name. 

glGetActiveUniform returns the name of the uniform variable indicated by index, storing it in the 
character buffer specified by name. The string returned is null terminated. The actual number of 
characters written into this buffer is returned in length, and this count does not include the null 
termination character. If the length of the returned string is not required, a value of NULL can 
be passed in the length argument. 

The type argument returns a pointer to the uniform variable's data type. The symbolic constants 
GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3, GL_FLOAT_VEC4, GL_INT, GL_INT_VEC2, 
GL_INT_VEC3, GL_INT_VEC4, GL_BOOL, GL_BOOL_VEC2, GL_BOOL_VEC3, GL_BOOL_VEC4, 
GL_FLOAT_MAT2, GL_FLOAT_MAT3, GL_FLOAT_MAT4, GL_SAMPLER_1D, GL_SAMPLER_2D, 
GL_SAMPLER_3D, GL_SAMPLER_CUBE, GL_SAMPLER_1D_SHADOW, or 
GL_SAMPLER_2D_SHADOW may be returned. 

If one or more elements of an array are active, the name of the array is returned in name, the 
type is returned in type, and the size parameter returns the highest array element index used, 
plus one, as determined by the compiler and/or linker. Only one active uniform variable is 
reported for a uniform array. 

Uniform variables that are declared as structures or arrays of structures are not returned 
directly by this function. Instead, each of these uniform variables is reduced to its fundamental 
components containing the "." and "[]" operators such that each of the names is valid as an 
argument to glGetUniformLocation. Each of these reduced uniform variables is counted as one 
active uniform variable and is assigned an index. A valid name cannot be a structure, an array 
of structures, or a subcomponent of a vector or matrix. 

The size of the uniform variable is returned in size. Uniform variables other than arrays have a 
size of 1. Structures and arrays of structures are reduced as described earlier, such that each of 
the names returned is a data type in the earlier list. If this reduction results in an array, the 
size returned is as described for uniform arrays; otherwise, the size returned is 1. 

The list of active uniform variables may include both built-in uniform variables (which begin 
with the prefix "gl_") as well as user-defined uniform variable names. 

This function returns as much information as it can about the specified active uniform variable. 
If no information is available, length is 0, and name is an empty string. This situation could occur if 
this function is called after a link operation that failed. If an error occurs, the return values 
length, size, type, and name are unmodified. 

Notes 

glGetActiveUniform is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_VALUE is generated if index is greater than or equal to the number of active 
uniform variables in program. 



 

GL_INVALID_OPERATION is generated if glGetActiveUniform is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

GL_INVALID_VALUE is generated if bufSize is less than 0. 

Associated Gets 

glGet with argument GL_MAX_VERTEX_UNIFORM_COMPONENTS or 
GL_MAX_FRAGMENT_UNIFORM_COMPONENTS 

glGetProgram with argument GL_ACTIVE_UNIFORMS or GL_ACTIVE_UNIFORM_MAX_LENGTH 

glIsProgram 

See Also 

glGetUniform, glGetUniformLocation, glLinkProgram, glUniform, glUseProgram 

  



glGetAttachedShaders 
Name 

glGetAttachedShaders Returns the handles of the shader objects attached to a program object 

C Specification 

void glGetAttachedShaders(GLuint program, 
                          GLsizei maxCount, 
                          GLsizei *count, 
                          GLuint *shaders) 

 
Parameters 

 
Description 

glGetAttachedShaders returns the names of the shader objects attached to program. The names of 
shader objects that are attached to program are returned in shaders. The actual number of shader 
names written into shaders is returned in count. If no shader objects are attached to program, count is 
set to 0. The maximum number of shader names that may be returned in shaders is specified by 
maxCount. 

If the number of names actually returned is not required (for instance, if it has just been 
obtained with glGetProgram), a value of NULL may be passed for count. If no shader objects are 
attached to program, a value of 0 is returned in count. The actual number of attached shaders can 
be obtained by calling glGetProgram with the value GL_ATTACHED_SHADERS. 

Notes 

glGetAttachedShaders is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_VALUE is generated if maxCount is less than 0. 

GL_INVALID_OPERATION is generated if glGetAttachedShaders is executed between the execution 

program Specifies the program object to be queried. 

maxCount Specifies the size of the array for storing the returned 
object names. 

count Returns the number of names actually returned in objects. 

shaders Specifies an array that is used to return the names of 
attached shader objects. 



 

of glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetProgram with argument GL_ATTACHED_SHADERS 

glIsProgram 

See Also 

glAttachShader, glDetachShader 

  



glGetAttribLocation 
Name 

glGetAttribLocation Returns the location of an attribute variable 

C Specification 

GLint glGetAttribLocation(GLuint program, 
                          const GLchar *name) 

 
Parameters 

 
Description 

glGetAttribLocation queries the previously linked program object specified by program for the 
attribute variable specified by name and returns the index of the generic vertex attribute that is 
bound to that attribute variable. If name is a matrix attribute variable, the index of the first 
column of the matrix is returned. If the named attribute variable is not an active attribute in the 
specified program object or if name starts with the reserved prefix "gl_", a value of -1 is 
returned. 

The association between an attribute variable name and a generic attribute index can be 
specified at any time with glBindAttribLocation. Attribute bindings do not take effect until 
glLinkProgram is called. After a program object has been linked successfully, the index values for 
attribute variables remain fixed until the next link command occurs. The attribute bindings can 
be queried only after a link if the link was successful. glGetAttribLocation returns the binding that 
actually went into effect the last time glLinkProgram was called for the specified program object. 
Attribute bindings that have been specified since the last link operation are not returned by 
glGetAttribLocation. 

Notes 

glGetAttribLocation is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_OPERATION is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if program has not been successfully linked. 

GL_INVALID_OPERATION is generated if glGetAttribLocation is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

program Specifies the program object to be queried. 

name Points to a null terminated string containing the name of 
the attribute variable whose location is to be queried. 



 

Associated Gets 

glGetActiveAttrib with argument program and the index of an active attribute 

glIsProgram 

See Also 

glBindAttribLocation, glLinkProgram, glVertexAttrib, glVertexAttribPointer 

  



glGetProgram 
Name 

glGetProgramiv Returns a parameter from a program object 

C Specification 

void glGetProgramiv(GLuint program, 
                    GLenum pname, 
                    GLint *params) 

 
Parameters 

 
Description 

glGetProgram returns in params the value of a parameter for a specific program object. The 
following parameters are defined: 

GL_DELETE_STATUS 

params returns GL_TRUE if program is currently flagged for deletion, and GL_FALSE 
otherwise. 

GL_LINK_STATUS 

params returns GL_TRUE if the last link operation on program was successful, and 
GL_FALSE otherwise. 

GL_VALIDATE_STATUS 

params returns GL_TRUE or if the last validation operation on program was successful, 
and GL_FALSE otherwise. 

GL_INFO_LOG_LENGTH 

params returns the number of characters in the information log for program including 
the null termination character (i.e., the size of the character buffer required to store 
the information log). If program has no information log, a value of 0 is returned. 

program Specifies the program object to be queried. 

pname Specifies the object parameter. Accepted symbolic names 
are GL_DELETE_STATUS, GL_LINK_STATUS, 
GL_VALIDATE_STATUS, GL_INFO_LOG_LENGTH, 
GL_ATTACHED_SHADERS, GL_ACTIVE_ATTRIBUTES, 
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH, 
GL_ACTIVE_UNIFORMS, 
GL_ACTIVE_UNIFORM_MAX_LENGTH. 

params Returns the requested object parameter. 



GL_ATTACHED_SHADERS 

params returns the number of shader objects attached to program. 

GL_ACTIVE_ATTRIBUTES 

params returns the number of active attribute variables for program. 

GL_ACTIVE_ATTRIBUTE_MAX_LENGTH 

params returns the length of the longest active attribute name for program, including 
the null termination character (i.e., the size of the character buffer required to store 
the longest attribute name). If no active attributes exist, 0 is returned. 

GL_ACTIVE_UNIFORMS 

params returns the number of active uniform variables for program. 

GL_ACTIVE_UNIFORM_MAX_LENGTH 

params returns the length of the longest active uniform variable name for program, 
including the null termination character (i.e., the size of the character buffer 
required to store the longest uniform variable name). If no active uniform variables 
exist, 0 is returned. 

Notes 

glGetProgram is available only if the GL version is 2.0 or greater. 

If an error is generated, no change is made to the contents of params. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program does not refer to a program object. 

GL_INVALID_ENUM is generated if pname is not an accepted value. 

GL_INVALID_OPERATION is generated if glGetProgram is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

ASSOCIATED GETS 

glGetActiveAttrib with argument program 

glGetActiveUniform with argument program 

glGetAttachedShaders with argument program 

glGetProgramInfoLog with argument program 

glsProgram 

See Also 

 

glAttachShader, glCreateProgram, glDeleteProgram, glGetShader, glLinkProgram, glValidateProgram 



glGetProgramInfoLog 
Name 

glGetProgramInfoLog Returns the information log for a program object 

C Specification 

void glGetProgramInfoLog(GLuint program, 
                         GLsizei maxLength, 
                         GLsizei *length, 
                         GLchar *infoLog) 

 
Parameters 

 
Description 

glGetProgramInfoLog returns the information log for the specified program object. The information 
log for a program object is modified when the program object is linked or validated. The string 
that is returned is null terminated. 

glGetProgramInfoLog returns in infoLog as much of the information log as it can, up to a maximum 
of maxLength characters. The number of characters actually returned, excluding the null 
termination character, is specified by length. If the length of the returned string is not required, a 
value of NULL can be passed in the length argument. The size of the buffer required to store the 
returned information log can be obtained by calling glGetProgram with the value 
GL_INFO_LOG_LENGTH. 

The information log for a program object is either an empty string, a string containing 
information about the last link operation, or a string containing information about the last 
validation operation. It may contain diagnostic messages, warning messages, and other 
information. When a program object is created, its information log is a string of length 0. 

Notes 

glGetProgramInfoLog is available only if the GL version is 2.0 or greater. 

The information log for a program object is the OpenGL implementor's primary mechanism for 
conveying information about linking and validating. Therefore, the information log can be 
helpful to application developers during the development process, even when these operations 

program Specifies the program object whose information log is to 
be queried. 

maxLength Specifies the size of the character buffer for storing the 
returned information log. 

length Returns the length of the string returned in infoLog 
(excluding the null terminator). 

infoLog Specifies an array of characters that is used to return the 
information log. 



 

are successful. Application developers should not expect different OpenGL implementations to 
produce identical information logs. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_VALUE is generated if maxLength is less than 0. 

GL_INVALID_OPERATION is generated if glGetProgramInfoLog is executed between the execution 
of glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetProgram with argument GL_INFO_LOG_LENGTH 

glsProgram 

See Also 

glCompileShader, glGetShaderInfoLog, glLinkProgram, glValidateProgram 

  



glGetShader 
Name 

glGetShaderiv Returns a parameter from a shader object 

C Specification 

void glGetShaderiv(GLuint shader, 
                   GLenum pname, 
                   GLint *params) 

 
Parameters 

 
Description 

glGetShader returns in params the value of a parameter for a specific shader object. The following 
parameters are defined: 

GL_SHADER_TYPE 

params returns GL_VERTEX_SHADER if shader is a vertex shader object, and 
GL_FRAGMENT_SHADER if shader is a fragment shader object. 

GL_DELETE_STATUS 

params returns GL_TRUE if shader is currently flagged for deletion, and GL_FALSE 
otherwise. 

GL_COMPILE_STATUS 

params returns GL_TRUE if the last compile operation on shader was successful, and 
GL_FALSE otherwise. 

GL_INFO_LOG_LENGTH 

params returns the number of characters in the information log for shader including the 
null termination character (i.e., the size of the character buffer required to store the 
information log). If shader has no information log, a value of 0 is returned. 

GL_SHADER_SOURCE_LENGTH 

shader Specifies the shader object to be queried. 

pname Specifies the object parameter. Accepted symbolic names 
are GL_SHADER_TYPE, GL_DELETE_STATUS, 
GL_COMPILE_STATUS, GL_INFO_LOG_LENGTH, 
GL_SHADER_SOURCE_LENGTH. 

params Returns the requested object parameter. 



 

params returns the length of the concatenation of the source strings that make up 
the shader source for the shader, including the null termination character (i.e., the 
size of the character buffer required to store the shader source). If no source code 
exists, 0 is returned. 

Notes 

glGetShader is available only if the GL version is 2.0 or greater. 

If an error is generated, no change is made to the contents of params. 

Errors 

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if shader does not refer to a shader object. 

GL_INVALID_ENUM is generated if pname is not an accepted value. 

GL_INVALID_OPERATION is generated if glGetShader is executed between the execution of glBegin 
and the corresponding execution of glEnd. 

Associated Gets 

glGetShaderInfoLog with argument shader 

glGetShaderSource with argument shader 

glsShader 

See Also 

glCompileShader, glCreateShader, glDeleteShader, glGetProgram, glShaderSource 

  



glGetShaderInfoLog 
Name 

glGetShaderInfoLog Returns the information log for a shader object 

C Specification 

void glGetShaderInfoLog(GLuint shader, 
                        GLsizei maxLength, 
                        GLsizei *length, 
                        GLchar *infoLog) 

 
Parameters 

 
Description 

glGetShaderInfoLog returns the information log for the specified shader object. The information log 
for a shader object is modified when the shader is compiled. The string that is returned is null 
terminated. 

glGetShaderInfoLog returns in infoLog as much of the information log as it can, up to a maximum of 
maxLength characters. The number of characters actually returned, excluding the null termination 
character, is specified by length. If the length of the returned string is not required, a value of 
NULL can be passed in the length argument. The size of the buffer required to store the returned 
information log can be obtained by calling glGetShader with the value GL_INFO_LOG_LENGTH. 

The information log for a shader object is a string that may contain diagnostic messages, 
warning messages, and other information about the last compile operation. When a shader 
object is created, its information log is a string of length 0. 

Notes 

glGetShaderInfoLog is available only if the GL version is 2.0 or greater. 

The information log for a shader object is the OpenGL implementor's primary mechanism for 
conveying information about the compilation process. Therefore, the information log can be 
helpful to application developers during the development process, even when compilation is 
successful. Application developers should not expect different OpenGL implementations to 
produce identical information logs. 

shader Specifies the shader object whose information log is to be 
queried. 

maxLength Specifies the size of the character buffer for storing the 
returned information log. 

length Returns the length of the string returned in infoLog 
(excluding the null terminator). 

infoLog Specifies an array of characters that returns the 
information log. 



 

Errors 

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if shader is not a shader object. 

GL_INVALID_VALUE is generated if maxLength is less than 0. 

GL_INVALID_OPERATION is generated if glGetShaderInfoLog is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetShader with argument GL_INFO_LOG_LENGTH 

glsShader 

See Also 

glCompileShader, glGetProgramInfoLog, glLinkProgram, glValidateProgram 

  



glGetShaderSource 
Name 

glGetShaderSource Returns the source code string from a shader object 

C Specification 

void glGetShaderSource(GLuint shader, 
                       GLsizei bufSize, 
                       GLsizei *length, 
                       GLchar *source) 

 
Parameters 

 
Description 

glGetShaderSource returns the concatenation of the source code strings from the shader object 
specified by shader. The source code strings for a shader object are the result of a previous call 
to glShaderSource. The string returned by the function is null terminated. 

glGetShaderSource returns in source as much of the source code string as it can, up to a maximum 
of bufSize characters. The number of characters actually returned, excluding the null termination 
character, is specified by length. If the length of the returned string is not required, a value of 
NULL can be passed in the length argument. The size of the buffer required to store the returned 
source code string can be obtained by calling glGetShader with the value 
GL_SHADER_SOURCE_LENGTH. 

Notes 

glGetShaderSource is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if shader is not a shader object. 

GL_INVALID_VALUE is generated if bufSize is less than 0. 

shader Specifies the shader object to be queried. 

bufSize Specifies the size of the character buffer for storing the 
returned source code string. 

length Returns the length of the string returned in source 
(excluding the null terminator). 

source Specifies an array of characters that is used to return the 
source code string. 



 

GL_INVALID_OPERATION is generated if glGetShaderSource is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetShader with argument GL_SHADER_SOURCE_LENGTH 

glsShader 

See Also 

glCreateShader, glShaderSource 

  



glGetUniform 
Name 

glGetUniformfv, glGetUniformiv Return the value of a uniform variable 

C Specification 

void glGetUniformfv(GLuint program, 
                    GLint location, 
                    GLfloat *params) 
 
void glGetUniformiv(GLuint program, 
                    GLint location, 
                    GLint *params) 

 
Parameters 

 
Description 

glGetUniform returns in params the value or values of the specified uniform variable. The type of 
the uniform variable specified by location determines the number of values returned. If the 
uniform variable is defined in the shader as a Boolean, int, or float, a single value is returned. If 
it is defined as a vec2, ivec2, or bvec2, two values are returned. If it is defined as a vec3, ivec3, 
or bvec3, three values are returned, and so on. To query values stored in uniform variables 
declared as arrays, call glGetUniform for each element of the array. To query values stored in 
uniform variables declared as structures, call glGetUniform for each field in the structure. The 
values for uniform variables declared as a matrix are returned in column major order. 

The locations assigned to uniform variables are not known until the program object is linked. 
After linking has occurred, the command glGetUniformLocation obtains the location of a uniform 
variable. This location value can then be passed to glGetUniform to query the current value of the 
uniform variable. After a program object has been linked successfully, the index values for 
uniform variables remain fixed until the next link command occurs. The uniform variable values 
can be queried only after a link if the link was successful. 

Notes 

glGetUniform is available only if the GL version is 2.0 or greater. 

If an error is generated, no change is made to the contents of params. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

program Specifies the program object to be queried. 

location Specifies the location of the uniform variable to be queried. 

params Returns the value of the specified uniform variable. 



 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if program has not been successfully linked. 

GL_INVALID_OPERATION is generated if location does not correspond to a valid uniform variable 
location for the specified program object. 

GL_INVALID_OPERATION is generated if glGetUniform is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetActiveUniform with arguments program and the index of an active uniform variable 

glGetProgram with arguments program and GL_ACTIVE_UNIFORMS or 
GL_ACTIVE_UNIFORM_MAX_LENGTH 

glGetUniformLocation with arguments program and the name of a uniform variable 

glsProgram 

See Also 

glCreateProgram, glLinkProgram, glUniform 

  



glGetUniformLocation 
Name 

glGetUniformLocation Returns the location of a uniform variable 

C Specification 

GLint glGetUniformLocation(GLuint program, 
                           const GLchar *name) 

 
Parameters 

 
Description 

glGetUniformLocation returns an integer that represents the location of a specific uniform variable 
within a program object. name must be a null terminated string that contains no white space. 
name must be an active uniform variable name in program that is not a structure, an array of 
structures, or a subcomponent of a vector or a matrix. This function returns -1 if name does not 
correspond to an active uniform variable in program or if name starts with the reserved prefix 
"gl_". 

Uniform variables that are structures or arrays of structures may be queried with 
glGetUniformLocation for each field within the structure. The array element operator "[]" and the 
structure field operator "." may be used in name to select elements within an array or fields 
within a structure. The result of using these operators is not allowed to be another structure, an 
array of structures, or a subcomponent of a vector or a matrix. Except if the last part of name 
indicates a uniform variable array, the location of the first element of an array can be retrieved 
with the name of the array or with the name appended by "[0]". 

The actual locations assigned to uniform variables are not known until the program object is 
linked successfully. After linking has occurred, the command glGetUniformLocation obtains the 
location of a uniform variable. This location value can then be passed to glUniform to set the 
value of the uniform variable or to glGetUniform to query the current value of the uniform 
variable. After a program object has been linked successfully, the index values for uniform 
variables remain fixed until the next link command occurs. Uniform variable locations and 
values can only be queried after a link if the link was successful. 

Notes 

glGetUniformLocation is available only if the GL version is 2.0 or greater. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

program Specifies the program object to be queried. 

name Points to a null terminated string containing the name of 
the uniform variable whose location is to be queried. 



 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if program has not been successfully linked. 

GL_INVALID_OPERATION is generated if glGetUniformLocation is executed between the execution 
of glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetActiveUniform with arguments program and the index of an active uniform variable 

glGetProgram with arguments program and GL_ACTIVE_UNIFORMS or 
GL_ACTIVE_UNIFORM_MAX_LENGTH 

glGetUniform with arguments program and the name of a uniform variable 

glsProgram 

See Also 

glLinkProgram, glUniform 

  



glGetVertexAttrib 
Name 

glGetVertexAttribdv, glGetVertexAttribfv, glGetVertexAttribiv Return a generic vertex attribute 
parameter 

C Specification 

void glGetVertexAttribdv(GLuint index, 
                         GLenum pname, 
                         GLdouble *params) 
 
void glGetVertexAttribfv(GLuint index, 
                         GLenum pname, 
                         GLfloat *params) 
 
void glGetVertexAttribiv(GLuint index, 
                         GLenum pname, 
                         GLint *params) 

 
Parameters 

 
Description 

glGetVertexAttrib returns in params the value of a generic vertex attribute parameter. The generic 
vertex attribute to be queried is specified by index, and the parameter to be queried is specified 
by pname. 

The accepted parameter names are as follows: 

GL_VERTEX_ATTRIB_ARRAY_ENABLED 

params returns a single value that is non-zero (true) if the vertex attribute array for 
index is enabled and 0 (false) if it is disabled. The initial value is GL_FALSE. 

GL_VERTEX_ATTRIB_ARRAY_SIZE 

params returns a single value, the size of the vertex attribute array for index. The size 

index Specifies the generic vertex attribute to be queried. 

pname Specifies the symbolic name of the vertex attribute 
parameter to be queried. 
GL_VERTEX_ATTRIB_ARRAY_ENABLED, 
GL_VERTEX_ATTRIB_ARRAY_SIZE, 
GL_VERTEX_ATTRIB_ARRAY_STRIDE, 
GL_VERTEX_ATTRIB_ARRAY_TYPE, 
GL_VERTEX_ATTRIB_ARRAY_NORMALIZED, 
GL_CURRENT_VERTEX_ATTRIB are accepted. 

params Returns the requested data. 



is the number of values for each element of the vertex attribute array, and it is 1, 
2, 3, or 4. The initial value is 4. 

GL_VERTEX_ATTRIB_ARRAY_STRIDE 

params returns a single value, the array stride for (number of bytes between 
successive elements in) the vertex attribute array for index. A value of 0 signifies 
that the array elements are stored sequentially in memory. The initial value is 0. 

GL_VERTEX_ATTRIB_ARRAY_TYPE 

params returns a single value, a symbolic constant indicating the array type for the 
vertex attribute array for index. Possible values are GL_BYTE, GL_UNSIGNED_BYTE, 
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, GL_UNSIGNED_INT, GL_FLOAT, and 
GL_DOUBLE. The initial value is GL_FLOAT. 

GL_VERTEX_ATTRIB_ARRAY_NORMALIZED 

params returns a single value that is non-zero (true) if fixed-point data types for the 
vertex attribute array indicated by index are normalized when they are converted to 
floating point, and 0 (false) otherwise. The initial value is GL_FALSE. 

GL_CURRENT_VERTEX_ATTRIB 

params returns four values that represent the current value for the generic vertex 
attribute specified by index. Generic vertex attribute 0 is unique in that it has no 
current state, so an error is generated if index is 0. The initial value for all other 
generic vertex attributes is (0,0,0,1). 

All the parameters except GL_CURRENT_VERTEX_ATTRIB represent client-side state. 

Notes 

glGetVertexAttrib is available only if the GL version is 2.0 or greater. 

If an error is generated, no change is made to the contents of params. 

Errors 

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS. 

GL_INVALID_ENUM is generated if pname is not an accepted value. 

GL_INVALID_OPERATION is generated if index is 0 and pname is GL_CURRENT_VERTEX_ATTRIB. 

Associated Gets 

glGet with argument GL_MAX_VERTEX_ATTRIBS 

glGetVertexAttribPointer with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER 

See Also 

glBindAttribLocation, glDisableVertexAttribArray, glEnableVertexAttribArray, glVertexAttrib, 
glVertexAttribPointer 



glGetVertexAttribPointer 
Name 

glGetVertexAttributePointerv Returns the address of the specified pointer 

C Specification 

void glGetVertexAttribPointerv(GLuint index, 
                               GLenum pname, 
                               GLvoid **pointer) 

 
Parameters 

 
Description 

glGetVertexAttribPointer returns pointer information. index is the generic vertex attribute to be 
queried, pname is a symbolic constant indicating the pointer to be returned, and params is a 
pointer to a location in which to place the returned data. The accepted parameter names are as 
follows: 

GL_VERTEX_ATTRIB_ARRAY_POINTER 

params returns a single value that is a pointer to the vertex attribute array for the 
generic vertex attribute specified by index. 

Notes 

glGetVertexAttribPointer is available only if the GL version is 2.0 or greater. 

The pointer returned is client-side state. 

The initial value for each pointer is NULL. 

Errors 

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS. 

GL_INVALID_ENUM is generated if pname is not an accepted value. 

Associated Gets 

index Specifies the generic vertex attribute to be queried. 

pname Specifies the symbolic name of the generic vertex attribute 
parameter to be queried. Must be 
GL_VERTEX_ATTRIB_ARRAY_POINTER. 

params Returns the requested data. 



 

glGet with argument GL_MAX_VERTEX_ATTRIBS 

glGetVertexAttrib with arguments index and the name of a generic vertex attribute parameter 

See Also 

glVertexAttribPointer 

  



glIsProgram 
Name 

glIsProgram Determines whether a name corresponds to a program object 

C Specification 

GLboolean glIsProgram(GLuint program) 

 
Parameters 

 
Description 

glIsProgram returns GL_TRUE if program is the name of a program object. If program is zero or a 
non-zero value that is not the name of a program object, glIsProgram returns GL_FALSE. 

Notes 

glIsProgram is available only if the GL version is 2.0 or greater. 

No error is generated if program is not a valid program object name. 

Errors 

GL_INVALID_OPERATION is generated if glIsProgram is executed between the execution of glBegin 
and the corresponding execution of glEnd. 

Associated Gets 

glGet with the argument GL_CURRENT_PROGRAM 

glGetActiveAttrib with arguments program and the index of an active attribute variable 

glGetActiveUniform with arguments program and the index of an active uniform variable 

glGetAttachedShaders with argument program 

glGetAttribLocation with arguments program and the name of an attribute variable 

glGetProgram with arguments program and the parameter to be queried 

glGetProgramInfoLog with argument program 

glGetUniform with arguments program and the location of a uniform variable 

glGetUniformLocation with arguments program and the name of a uniform variable 

program Specifies a potential program object. 



 

See Also 

glAttachShader, glBindAttribLocation, glCreateProgram, glDeleteProgram, glDetachShader, glLinkProgram, 
glUniform, glUseProgram, glValidateProgram 

  



glIsShader 
Name 

glIsShader Determines whether a name corresponds to a shader object 

C Specification 

GLboolean glIsShader(GLuint shader) 

 
Parameters 

 
Description 

glIsShader returns GL_TRUE if shader is the name of a shader object. If shader is zero or a non-zero 
value that is not the name of a shader object, glIsShader returns GL_FALSE. 

Notes 

glIsShader is available only if the GL version is 2.0 or greater. 

No error is generated if shader is not a valid shader object name. 

Errors 

GL_INVALID_OPERATION is generated if glIsShader is executed between the execution of glBegin 
and the corresponding execution of glEnd. 

Associated Gets 

glGetAttachedShaders with a valid program object 

glGetShader with arguments shader and a parameter to be queried 

glGetShaderInfoLog with argument object 

glGetShaderSource with argument object 

See Also 

glAttachShader, glCompileShader, glCreateShader, glDeleteShader, glDetachShader, glLinkProgram, 
glShaderSource 

shader Specifies a potential shader object. 

  



glLinkProgram 
Name 

glLinkProgram Links a program object 

C Specification 

void glLinkProgram(GLuint program) 

 
Parameters 

 
Description 

glLinkProgram links the program object specified by program. If any shader objects of type 
GL_VERTEX_SHADER are attached to program, they are used to create an executable that will run 
on the programmable vertex processor. If any shader objects of type GL_FRAGMENT_SHADER 
are attached to program, they are used to create an executable that will run on the programmable
fragment processor. 

The status of the link operation is stored as part of the program object's state. This value is set 
to GL_TRUE if the program object was linked without errors and is ready for use, and GL_FALSE 
otherwise. It can be queried by calling glGetProgram with arguments program and 
GL_LINK_STATUS. 

As a result of a successful link operation, all active user-defined uniform variables belonging to 
program are initialized to 0, and each of the program object's active uniform variables is assigned 
a location that can be queried with glGetUniformLocation. Also, any active user-defined attribute 
variables that have not been bound to a generic vertex attribute index are bound to one at this 
time. 

Linking of a program object can fail for a number of reasons as specified in the OpenGL Shading 
Language Specification. The following lists some of the conditions that cause a link error. 

The number of active attribute variables supported by the implementation has been 
exceeded. 

The storage limit for uniform variables has been exceeded. 

The number of active uniform variables supported by the implementation has been 
exceeded. 

The main function is missing for the vertex shader or the fragment shader. 

A varying variable actually used in the fragment shader is not declared in the same way 
(or is not declared at all) in the vertex shader. 

A reference to a function or variable name is unresolved. 

program Specifies the handle of the program object to be linked. 



A shared global is declared with two different types or two different initial values. 

One or more of the attached shader objects has not been successfully compiled. 

Binding a generic attribute matrix caused some rows of the matrix to fall outside the 
allowed maximum of GL_MAX_VERTEX_ATTRIBS. 

Not enough contiguous vertex attribute slots could be found to bind attribute matrices. 

When a program object has been successfully linked, the program object can be made part of 
current state with glUseProgram. Whether or not the link operation was successful, the program 
object's information log is over-written. The information log can be retrieved with 
glGetProgramInfoLog. 

glLinkProgram also installs the generated executables as part of the current rendering state if the 
link operation was successful and the specified program object is already currently in use as a 
result of a previous call to glUseProgram. If the program object currently in use is relinked 
unsuccessfully, its link status is set to GL_FALSE, but the executables and associated state 
remain part of the current state until a subsequent call to glUseProgram removes it from use. 
After it is removed from use, it cannot be made part of current state until it has been 
successfully relinked. 

If program contains shader objects of type GL_VERTEX_SHADER but does not contain shader 
objects of type GL_FRAGMENT_SHADER, the vertex shader is linked against the implicit 
interface for fixed functionality fragment processing. Similarly, if program contains shader objects 
of type GL_FRAGMENT_SHADER but does not contain shader objects of type 
GL_VERTEX_SHADER, the fragment shader is linked against the implicit interface for fixed 
functionality vertex processing. 

The program object's information log is updated and the program is generated at the time of 
the link operation. After the link operation, applications are free to modify attached shader 
objects, compile attached shader objects, detach shader objects, delete shader objects, and 
attach additional shader objects. None of these operations affect the information log or the 
program that is part of the program object. 

Notes 

glLinkProgram is available only if the GL version is 2.0 or greater. 

If the link operation is unsuccessful, any information about a previous link operation on program 
is lost (i.e., a failed link does not restore the old state of program). Certain information can still 
be retrieved from program even after an unsuccessful link operation. See, for instance, 
glGetActiveAttrib and glGetActiveUniform. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if glLinkProgram is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGet with the argument GL_CURRENT_PROGRAM 



 

glGetActiveAttrib with argument program and the index of an active attribute variable 

glGetActiveUniform with argument program and the index of an active uniform variable 

glGetAttachedShaders with argument program 

glGetAttribLocation with argument program and an attribute variable name 

glGetProgram with arguments program and GL_LINK_STATUS 

glGetProgramInfoLog with argument program 

glGetUniform with argument program and a uniform variable location 

glGetUniformLocation with argument program and a uniform variable name 

glIsProgram 

See Also 

glAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram, glDeleteProgram, glDetachShader, 
glUniform, glUseProgram, glValidateProgram 

  



glShaderSource 
Name 

glShaderSource Replaces the source code in a shader object 

C Specification 

void glShaderSource(GLuint shader, 
                    GLsizei count, 
                    const GLchar **string, 
                    const GLint *length) 

 
Parameters 

 
Description 

glShaderSource sets the source code in shader to the source code in the array of strings specified by 
string. Any source code previously stored in the shader object is completely replaced. The 
number of strings in the array is specified by count. If length is NULL, each string is assumed to be 
null terminated. If length is a value other than NULL, it points to an array containing a string 
length for each of the corresponding elements of string. Each element in the length array may 
contain the length of the corresponding string (the null character is not counted as part of the 
string length) or a value less than 0 to indicate that the string is null terminated. The source 
code strings are not scanned or parsed at this time; they are simply copied into the specified 
shader object. 

Notes 

glShaderSource is available only if the GL version is 2.0 or greater. 

OpenGL copies the shader source code strings when glShaderSource is called, so an application 
can free its copy of the source code strings immediately after the function returns. 

Errors 

GL_INVALID_VALUE is generated if shader is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if shader is not a shader object. 

GL_INVALID_VALUE is generated if count is less than 0. 

shader Specifies the handle of the shader object whose source 
code is to be replaced. 

count Specifies the number of elements in the string and length 
arrays. 

string Specifies an array of pointers to strings containing the 
source code to be loaded into the shader. 

length Specifies an array of string lengths. 



 

GL_INVALID_OPERATION is generated if glShaderSource is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetShader with arguments shader and GL_SHADER_SOURCE_LENGTH 

glGetShaderSource with argument shader 

glIsShader 

See Also 

glCompileShader, glCreateShader, glDeleteShader 

  



glUniform 
Name 

glUniform1f, glUniform2f, glUniform3f, glUniform4f, glUniform1i, glUniform2i, glUniform3i, glUniform4i, 
glUniform1fv, glUniform2fv, glUniform3fv, glUniform4fv, glUniform1iv, glUniform2iv, glUniform3iv, 
glUniform4iv, glUniformMatrix2fv, glUniformMatrix3fv, glUniformMatrix4fv Specify the value of a uniform 
variable for the current program object 

C Specification 

void glUniform1f(GLint location, 
                 GLfloat v0) 
void glUniform2f(GLint location, 
                 GLfloat v0, 
                 GLfloat v1) 
void glUniform3f(GLint location, 
                 GLfloat v0, 
                 GLfloat v1, 
                 GLfloat v2) 
void glUniform4f(GLint location, 
                 GLfloat v0, 
                 GLfloat v1, 
                 GLfloat v2, 
                 GLfloat v3) 
 
void glUniform1i(GLint location, 
                 GLint v0) 
void glUniform2i(GLint location, 
                 GLint v0, 
                 GLint v1) 
void glUniform3i(GLint location, 
                 GLint v0, 
                 GLint v1, 
                 GLint v2) 
void glUniform4i(GLint location, 
                 GLint v0, 
                 GLint v1, 
                 GLint v2, 
                 GLint v3) 

 
Parameters 

 
C Specification 

void glUniform1fv(GLint location, 
                  GLsizei count, 
                  const GLfloat *value) 

location Specifies the location of the uniform variable to be 
modified. 

v0, v1, v2, v3 Specify the new values to be used for the specified uniform 
variable. 



void glUniform2fv(GLint location, 
                  GLsizei count, 
                  const GLfloat *value) 
void glUniform3fv(GLint location, 
                  GLsizei count, 
                  const GLfloat *value) 
void glUniform4fv(GLint location, 
                  GLsizei count, 
                  const GLfloat *value) 
 
void glUniform1iv(GLint location, 
                  GLsizei count, 
                  const GLint *value) 
void glUniform2iv(GLint location, 
                  GLsizei count, 
                  const GLint *value) 
void glUniform3iv(GLint location, 
                  GLsizei count, 
                  const GLint *value) 
void glUniform4iv(GLint location, 
                  GLsizei count, 
                  const GLint *value) 

 
Parameters 

 
C Specification 

void glUniformMatrix2fv(GLint location, 
                        GLsizei count, 
                        GLboolean transpose, 
                        const GLfloat *value) 
void glUniformMatrix3fv(GLint location, 
                        GLsizei count, 
                        GLboolean transpose, 
                        const GLfloat *value) 
void glUniformMatrix4fv(GLint location, 
                        GLsizei count, 
                        GLboolean transpose, 
                        const GLfloat *value) 

 
Parameters 

location Specifies the location of the uniform value to be modified. 

count Specifies the number of elements that are to be modified 
(this should be 1 if the targeted uniform variable is not an 
array, 1 or more if it is an array). 

value Specifies a pointer to an array of count values that are used 
to update the specified uniform variable. 

location Specifies the location of the uniform value to be modified. 

count Specifies the number of elements that are to be modified 
(this should be 1 if the targeted uniform variable is not an 
array, 1 or more if it is an array). 

transpose 



 
Description 

glUniform modifies the value of a uniform variable or a uniform variable array. The location of 
the uniform variable to be modified is specified by location, which should be a value returned by 
glGetUniformLocation. glUniform operates on the program object that was made part of current 
state with glUseProgram. 

The commands glUniform{1|2|3|4}{f|i} change the value of the uniform variable specified by location, 
using the values passed as arguments. The number specified in the command should match the 
number of components in the data type of the specified uniform variable (e.g., 1 for float, int, 
bool; 2 for vec2, ivec2, bvec2). The suffix f means that floating-point values are being passed; 
the suffix i means that integer values are being passed, and this type should also match the 
data type of the specified uniform variable. The i variants of this function provide values for 
uniform variables defined as int, ivec2, ivec3, ivec4, or arrays of these. The f variants provide 
values for uniform variables of type float, vec2, vec3, vec4, or arrays of these. Either the i or 
the f variants can provide values for uniform variables of type bool, bvec2, bvec3, bvec4, or 
arrays of these. The uniform variable is set to false if the input value is 0 or 0.0f, and it is set to 
true otherwise. 

All active uniform variables defined in a program object are initialized to 0 when the program 
object is linked successfully. They retain the values assigned to them with glUniform until the 
next successful link operation occurs on the program object, when they are once again 
initialized to 0. 

The commands glUniform{1|2|3|4}{f|i}v modify a single uniform variable or a uniform variable array. 
These commands pass a count and a pointer to the values to be loaded into a uniform variable 
or a uniform variable array. Use a count of 1 if modifying the value of a single uniform variable, 
and a count of 1 or greater if modifying an entire array or part of an array. When n elements 
starting at an arbitrary position m in a uniform variable array are loaded, elements m + n 1 in 
the array are replaced with the new values. If m + n 1 is larger than the size of the uniform 
variable array, values for all array elements beyond the end of the array are ignored. The 
number specified in the name of the command indicates the number of components for each 
element in value, and it should match the number of components in the data type of the 
specified uniform variable (e.g., 1 for float, int, bool; 2 for vec2, ivec2, bvec2). The data type 
specified in the name of the command must match the data type for the specified uniform 
variable as described previously for glUniform{1|2|3|4}{f|i}. 

For uniform variable arrays, each element of the array is considered to be of the type indicated 
in the name of the command (e.g., glUniform3f or glUniform3fv can be used to load a uniform 
variable array of type vec3). The number of elements of the uniform variable array to be 
modified is specified by count. 

The commands glUniformFloatMatrix{2|3|4}fv modify a matrix or an array of matrices. The number 
in the command name is interpreted as the dimensionality of the matrix. The number 2 
indicates a 2 x 2 matrix (i.e., 4 values), the number 3 indicates a 3 x 3 matrix (i.e., 9 values), 
and the number 4 indicates a 4 x 4 matrix (i.e., 16 values). If transpose is GL_FALSE, each matrix 
is assumed to be supplied in column major order. If transpose is GL_TRUE, each matrix is 
assumed to be supplied in row major order. The count argument specifies the number of 
matrices to be passed. Use a count of 1 if modifying the value of a single matrix, and a count 
greater than 1 if modifying an array of matrices. 

Specifies whether to transpose the matrix as the values 
are loaded into the uniform variable. 

value Specifies a pointer to an array of count values that are used 
to update the specified uniform variable. 



Notes 

glUniform is available only if the GL version is 2.0 or greater. 

glUniform1i and glUniform1iv are the only two functions that may load uniform variables defined as 
sampler types. Loading samplers with any other function results in a GL_INVALID_OPERATION 
error. 

If count is greater than 1 and the indicated uniform variable is not an array, a 
GL_INVALID_OPERATION error is generated and the specified uniform variable remains 
unchanged. 

Other than the preceding exceptions, if the type and size of the uniform variable as defined in 
the shader do not match the type and size specified in the name of the command used to load a 
value for the uniform variable, a GL_INVALID_OPERATION error is generated and the specified 
uniform variable remains unchanged. 

If location is a value other than 1 and it does not represent a valid uniform variable location in 
the current program object, an error is generated, and no changes are made to the uniform 
variable storage of the current program object. If location is equal to 1, the data passed in is 
silently ignored and the specified uniform variable is unchanged. 

Errors 

GL_INVALID_OPERATION is generated if there is no current program object. 

GL_INVALID_OPERATION is generated if the size of the uniform variable declared in the shader 
does not match the size indicated by the glUniform command. 

GL_INVALID_OPERATION is generated if one of the integer variants of this function loads a 
uniform variable of type float, vec2, vec3, vec4, or an array of these, or if one of the floating-
point variants of this function loads a uniform variable of type int, ivec2, ivec3, or ivec4, or an 
array of these. 

GL_INVALID_OPERATION is generated if location is an invalid uniform location for the current 
program object and location is not equal to 1. 

GL_INVALID_VALUE is generated if count is less than 0. 

GL_INVALID_OPERATION is generated if count is greater than 1 and the indicated uniform 
variable is not an array variable. 

GL_INVALID_OPERATION is generated if a sampler is loaded with a command other than 
glUniform1i and glUniform1iv. 

GL_INVALID_OPERATION is generated if glUniform is executed between the execution of glBegin 
and the corresponding execution of glEnd. 

Associated Gets 

glGet with the argument GL_CURRENT_PROGRAM 

glGetActiveUniform with the handle of a program object and the index of an active uniform 
variable 

glGetUniform with the handle of a program object and the location of a uniform variable 



 

glGetUniformLocation with the handle of a program object and the name of a uniform variable 

See Also 

glLinkProgram, glUseProgram 

  



glUseProgram 
Name 

glUseProgram Installs a program object as part of current rendering state 

C Specification 

void glUseProgram(GLuint program) 

 
Parameters 

 
Description 

glUseProgram installs the program object specified by program as part of current rendering state. Cr
a program object involves successfully attaching shader objects to it with glAttachShader, successfu
with glCompileShader, and successfully linking the program object with glLinkProgram. 

A program object contains an executable that will run on the vertex processor if it contains one o
GL_VERTEX_SHADER that have been successfully compiled and linked. Similarly, a program obje
will run on the fragment processor if it contains one or more shader objects of type GL_FRAGMEN
successfully compiled and linked. 

Successfully installing an executable on a programmable processor disables the corresponding fix
Specifically, if an executable is installed on the vertex processor, the OpenGL fixed functionality 

The modelview matrix is not applied to vertex coordinates. 

The projection matrix is not applied to vertex coordinates. 

The texture matrices are not applied to texture coordinates. 

Normals are not transformed to eye coordinates. 

Normals are not rescaled or normalized. 

Normalization of GL_AUTO_NORMAL evaluated normals is not performed. 

Texture coordinates are not generated automatically. 

Per-vertex lighting is not performed. 

Color material computations are not performed. 

Color index lighting is not performed. 

program Specifies the handle of the program object                                                whose exec
                                               current rendering state. 



This list also applies to setting the current raster position. 

The executable that is installed on the vertex processor is expected to implement any or all of th
preceding list. Similarly, if an executable is installed on the fragment processor, the OpenGL fixe
follows. 

Texture environment and texture functions are not applied. 

Texture application is not applied. 

Color sum is not applied. 

Fog is not applied. 

Again, the fragment shader that is installed is expected to implement any or all of the desired fu
list. 

While a program object is in use, applications are free to modify attached shader objects, compil
additional shader objects, and detach or delete shader objects. None of these operations affect t
the current state. However, relinking the program object that is currently in use installs the prog
rendering state if the link operation was successful (see glLinkProgram). If the program object cur
unsuccessfully, its link status is set to GL_FALSE but the executables and associated state remai
subsequent call to glUseProgram removes the program object from use. After it is removed from u
current state until it has been successfully relinked. 

If program contains shader objects of type GL_VERTEX_SHADER but does not contain shader obje
GL_FRAGMENT_SHADER, an executable is installed on the vertex processor but fixed functionalit
processing. Similarly, if program contains shader objects of type GL_FRAGMENT_SHADER but does
type GL_VERTEX_SHADER, an executable is installed on the fragment processor but fixed functio
processing. If program is 0, the programmable processors are disabled and fixed functionality is us
processing. 

Notes 

glUseProgram is available only if the GL version is 2.0 or greater. 

While a program object is in use, the state that controls the disabled fixed functionality may also
OpenGL calls. 

Like display lists and texture objects, the name space for program objects may be shared across
server sides of the contexts share the same address space. If the name space is shared across c
the data associated with those attached objects are shared as well. 

Applications are responsible for synchronizing across API calls when objects are accessed from d

Errors 

GL_INVALID_VALUE is generated if program is neither 0 nor a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if program could not be made part of current state. 

GL_INVALID_OPERATION is generated if glUseProgram is executed between the execution of glBegi
execution of glEnd. 



 

Associated Gets 

glGet with the argument GL_CURRENT_PROGRAM 

glGetActiveAttrib with a valid program object and the index of an active attribute variable 

glGetActiveUniform with a valid program object and the index of an active uniform variable 

glGetAttachedShaders with a valid program object 

glGetAttribLocation with a valid program object and the name of an attribute variable 

glGetProgram with a valid program object and the parameter to be queried 

glGetProgramInfoLog with a valid program object 

glGetUniform with a valid program object and the location of a uniform variable 

glGetUniformLocation with a valid program object and the name of a uniform variable 

glIsProgram 

See Also 

gllAttachShader, glBindAttribLocation, glCompileShader, glCreateProgram,glDeleteProgram, glDetachShader, glLin
glValidateProgram, glVertexAttrib 

  



glValidateProgram 
Name 

glValidateProgram Validates a program object 

C Specification 

void glValidateProgram(GLuint program) 

 
Parameters 

 
Description 

glValidateProgram checks to see whether the executables contained in program can execute given 
the current OpenGL state. The information generated by the validation process is stored in 
program's information log. The validation information may consist of an empty string, or it may 
be a string containing information about how the current program object interacts with the rest 
of current OpenGL state. This function provides a way for OpenGL implementors to convey 
more information about why the current program is inefficient, suboptimal, failing to execute, 
and so on. 

The status of the validation operation is stored as part of the program object's state. This value 
is set to GL_TRUE if the validation succeeded, and GL_FALSE otherwise. It can be queried by 
calling glGetProgram with arguments program and GL_VALIDATE_STATUS. If validation is 
successful, program is guaranteed to execute given the current state. Otherwise, program is 
guaranteed to not execute. 

This function is typically useful only during application development. The informational string 
stored in the information log is completely implementation dependent; therefore, different 
OpenGL implementations cannot be expected to produce identical information strings. 

Notes 

glValidateProgram is available only if the GL version is 2.0 or greater. 

This function mimics the validation operation that OpenGL implementations must perform when 
rendering commands are issued while programmable shaders are part of current state. The 
error GL_INVALID_OPERATION is generated by glBegin, glRasterPos, or any command that 
performs an implicit call to glBegin if 

any two active samplers in the current program object are of different types but refer to 
the same texture image unit; 

any active sampler in the current program object refers to a texture image unit in which 
fixed function fragment processing accesses a texture target that does not match the 
sampler type; or 

program Specifies the handle of the program object to be validated. 



 

the sum of the number of active samplers in the program and the number of texture 
image units enabled for fixed function fragment processing exceeds the combined limit on 
the total number of texture image units allowed. 

Difficulties or performance degradation may occur if applications try to catch these errors when 
issuing rendering commands. Therefore, applications are advised to make calls to 
glValidateProgram to detect these issues during application development. 

Errors 

GL_INVALID_VALUE is generated if program is not a value generated by OpenGL. 

GL_INVALID_OPERATION is generated if program is not a program object. 

GL_INVALID_OPERATION is generated if glValidateProgram is executed between the execution of 
glBegin and the corresponding execution of glEnd. 

Associated Gets 

glGetProgram with arguments program and GL_VALIDATE_STATUS 

glGetProgramInfoLog with argument program 

glIsProgram 

See Also 

glLinkProgram, glUseProgram 

  



glVertexAttrib 
Name 

glVertexAttrib1f, glVertexAttrib1s, glVertexAttrib1d, glVertexAttrib2f, glVertexAttrib2s, glVertexAttrib2d, 
glVertexAttrib3f, glVertexAttrib3s, glVertexAttrib3d, glVertexAttrib4f, glVertexAttrib4s, glVertexAttrib4d, 
glVertexAttrib4Nub, glVertexAttrib1fv, glVertexAttrib1sv, glVertexAttrib1dv, glVertexAttrib2fv, 
glVertexAttrib2sv, glVertexAttrib2dv, glVertexAttrib3fv, glVertexAttrib3sv, glVertexAttrib3dv, glVertexAttrib4fv, 
glVertexAttrib4sv, glVertexAttrib4dv, glVertexAttrib4iv, glVertexAttrib4bv, glVertexAttrib4ubv, 
glVertexAttrib4usv, glVertexAttrib4uiv, glVertexAttrib4Nbv, glVertexAttrib4Nsv, glVertexAttrib4Niv, 
glVertexAttrib4Nubv, glVertexAttrib4Nusv, glVertexAttrib4Nuiv Specify the value of a generic vertex 
attribute 

C Specification 

void glVertexAttrib1f(GLuint index, 
                      GLfloat v0) 
void glVertexAttrib1s(GLuint index, 
                      GLshort v0) 
void glVertexAttrib1d(GLuint index, 
                      GLdouble v0) 
 
void glVertexAttrib2f(GLuint index, 
                      GLfloat v0, 
                      GLfloat v1) 
void glVertexAttrib2s(GLuint index, 
                      GLshort v0, 
                      GLshort v1) 
void glVertexAttrib2d(GLuint index, 
                      GLdouble v0, 
                      GLdouble v1) 
 
void glVertexAttrib3f(GLuint index, 
                      GLfloat v0, 
                      GLfloat v1, 
                      GLfloat v2) 
void glVertexAttrib3s(GLuint index, 
                      GLshort v0, 
                      GLshort v1, 
                      GLshort v2) 
void glVertexAttrib3d(GLuint index, 
                      GLdouble v0, 
                      GLdouble v1, 
                      GLdouble v2) 
 
void glVertexAttrib4f(GLuint index, 
                      GLfloat v0, 
                      GLfloat v1, 
                      GLfloat v2, 
                      GLfloat v3) 
void glVertexAttrib4s(GLuint index, 
                      GLshort v0, 
                      GLshort v1, 
                      GLshort v2, 
                      GLshort v3) 
void glVertexAttrib4d(GLuint index, 
                      GLdouble v0, 
                      GLdouble v1, 
                      GLdouble v2, 



                      GLdouble v3) 
 
void glVertexAttrib4Nub(GLuint index, 
                        GLubyte v0, 
                        GLubyte v1, 
                        GLubyte v2, 
                        GLubyte v3) 

 
Parameters 

 
C Specification 

void glVertexAttrib1fv(GLuint index, const GLfloat *v) 
void glVertexAttrib1sv(GLuint index, const GLshort *v) 
void glVertexAttrib1dv(GLuint index, const GLdouble *v) 
 
void glVertexAttrib2fv(GLuint index, const GLfloat *v) 
void glVertexAttrib2sv(GLuint index, const GLshort *v) 
void glVertexAttrib2dv(GLuint index, const GLdouble *v) 
 
void glVertexAttrib3fv(GLuint index, const GLfloat *v) 
void glVertexAttrib3sv(GLuint index, const GLshort *v) 
void glVertexAttrib3dv(GLuint index, const GLdouble *v) 
 
void glVertexAttrib4fv(GLuint index, const GLfloat *v) 
void glVertexAttrib4sv(GLuint index, const GLshort *v) 
void glVertexAttrib4dv(GLuint index, const GLdouble *v) 
void glVertexAttrib4iv(GLuint index, const GLint *v) 
void glVertexAttrib4bv(GLuint index, const GLbyte *v) 
 
void glVertexAttrib4ubv(GLuint index, const GLubyte *v) 
void glVertexAttrib4usv(GLuint index, const GLushort *v) 
void glVertexAttrib4uiv(GLuint index, const GLuint *v) 
 
void glVertexAttrib4Nbv(GLuint index, const GLbyte *v) 
void glVertexAttrib4Nsv(GLuint index, const GLshort *v) 
void glVertexAttrib4Niv(GLuint index, const GLint *v) 
void glVertexAttrib4Nubv(GLuint index, const GLubyte *v) 
void glVertexAttrib4Nusv(GLuint index, const GLushort *v) 
void glVertexAttrib4Nuiv(GLuint index, const GLuint *v) 

 
Parameters 

 

index Specifies the index of the generic vertex attribute to be 
modified. 

v0, v1, v2, v3 Specify the new values to be used for the specified vertex 
attribute. 

index Specifies the index of the generic vertex attribute to be 
modified. 

v Specifies a pointer to an array of values to be used for the 
generic vertex attribute. 



Description 

OpenGL defines a number of standard vertex attributes that applications can modify with 
standard API entry points (color, normal, texture coordinates, etc.). The glVertexAttrib family of 
entry points allows an application to pass generic vertex attributes into numbered locations. 

Generic attributes are defined as four-component values that are organized into an array. The 
first entry of this array is numbered 0, and the size of the array is specified by the 
implementation-dependent constant GL_MAX_VERTEX_ATTRIBS. Individual elements of this 
array can be modified with a glVertexAttrib call that specifies the index of the element to be 
modified and a value for that element. 

These commands can specify one, two, three, or all four components of the generic vertex 
attribute specified by index. A 1 in the command name means that only one value is passed and 
that it modifies the first component of the generic vertex attribute. The second and third 
components are set to 0, and the fourth component is set to 1. Similarly, a 2 in the command 
name means that values are provided for the first two components, the third component is set 
to 0, and the fourth component is set to 1. A 3 in the command name means that values are 
provided for the first three components and that the fourth component is set to 1, and a 4 in the 
command name means that values are provided for all four components. 

The letters s, f, i, d, ub, us, and ui specify whether the arguments are of type short, float, int, 
double, unsigned byte, unsigned short, or unsigned int. When v is appended to the name, the 
commands can take a pointer to an array of such values. The letter N in a command name 
means that the arguments are passed as fixed-point values that are scaled to a normalized 
range according to the component conversion rules defined by the OpenGL specification. Signed 
values are understood to represent fixed-point values in the range [-1,1], and unsigned values 
are understood to represent fixed-point values in the range [0,1]. 

OpenGL Shading Language attribute variables are allowed to be of type mat2, mat3, or mat4. 
Attributes of these types can be loaded by the glVertexAttrib entry points. Matrices must be 
loaded into successive generic attribute slots in column major order, with one column of the 
matrix in each generic attribute slot. 

A user-defined attribute variable declared in a vertex shader can be bound to a generic attribute 
index with glBindAttribLocation. Such binding allows an application to use more descriptive 
variable names in a vertex shader. A subsequent change to the specified generic vertex 
attribute is immediately reflected as a change to the corresponding attribute variable in the 
vertex shader. 

The binding between a generic vertex attribute index and a user-defined attribute variable in a 
vertex shader is part of the state of a program object, but the current value of the generic 
vertex attribute is not. The value of each generic vertex attribute is part of current state, just 
like standard vertex attributes, and it is maintained even if a different program object is used. 

An application may freely modify generic vertex attributes that are not bound to a named 
vertex shader attribute variable. These values are simply maintained as part of current state 
and are not accessed by the vertex shader. If a generic vertex attribute bound to an attribute 
variable in a vertex shader is not updated while the vertex shader is executing, the vertex 
shader repeatedly uses the current value for the generic vertex attribute. 

The generic vertex attribute with index 0 is the same as the vertex position attribute previously 
defined by OpenGL. A glVertex2, glVertex3, or glVertex4 command is completely equivalent to the 
corresponding glVertexAttrib command with an index argument of 0. A vertex shader can access 
generic vertex attribute 0 by using the built-in attribute variable gl_Vertex. There are no current 
values for generic vertex attribute 0. This is the only generic vertex attribute with this property; 
calls to set other standard vertex attributes can be freely mixed with calls to set any of the 
other generic vertex attributes. 



 

Notes 

glVertexAttrib is available only if the GL version is 2.0 or greater. 

Generic vertex attributes can be updated at any time. In particular, glVertexAttrib can be called 
between a call to glBegin and the corresponding call to glEnd. 

An application can bind more than one attribute name to the same generic vertex attribute 
index. This is referred to as aliasing, and it is allowed only if just one of the aliased attribute 
variables is active in the vertex shader, or if no path through the vertex shader consumes more 
than one of the attributes aliased to the same location. OpenGL implementations are not 
required to do error checking to detect aliasing; they are allowed to assume that aliasing does 
not occur, and they are allowed to employ optimizations that work only in the absence of 
aliasing. 

There is no provision for binding standard vertex attributes; therefore, it is not possible to alias 
generic attributes with standard attributes. 

Errors 

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS. 

Associated Gets 

glGet with the argument GL_CURRENT_PROGRAM 

glGetActiveAttrib with argument program and the index of an active attribute variable 

glGetAttribLocation with argument program and an attribute variable name 

glGetVertexAttrib with arguments GL_CURRENT_VERTEX_ATTRIB and index 

See Also 

glBindAttribLocation, glVertex, glVertexAttribPointer 

  



glVertexAttribPointer 
Name 

glVertexAttribPointer Defines a generic vertex attribute array 

C Specification 

void glVertexAttribPointer(GLuint index, 
                           GLint size, 
                           GLenum type, 
                           GLboolean normalized, 
                           GLsizei stride, 
                           const GLvoid *pointer) 

 
Parameters 

 
Description 

glVertexAttribPointer specifies the location and data format of an array of generic vertex attribute 
values to use when rendering. size specifies the number of components per attribute and must 
be 1, 2, 3, or 4. type specifies the data type of each component, and stride specifies the byte 
stride from one attribute to the next, allowing attribute values to be intermixed with other 
attribute values or stored in a separate array. A value of 0 for stride means that the values are 
stored sequentially in memory with no gaps between successive elements. If set to GL_TRUE, 
normalized means that values stored in an integer format are to be mapped to the range [1,1] 
(for signed values) or [0,1] (for unsigned values) when they are accessed and converted to 
floating point. Otherwise, values are converted to floats directly without normalization. 

When a generic vertex attribute array is specified, size, type, normalized, stride, and pointer are saved 
as client-side state. 

index Specifies the index of the generic vertex attribute to be 
modified. 

size Specifies the number of values for each element of the 
generic vertex attribute array. Must be 1, 2, 3, or 4. 

type Specifies the data type of each component in the array. 
Symbolic constants GL_BYTE, GL_UNSIGNED_BYTE, 
GL_SHORT, GL_UNSIGNED_SHORT, GL_INT, 
GL_UNSIGNED_INT, GL_FLOAT, and GL_DOUBLE are 
accepted. 

normalized Specifies whether fixed-point data values should be 
normalized (GL_TRUE) or converted directly as fixed-point 
values (GL_FALSE) when they are accessed. 

stride Specifies the byte offset between consecutive attribute 
values. If stride is 0 (the initial value), the attribute values 
are understood to be tightly packed in the array. 

pointer Specifies a pointer to the first component of the first 
attribute value in the array. 



 

To enable and disable the generic vertex attribute array, call glEnableVertexAttribArray and 
glDisableVertexAttribArray with index. If enabled, the generic vertex attribute array is used when 
glDrawArrays, glDrawElements, glDrawRangeElements, glArrayElement, glMultiDrawElements, or 
glMultiDrawArrays is called. 

Notes 

glVertexAttribPointer is available only if the GL version is 2.0 or greater. 

Each generic vertex attribute array is initially disabled and is not accessed when glDrawArrays, 
glDrawElements, glDrawRangeElements, glArrayElement, glMultiDrawElements, or glMultiDrawArrays is 
called. 

Execution of glVertexAttribPointer is not allowed between the execution of glBegin and glEnd, but an 
error may or may not be generated. If no error is generated, the operation is undefined. 

glVertexAttribPointer is typically implemented on the client side. 

Generic vertex attribute array parameters are client-side state and are therefore not saved or 
restored by glPushAttrib and glPopAttrib. Use glPushClientAttrib and glPopClientAttrib instead. 

Errors 

GL_INVALID_VALUE is generated if index is greater than or equal to GL_MAX_VERTEX_ATTRIBS. 

GL_INVALID_VALUE is generated if size is not 1, 2, 3, or 4. 

GL_INVALID_ENUM is generated if type is not an accepted value. 

GL_INVALID_VALUE is generated if stride is negative. 

Associated Gets 

glGet with argument GL_MAX_VERTEX_ATTRIBS 

glGetVertexAttrib with arguments index and the name of a vertex attribute parameter 

glGetVertexAttribPointer with arguments index and GL_VERTEX_ATTRIB_ARRAY_POINTER 

See Also 

glArrayElement, glBindAttribLocation, glDisableVertexAttribArray, glDrawArrays, glDrawElements, 
glDrawRangeElements, glEnableVertexAttribArray, glMultiDrawArrays, glMultiDrawElements, glPopClientAttrib, 
glPushClientAttrib, glVertexAttrib 

  



OpenGL 1.5 to OpenGL 2.0 GLSL Migration Guide 
The OpenGL Shading Language was initially supported through ARB extensions to OpenGL 1.5. 
The following table (originally compiled by Teri Morrison) documents the mapping of OpenGL 
1.5 ARB extension API entry points to the OpenGL 2.0 API entry points. 

glAttachObjectARB Renamed to glAttachShader. Input arguments program and 
shader were changed from GLhandleARB to GLuint. 

glBindAttribLocationARB Renamed to glBindAttribLocation. Input argument program was 
changed from GLhandleARB to GLuint. Input argument 
name was changed from const GLcharARB* to const 
GLchar*. 

glCompileShaderARB Renamed to glCompileShader. Input argument shader was 
changed from GLhandleARB to GLuint. 

glCreateProgramObjectARB Renamed to glCreateProgram. Function return value was 
changed from GLhandleARB to GLuint. 

glCreateShaderObjectARB Renamed to glCreateShader. Function return value was 
changed from GLhandleARB to GLuint. 

glDeleteObjectARB Split into two functions, glDeleteProgram and glDeleteShader. 
Input argument object was changed from GLhandleARB to 
GLuint. Additional error checking was added to ensure that 
the input argument in the new function (program or shader) is 
the proper object type. 

glDetachObjectARB Renamed to glDetachShader. Input arguments program and 
shader were changed from GLhandleARB to GLuint. 

glDisableVertexAttribArrayARB Renamed to glDisableVertexAttribArray. 

glEnableVertexAttribArrayARB Renamed to glEnableVertexAttribArray. 

glGetActiveAttribARB Renamed to glGetActiveAttrib. Input argument program was 
changed from GLhandleARB to GLuint. Input argument 
name was changed from GLcharARB* to GLchar*. 

glGetActiveUniformARB Renamed to glGetActiveUniform. Input argument program was 
changed from GLhandleARB to GLuint. Input argument 
name was changed from GLcharARB* to GLchar*. 

glGetAttachedObjectsARB Renamed to glGetAttachedShaders. Input argument program 
was changed from GLhandleARB to GLuint. Input argument 
objects was changed from GLhandleARB* to GLuint*. 

glGetAttribLocationARB Renamed to glGetAttribLocation. Input argument program was 
changed from GLhandleARB to GLuint. Input argument 
name was changed from const GLcharARB* to const 
GLchar*. 

glGetHandleARB Replaced by calling glGet with the symbolic constant 
GL_CURRENT_PROGRAM. 

glGetInfoLogARB Split into two functions, glGetProgramInfoLog and 
glGetShaderInfoLog. Input argument object was changed from 
GLhandleARB to GLuint. Output argument infoLog was 
changed from const GLcharARB* to const GLchar*. New 
error checking was added to ensure that the input 



 
 

argument in the new function (program or shader) is the 
proper object type. 

glGetObjectParameterARB Split into two functions, glGetProgram and glGetShader. Input 
argument object was changed from GLhandleARB to GLuint. 
Additional error checking was added to ensure that the 
input argument in the new function (program or shader) is the 
proper object type. In OpenGL 2.0 there is no equivalent 
for the floating-point version of the ARB function 
glGetObjectParameterfvARB. 

glGetShaderSourceARB Renamed to glGetShaderSource. Input argument shader was 
changed from GLhandleARB to GLuint. Output argument 
source was changed from const GLcharARB* to const 
GLchar*. 

glGetUniformARB Renamed to glGetUniform. Input argument program was 
changed from GLhandleARB to GLuint. 

glGetUniformLocationARB Renamed to glGetUniformLocation. Input argument program 
was changed from GLhandleARB to GLuint. Input argument 
name was changed from const GLcharARB* to const 
GLchar*. 

glGetVertexAttribARB Renamed to glGetVertexAttrib. 

glGetVertexAttribPointerARB Renamed to glGetVertexAttribPointer. 

glLinkProgramARB Renamed to glLinkProgram. Input argument program was 
changed from GLhandleARB to GLuint. 

glShaderSourceARB Renamed to glShaderSource. Input argument shader was 
changed from GLhandleARB to GLuint. Input argument 
strings was changed from const GLcharARB** to const 
GLchar**. 

glUniformARB Renamed to glUniform. 

glUseProgramObjectARB Renamed to glUseProgram. Input argument program was 
changed from GLhandleARB to GLuint. 

glValidateProgramARB Renamed to glValidateProgram. Input argument program was 
changed from GLhandleARB to GLuint. 

glVertexAttribARB Renamed to glVertexAttrib. 

glVertexAttribPointerARB Renamed to glVertexAttribPointer. 

New functions The functions glIsProgram and glIsShader were added in 
OpenGL 2.0 and have no equivalent in the ARB extensions 
that support GLSL. 

 The function glDrawBuffers was promoted to OpenGL 2.0 
from the ARB_draw_buffers extension specification, where 
it was called glDrawBuffersARB. 

  



Afterword 
Writing a book requires a lot of time and effort. Sometimes authors refer to the finished product 
as "a labor of love." I have to say that for me, writing this book has been "a labor of fun." 

I have been fortunate to participate in a major architectural revolution in computer graphics 
hardware. In the last few years, consumer graphics hardware has undergone a sea changefrom 
pure fixed functionality to almost complete user programmability. In many ways, this time feels 
like the late 1970s and early 1980s, when significant advances were being made in computer 
graphics at places like the University of Utah, NYU, Lucasfilm, JPL, UNC, and Cornell. The 
difference this time is that graphics hardware is now cheap enough and fast enough that you 
don't have to work at a research institute or attend an elite graduate school to play with it. You 
can explore the brave new world on your own personal computer. 

It is relatively rare to participate in establishing even one industry standard, but I have had the 
good fortune to play a role in the definition of three important graphics standards. First was PEX 
in the late 1980s. Next was OpenGL in the early 1990s, and now, the OpenGL Shading 
Language in the first years of the new millennium. These efforts have been gratifying to me 
because they provide graphics hardware capabilities to people in an industry-standard way. 
Applications written to a standard are portable, and therefore the technology they are built on is 
accessible to a wider audience. 

It's been a labor of fun because it is a lot of fun and truly remarkable to be one of the first 
people to implement classic rendering algorithms by using a high-level language on low-cost 
but high-performance graphics hardware. When our team first got the brick shader running on 
3Dlabs Wildcat VP graphics hardware, it was a jaw-dropping "Wow!" moment. A similar feeling 
occurred when I got a shader I was developing to run successfully for the first time or saw, 
working for the first time, a shader written by someone else in the group. It seems to me that 
this feeling must be similar to that felt by the graphics pioneers 2025 years ago when they got 
the first successful results from their new algorithms. And it is great fun to hear from end users 
who experience those same sorts of jaw-dropping "Wow!" moments. 

Because of the architectural revolution in consumer graphics hardware, today, people like you 
and me can quickly and easily write shaders that implement the rendering algorithms devised 
20 years ago by the pioneers of computer graphics. To implement bump mapping, we looked up 
Blinn's 1978 paper, and to implement particle systems, we looked at Reeves's 1983 paper. I 
chuckled to myself when I saw the hand-drawn diagrams in Alvy Ray Smith's 1983 memo on 
digital filtering. Images that took hours to generate then take milliseconds to render today. And 
shader code that took weeks to develop can now be written in minutes with a high-level 
shading language developed specifically for this task. It is mind-boggling to think how 
painstaking it must have been for Mandelbrot to generate images of his famous set in the late 
1970s, compared to how easy it is to do today with the OpenGL Shading Language. 

And part of the reason that I've so enjoyed writing this book is that I know there are significant 
new discoveries to be made in the area of computer graphics. If someone like me can simply 
and easily implement rendering algorithms that previously could run only on software on CPUs, 
imagine how much more is possible with the programmable graphics hardware that is available 
today. The availability of low-cost programmable graphics hardware makes it possible for many 
more people to experiment with new rendering techniques. Algorithms of much higher 
complexity can be developed. And I know that some of you out there will invent some exciting 
new rendering techniques when using the OpenGL Shading Language. This technology is 
moving rapidly to handheld devices such as PDAs and cell phones. A version of the OpenGL 
Shading Language for embedded devices was approved as part of OpenGL ES in the summer of 
2005. That means that millions of devices will soon be running applications that use GLSL to 
unlock the power of the underlying programmable graphics hardware. 



 

My mission in writing this book has been to educate you and, perhaps more important, to try to 
open your eyes to the rendering possibilities that exist beyond the fixed functionality with which 
we've been shackled for so many years. In my view, there's no longer any reason to continue to 
use the fixed functionality of OpenGL. Everyone should be writing shaders to render things the 
way they want instead of the way the fixed functionality graphics hardware has allowed. I 
encourage you to think outside the box, explore new ways of getting pixels on the screen, and 
share your discoveries with others. If you want, you can send your discoveries to me at 
randi@3dshaders.com and I'll make them available to others on my Web site. 

Keep on pushing the pixels, and best of luck in all your rendering endeavors! 

Randi Rost,  
Fort Collins,  
CO June 2003,  
1st edition  
August 2005, 2nd edition 

  



Glossary 



1D TEXTURE  

A one-dimensional (width only) array of values stored in texture memory. 

 
 

2D TEXTURE  

A two-dimensional (width and height) array of values stored in texture memory. 

 
 

3D TEXTURE  

A three-dimensional (width, height, and depth) array of values stored in texture memory. 

 
 

ACCUMULATION BUFFER  

An OpenGL offscreen memory buffer that can accumulate the results of multiple rendering 
operations. This buffer often has more bits per pixel than the other offscreen memory 
buffers in order to support such accumulation operations. 

 
 

ACTIVE ATTRIBUTES  

Attribute variables that can be accessed when a vertex shader is executed, including 
built-in attribute variables and user-defined attribute variables. (It is allowed to have 
attribute variables that are defined but never used within a vertex shader.) 

 
 

ACTIVE SAMPLERS  

Samplers that can be accessed when a program is executed. 

 
 

ACTIVE TEXTURE UNIT  

The texture unit currently defined as the target of commands that modify texture access 
state such as the current 1D/2D/3D/cube map texture, texture unit enable/disable, 
texture environment state, and so on. 

 
 

ACTIVE UNIFORMS  

Uniform variables that can be accessed when a shader is executed, including built-in 
uniform variables and user-defined uniform variables. (It is allowed to have uniform 
variables that are defined but never used within a shader.) 



 
 

ALIASING  

Artifacts caused by insufficient sampling or inadequate representation of high-frequency 
components in a computer graphics image. These artifacts are also commonly referred to 
as "jaggies." 

 
 

ALPHA  

The fourth component of a color value (after red, green, and blue). Alpha indicates the 
opacity of a pixel (1.0 means the pixel is fully opaque; 0.0 means the pixel is fully 
transparent). Alpha is used in color blending operations. 

 
 

ALPHA TEST  

An OpenGL pipeline stage that discards fragments depending on the outcome of a 
comparison between the current fragment's alpha value and a constant reference alpha 
value. 

 
 

AMBIENT OCCLUSION  

A technique for producing more realistic lighting and shadowing effects that uses a 
precomputed occlusion (or accessibility) factor to scale the diffuse illumination at each 
point on the surface of an object. 

 
 

AMPLITUDE  

The distance of a function's maximum or minimum from the mean of the function. 

 
 

ANISOTROPIC  

Something with properties that differ when measured in different directions, such as the 
property of a material (anisotropic reflection) or a characteristic of an algorithm 
(anisotropic texture filtering). Contrast with ISOTROPIC. 

 
 

ANTIALIASING  

The effort to reduce or eliminate artifacts caused by insufficient sampling or inadequate 
representation of high-frequency components in a computer graphics image. 

 
 

APPLICATION PROGRAMMING INTERFACE (API)  



A source-level interface provided for use by applications. 

 
 

AREA SAMPLING  

An antialiasing technique that considers the area of the primitive being sampled. This 
method usually produces better results than either point sampling or supersampling, but 
it can be more expensive to compute. 

 
 

ATTENUATION  

In the lighting computation, the effect of light intensity diminishing as a function of 
distance from the light source. 

 
 

ATTRIBUTE ALIASING  

Binding more than one user-defined attribute variable to the same generic vertex 
attribute index. This binding is allowed only if just one of the aliased attributes is active in 
the executable program or if no path through the shader consumes more than one 
attribute of a set of attributes aliased to the same location. 

 
 

ATTRIBUTE VARIABLE  

An OpenGL Shading Language variable that is qualified with the attribute keyword. 
Attribute variables contain the values that an application passes through the OpenGL API 
by using generic, numbered vertex attributes. With attribute variables, a vertex shader 
can obtain unique data at every vertex. These variables are read-only and can be defined 
only in vertex shaders. Attribute variables are used to pass frequently changing data to a 
shader. 

 
 

AUXILIARY BUFFER  

A region of offscreen memory that stores arbitrary or generic data, for example, 
intermediate results from a multipass rendering algorithm. A framebuffer may have more 
than one associated auxiliary buffer. 

 
 

BENT NORMAL  

A surface attribute that represents the average direction of the available light that is 
received at that point on the surface. This value is computed as follows: Cast rays from 
the point on the surface in the hemisphere indicated by the surface normal and then 
average all rays that are unoccluded by other parts of the model. 

 
 



BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION (BRDF)  

A model for computing the reflection from a surface. The elevation and azimuth angles of 
the incoming and outgoing energy directions are used to compute the relative amount of 
energy reflected in the outgoing direction. Measurements of real-world materials can be 
used in this computation to create a more realistic looking surface. BRDFs can more 
accurately render materials with anisotropic reflection properties. 

 
 

BRDF  

See BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION. 

 
 

BUFFERS  

Regions of memory on the graphics accelerator devoted to storing a particular type of 
data. A color buffer stores color values, a depth buffer stores depth values, etc. 

 
 

BUMP MAP  

A two-dimensional array of normal perturbation values that can be stored in texture 
memory. 

 
 

BUMP MAPPING  

A rendering technique that simulates the appearance of bumps, wrinkles, or other surface 
irregularities by perturbing surface normals before lighting calculations are performed. 

 
 

CALL BY VALUE-RETURN  

A subroutine calling convention whereby input parameters are copied into the function at 
call time and output parameters are copied back to the caller before the function exits. 

 
 

CHROMATIC ABERRATION  

The tendency of a lens to bend light of different colors by unequal amounts because of 
differences in the indices of refraction of the constituent wavelengths of the light. 

 
 

CHROMATIC DISPERSION  

The effect of distributing a light source into its constituent wavelengths, for example, by 
passing it through a prism. 



 
 

CLIP SPACE  

See CLIPPING COORDINATE SYSTEM. 

 
 

CLIPPING  

The process of comparing incoming graphics primitives to one or more reference planes 
and discarding any portion of primitives that are deemed to be outside those reference 
planes. 

 
 

CLIPPING COORDINATE SYSTEM  

The coordinate system in which view-volume clipping occurs. Graphics primitives are 
transformed from the eye coordinate system into the clipping coordinate system by the 
projection matrix. 

 
 

COLOR SUM  

The OpenGL pipeline stage that adds together the primary color and the secondary color. 
This stage occurs after texturing to allow a specular highlight that is the color of the light 
source to be applied on top of the textured surface. 

 
 

COMPILER FRONT END  

The part of the compiler that performs lexical, syntactical, and semantic analysis of 
source code and produces a binary representation of the code that is suitable for 
consumption by subsequent phases of compilation. 

 
 

CONSTRUCTOR  

A programming language feature for initializing aggregate data types or converting 
between data types. 

 
 

CONTROL TEXTURE  

A texture map whose primary function is to provide values that determine the behavior of 
a rendering algorithm rather than provide data for the rendering process. 

 
 

CONVOLUTION  



The weighted average of a function over a specified interval. 

 
 

CONVOLUTION FILTER  

See CONVOLUTION KERNEL. 

 
 

CONVOLUTION KERNEL  

The values that are used for weighting in a convolution operation. 

 
 

CUBE MAP  

A texture map comprising six 2D textures that correspond to faces on a cube. The faces 
are identified by their axial direction (±x, ±y, ±z), and the proper face is automatically 
selected when a texture access is performed. 

 
 

CUBE MAPPING  

The process of accessing the proper face of a cube map texture to retrieve the value that 
will be used in texture application. Cube mapping is one method for performing 
environment mapping. 

 
 

CULLING  

The act of discarding graphics primitives according to a particular criterion, such as 
whether the primitives are back facing with respect to the current viewing position. 

 
 

DEFERRED SHADING  

A shading algorithm that first identifies the visible surfaces in a scene and then applies a 
shading effect only to those visible surfaces. 

 
 

DEPENDENT TEXTURE READ  

A texture access operation that depends on values obtained from a previous texture-
access operation. 

 
 

DEPTH BUFFER  

An OpenGL offscreen memory buffer that maintains depth values. This buffer stores the 



depth of the topmost visible graphics primitive at each pixel. In conjunction with the 
depth test operation, this buffer can perform hidden surface elimination. 

 
 

DEPTH-CUING  

A graphics rendering technique that alters the appearance of a graphics primitive 
according to its distance from the viewer. Depth-cuing is often used to fade the color of 
distant primitives to the background color to make them appear more distant. 

 
 

DEPTH MAP  

See SHADOW MAP. 

 
 

DEPTH TEST  

An OpenGL pipeline stage that compares the depth associated with the incoming fragment 
with the depth value retrieved from the framebuffer. If the test fails, the fragment is 
discarded. 

 
 

DIFFRACTION  

The change in the directions and intensities of a group of waves (e.g., light waves) as 
they pass by an obstacle or pass through an aperture. 

 
 

DIFFRACTION GRATING  

A glass or metal surface with large numbers of small, parallel, equally spaced grooves or 
slits that produces a diffraction effect. 

 
 

DISPLAY LIST  

A sequence of OpenGL commands that is stored in OpenGLmanaged memory for later 
execution. 

 
 

DISPLAY LIST MODE  

A mode of rendering in which OpenGL commands are stored in a display list for execution 
at a later time rather than being executed when they are specified. 

 
 

DISPLAY MEMORY  



Framebuffer memory that is allocated to maintaining the image displayed on the 
computer monitor or LCD. Display memory is read many times per second (the refresh 
rate) and updates the visible display surface. 

 
 

DOUBLE BUFFERING  

A graphics rendering technique that involves rendering to a back buffer while displaying a 
front buffer. When rendering is completed, the two buffers are swapped. In this way, the 
end user never sees partially complete images, and animation can be smoother and more 
realistic. 

 
 

DRIVER  

A piece of software that interacts with the native operating system and controls a specific 
piece of hardware in the system. 

 
 

ENVIRONMENT MAPPING  

A rendering technique that involves saving the scene surrounding an object as one or 
more specialized texture maps and then, when rendering the object, accessing these 
texture maps to compute accurate reflections of that environment. 

 
 

EQUIRECTANGULAR TEXTURE MAP  

A rectangular 2D texture that can be used as an environment map. The texture spans 
360° horizontally and 180° vertically. Significant distortion occurs toward the top and 
bottom of the texture. Also known as a LATITUDE-LONGITUDE (or LAT-LONG) TEXTURE MAP. 

 
 

EXECUTABLE  

The machine code intended for execution on the vertex processor or the fragment 
processor. 

 
 

EYE COORDINATE SYSTEM  

The coordinate system that is defined to have the eye (viewing) position at the origin. 
Graphics primitives are transformed by the modelview matrix from the modeling (or 
object) coordinate system into the eye coordinate system. 

 
 

EYE SPACE  

see EYE COORDINATE SYSTEM. 



 
 

FILTERING  

The process of calculating a single value according to the values of multiple samples in 
the neighborhood of that value. 

 
 

FIXED FUNCTIONALITY  

The term used to describe portions of the OpenGL pipeline that are not programmable. 
These portions of OpenGL operate in a fixed fashion, and the behavior can be altered only 
when a predefined set of state variables is changed through the OpenGL API. 

 
 

FLAT SHADING  

The term used to describe the application of a single color value to the extent of a 
primitive (contrast with SMOOTH SHADING). 

 
 

FOG  

A rendering technique that simulates atmospheric effects due to particulates such as 
those contained in clouds and smog. Fog is computed by attenuation of the object color 
as a function of distance from the viewer. 

 
 

FRACTAL  

A geometrically complex object, the complexity of which arises through the repetition of a 
given form over a range of scales. (Ken Musgrave) 

 
 

FRAGMENT  

The set of data that is generated by rasterization and that represents the information 
necessary to update a single framebuffer location. A fragment consists of a window 
coordinate position and associated data such as color, depth, texture coordinates, and the 
like. 

 
 

FRAGMENT PROCESSING  

An OpenGL pipeline stage that defines the operations that occur to a fragment produced 
by rasterization before the back-end processing stages. For OpenGL fixed functionality, 
fragment processing operations include texture access, texture application, fog, and color 
sum. For the OpenGL programmable fragment processor, any type of per-fragment 
processing may be performed. 



 
 

FRAGMENT PROCESSOR  

A programmable unit that replaces the traditional fixed functionality fragment processing 
stage of OpenGL. Fragment shaders are executed on the fragment processor. 

 
 

FRAGMENT SHADER  

A program written in the OpenGL Shading Language for execution on the fragment 
processor. The fragment shader's main function is executed once for each fragment 
generated by rasterization and can be programmed to perform both traditional operations 
(texture access, texture application, fog) and nontraditional operations. 

 
 

FRAMEBUFFER  

The region of graphics memory that stores the results of OpenGL rendering operations. 
Part of the framebuffer (the front buffer) is visible on the display device, and part of it is 
not. 

 
 

FRAMEBUFFER OPERATIONS  

An OpenGL pipeline stage containing operations that control or affect the whole 
framebuffer (e.g., buffer masking operations, buffer clear operations). 

 
 

FREQUENCY  

The measure of periodicity in a function (i.e., how often the pattern of a function 
repeats). 

 
 

FRESNEL EFFECT  

The result of transparent materials causing light to be both reflected and refracted, with 
the amount of light reflected and refracted depending on the viewing angle. 

 
 

FRUSTUM  

See VIEW FRUSTUM. 

 
 

FRUSTUM CLIPPING  

An OpenGL pipeline stage that clips primitives to the view frustum. 



 
 

GEOMETRIC PRIMITIVE  

A point, line, or polygon. 

 
 

GLOSS MAP  

A texture map that controls the reflective characteristics of a surface rather than supply 
image data for the texturing operation. 

 
 

GLYPH BOMBING  

TEXTURE BOMBING using character glyphs from a texture map. 

 
 

GOOCH SHADING  

A non-photorealistic rendering technique that attempts to duplicate the look of a technical 
illustration. This technique is also called a low dynamic range artistic tone algorithm. 

 
 

GOURAUD SHADING  

See SMOOTH SHADING. 

 
 

GRADIENT  

The measure of how rapidly a function is changing in a particular direction. Properly, this 
is a vector (see GRADIENT VECTOR). More commonly, the magnitude of the gradient vector 
for the function f(x,y) in a particular direction is referred to as the gradient of the function 
f(x,y) in that direction. 

 
 

GRADIENT NOISE  

See PERLIN NOISE. 

 
 

GRADIENT VECTOR  

A vector that defines the rate of change of a function in all directions. The gradient vector 
for the function f(x,y) contains two components: the partial derivative of f with respect to 
x and the partial derivative of f with respect to y. 

 



 
GRAPHICS ACCELERATOR  

Hardware dedicated to the process of rendering and displaying graphics. 

 
 

GRAPHICS CONTEXT  

The OpenGL data structure that contains the state needed to control the operation of the 
rendering pipeline. 

 
 

GRAPHICS PROCESSING PIPELINE  

The sequence of operations that occurs when geometry or image data defined by an 
application is transformed into something that is stored in the framebuffer. This 
processing is divided into stages that occur in a specific order. Each stage has defined 
inputs and outputs and can be precisely described. 

 
 

HEMISPHERE LIGHTING  

The process of illuminating scenes and objects by modeling global illumination as two 
hemispheres, one representing the color of the sky and the other representing the color 
of the ground (or shadows). Computing the illumination at any surface point is done by 
integrating the light from the visible hemisphere at that point. 

 
 

IMAGE-BASED LIGHTING  

The process of illuminating scenes and objects with images of light captured from the real 
world. 

 
 

IMAGING SUBSET  

A collection of imaging-related functionality that was added to OpenGL as an optional 
subset in OpenGL 1.2. The imaging subset supports color matrix, convolution, histogram, 
and various blending operations. Graphics hardware vendors are not required to support 
this functionality as part of their OpenGL implementation. 

 
 

IMMEDIATE MODE  

A mode of rendering in which graphics commands are executed when they are specified 
rather than stored in a display list for later execution. 

 
 

INDEX OF REFRACTION  



The property of a material that defines the ratio of the speed of light in a vacuum to the 
speed of light in that material. 

 
 

ISOTROPIC  

Something with properties that are the same along a pair of orthogonal axes from which 
they are measured (i.e., rotationally invariant). Contrast with ANISOTROPIC. 

 
 

KEY-FRAME INTERPOLATION  

An animation technique that produces "inbetween" results based on interpolation between 
two key frames. This technique can save time and effort because the objects in the scene 
do not need to be painstakingly animated for every frame, only for those frames that 
provide the key to the overall animation sequence. 

 
 

L-VALUE  

An expression identifying an object in memory that can be written to. For example, 
variables that are writable are l-values. Array indexing and structure member selection 
are expressions that can result in l-values. 

 
 

LACUNARITY  

The frequency multiplier (or gap) between successive iterations of a summed noise 
(fractal) function. 

 
 

LATITUDE-LONGITUDE TEXTURE MAP  

see EQUIRECTANGULAR TEXTURE MAP. 

 
 

LEVEL-OF-DETAIL  

The value that selects a mipmap level from a mipmap texture. Incrementing the level-of-
detail by 1 results in the selection of a mipmap level that is half the resolution of the 
previous one. Thus, increasing the value used for level-of-detail results in the selection of 
mipmap levels that contain smaller and smaller textures (suitable for use on smaller and 
smaller objects on the screen). 

 
 

LEXICAL ANALYSIS  

The process of scanning the input text to produce a sequence of tokens (or terminal 
symbols) for the syntactical analysis phase that follows. Characters or tokens that are not 



part of the language can be identified as errors during this process. Sometimes this 
process is referred to as scanning. 

 
 

LIGHT PROBE  

A device or a system that captures an omnidirectional, high dynamic range image of light 
from a real-world scene. 

 
 

LIGHT PROBE IMAGE  

An omnidirectional, high dynamic range image of light captured from the real world. 

 
 

LOW-PASS FILTERING  

A method of filtering that eliminates high frequencies but leaves low frequencies 
unmodified. Low-pass filters are sometimes called SMOOTHING FILTERS because high 
frequencies are blurred (smoothed). 

 
 

MIPMAP LEVEL  

A specific texel array within a mipmap texture. 

 
 

MIPMAP TEXTURE  

An ordered set of texel arrays representing the same image. Typically, each array has a 
resolution that is half the previous one in each dimension. 

 
 

MODEL SPACE  

See MODELING COORDINATE SYSTEM. 

 
 

MODEL TRANSFORMATION MATRIX  

The matrix that transforms coordinates from the modeling coordinate system into the 
world coordinate system. In OpenGL, this matrix is not available separately; it is always 
part of the modelview matrix. 

 
 

MODELING  

The process of defining a numerical representation of an object that is to be rendered, for 



instance, defining the Bezier curves that specify a teapot, or the vertex positions, colors, 
surface normals, and texture coordinates that define a bowling pin. 

 
 

MODELING COORDINATE SYSTEM  

A coordinate system that is defined in a way that makes it convenient to specify and 
orient a single object. Also known as the OBJECT COORDINATE SYSTEM or OBJECT SPACE. 

 
 

MODELING TRANSFORMATION  

The transformation that takes coordinates from the modeling coordinate system into the 
world coordinate system. 

 
 

MODELVIEW MATRIX  

The matrix that transforms coordinates from the modeling coordinate system into the eye 
coordinate system. 

 
 

MODELVIEW-PROJECTION MATRIX  

The matrix that transforms coordinates from the modeling coordinate system into the 
clipping coordinate system. 

 
 

MULTIFRACTAL  

A function whose fractal dimension varies according to location. 

 
 

MULTISAMPLE BUFFER  

A region of offscreen memory that can perform supersampling by maintaining more than 
one sample per pixel and automatically averaging the samples to produce the final, 
antialiased image. 

 
 

NEIGHBORHOOD AVERAGING  

An image processing technique that low-pass filters (smooths) an image by computing 
the weighted average of pixels in close proximity to one another. 

 
 

NOISE  



A continuous, irregular function with a defined range that creates complex and interesting 
patterns. 

 
 

NON-PHOTOREALISTIC RENDERING (NPR)  

A class of rendering techniques whose purpose is to achieve something other than the 
most realistic result possible. Such techniques may strive to achieve a painterly or hand-
drawn appearance, the look of a technical illustration, or a cartoonlike appearance. 
Hatching and Gooch shading are examples of NPR techniques. 

 
 

NORMAL MAP  

A texture map that contains normals rather than image data. 

 
 

NORMALIZED DEVICE COORDINATE SPACE  

The coordinate space that contains the view volume in an axis-aligned cube with a 
minimum corner at (1,1,1) and a maximum corner at (1,1,1). 

 
 

NPR  

See NON-PHOTOREALISTIC RENDERING. 

 
 

OBJECT COORDINATE SYSTEM  

See MODELING COORDINATE SYSTEM. 

 
 

OBJECT SPACE  

See MODELING COORDINATE SYSTEM. 

 
 

OCTAVE  

Two frequencies that are related by a ratio of 2:1. 

 
 

OFFSCREEN MEMORY  

Framebuffer memory that stores things, such as depth buffers and textures, that are 
never directly visible on the display screen (contrast with DISPLAY MEMORY). 



 
 

OPENGL SHADER  

A term applied to a shader written in the OpenGL Shading Language to differentiate from 
a shader written in another shading language. 

 
 

OPENGL SHADING LANGUAGE  

The high-level programming language defined to allow application writers to write 
programs that execute on the programmable processors defined within OpenGL. 

 
 

OPENGL SHADING LANGUAGE API  

The set of function calls added to OpenGL to allow OpenGL shaders to be created, 
deleted, queried, compiled, linked, and used. 

 
 

PARSING  

See SYNTACTIC ANALYSIS. 

 
 

PARTICLE SYSTEM  

A rendering primitive that consists of a large number of points or short lines that are 
suitable for rendering a class of objects with ill-defined boundaries (e.g., fire, sparks, 
liquid sprays). 

 
 

PER-FRAGMENT OPERATIONS  

An OpenGL pipeline stage that occurs after fragment processing and before framebuffer 
operations. It includes a variety of tests, such as the stencil, alpha, and depth tests, 
aimed at determining whether the fragment should be used to update the framebuffer. 

 
 

PERLIN NOISE  

A noise function that is defined to have a value of 0 for integer input values and whose 
variability is introduced by defining pseudorandom gradient values at each of those 
points. Also called GRADIENT NOISE. 

 
 

PHOTOREALISM  

The effort to use computer graphics to model, render, and animate a scene in such a way 



that it is indistinguishable from a photograph or film sequence of the same scene in real 
life. 

 
 

PIXEL GROUP  

A value that will ultimately be used to update the framebuffer (i.e., a color, depth, or 
stencil value). 

 
 

PIXEL OWNERSHIP TEST  

An OpenGL pipeline stage that decides whether a fragment can be used to update the 
framebuffer or whether the targeted framebuffer location belongs to another window or to 
another OpenGL graphics context. 

 
 

PIXEL PACKING  

An OpenGL pipeline stage that writes pixels retrieved from OpenGL into application-
controlled memory. 

 
 

PIXEL RECTANGLE  

A rectangular array of pixels (i.e., an image). 

 
 

PIXEL TRANSFER  

An OpenGL pipeline stage that processes pixel data while it is being transferred within 
OpenGL. At this stage, operations can occur for the following: scaling and biasing, lookup 
table, convolution, histogram, color matrix, and the like. 

 
 

PIXEL UNPACKING  

An OpenGL pipeline stage that reads pixels (i.e., image data) from application-controlled 
memory and sends them on for further processing by OpenGL. 

 
 

POINT SAMPLING  

The process of determining the value at each pixel by sampling the function at just one 
point. This is the typical behavior of graphics hardware and many graphics algorithms, 
and it can lead to aliasing artifacts. Contrast with SUPERSAMPLING and AREA SAMPLING. 

 
 



POINT SPRITE  

A screen-aligned quadrilateral that has texture coordinates and that is drawn by 
rasterizing a single point primitive. Normally, points are drawn as a single pixel or as a 
round circle. A point sprite can be used to draw an image stored in a texture map at each 
point position. 

 
 

POLYNOMIAL TEXTURE MAP (PTM)  

A light-dependent texture map that can reconstruct the color of a surface under varying 
lighting conditions. 

 
 

PRIMITIVE ASSEMBLY  

An OpenGL pipeline stage that occurs after vertex processing and that assembles 
individual vertex values into a primitive. The primary function of this stage is to buffer 
vertex values until enough accumulate to define the desired primitive. Points require one 
vertex, lines require two, triangles require three, and so on. 

 
 

PRIMITIVES  

In OpenGL parlance, things that can be rendered: points, lines, polygons, bitmaps, and 
images. 

 
 

PROCEDURAL TEXTURE SHADER  

A shader that produces its results primarily by synthesizing rather than by relying heavily 
on precomputed values. 

 
 

PROCEDURAL TEXTURING  

The process of computing a texture primarily by synthesizing rather than by relying 
heavily on precomputed values. 

 
 

PROGRAM  

The set of executables that result from successful linking of a program object. This 
program can be installed as part of OpenGL's current state to provide programmable 
vertex and fragment processing. 

 
 

PROGRAM OBJECT  



An OpenGL-managed data structure that serves as a container object for one or more 
shader objects. Program objects are used when shaders are linked. Linking a program 
object results in one or more executables that are part of the program object and that can 
be installed as part of current state. 

 
 

PROJECTION MATRIX  

The matrix that transforms coordinates from the eye coordinate system to the clipping 
coordinate system. 

 
 

PROJECTION TRANSFORMATION  

The transformation that takes coordinates from the eye coordinate system into the 
clipping coordinate system. 

 
 

PTM  

See POLYNOMIAL TEXTURE MAP. 

 
 

PULSE TRAIN  

A periodic function that varies abruptly between two values (i.e., a square wave). 

 
 

R-VALUE  

An expression identifying a declared or temporary object in memory that can be readfor 
example, a variable name is an r-value, but function names are not. Expressions result in 
r-values. 

 
 

RASTER POSITION  

A piece of OpenGL state that positions bitmap and image write operations. 

 
 

RASTERIZATION  

The process of converting graphics primitives such as points, lines, polygons, bitmaps, 
and images into fragments. 

 
 

READ CONTROL  



An OpenGL pipeline stage that contains state to define the region of framebuffer memory 
that is read during pixel read operations. 

 
 

RENDERING  

The process of converting geometry or image data defined by an application into 
something that is stored in the framebuffer. 

 
 

RENDERING PIPELINE  

See GRAPHICS PROCESSING PIPELINE. 

 
 

SAMPLER  

An opaque data type in the OpenGL Shading Language that stores the information needed 
to access a particular texture from within a shader. 

 
 

SCANNING  

See LEXICAL ANALYSIS. 

 
 

SCENE GRAPH  

Either a hierarchical data structure containing a description of a scene to be rendered or a 
rendering engine for traversing and rendering such data structures. 

 
 

SCISSOR TEST  

An OpenGL pipeline stage that, when enabled, allows drawing operations to occur only 
within a specific rectangular region that has been defined in window coordinates. 

 
 

SEMANTIC ANALYSIS  

The process of determining whether the input text conforms to the semantic rules defined 
or implied by a programming language. Semantic errors in the input text can be identified 
during this phase of compilation. 

 
 

SHADER  

Source code written in the OpenGL Shading Language that is intended for execution on 



one of OpenGL's programmable processors. 

 
 

SHADER OBJECT  

An OpenGL-managed data structure that stores the source code and the compiled code 
for a shader written in the OpenGL Shading Language. Shader objects can be compiled, 
and compiled shader objects can be linked to produce executable code (see PROGRAM 

OBJECT). 

 
 

SHADOW MAP  

A texture created by rendering a scene from the point of view of a light source. This 
texture is then used during a final rendering pass to determine the parts of the scene that 
are in shadow. Also known as a DEPTH MAP. 

 
 

SHADOW MAPPING  

An algorithm that computes shadows by rendering the scene once for each shadow-
causing light source in the scene and once for the final rendering of the scene, including 
shadows. The perlight rendering passes are rendered from the light source's point of view 
and create shadow maps. These textures are then accessed on the final pass to determine 
the parts of the scene that are in shadow. 

 
 

SMOOTH SHADING  

The term used to describe the application of linearly interpolated color values across the 
extent of a primitive (contrast with FLAT SHADING). Also called GOURAUD SHADING. 

 
 

SMOOTHING FILTERS  

See LOW-PASS FILTERING. 

 
 

SPHERE MAPPING  

A method for performing environment mapping that simulates the projection of the 
environment onto a sphere surrounding the object to be rendered. The mapped 
environment is treated as a 2D texture map and accessed with the polar coordinates of 
the reflection vector. 

 
 

STENCIL BUFFER  

An offscreen region of framebuffer memory that can be used with the stencil test to mask 



regions. A complex shape can be stored in the stencil buffer, and subsequent drawing 
operations can use the contents of the stencil buffer to determine whether to update each 
pixel. 

 
 

STENCIL TEST  

An OpenGL pipeline stage that conditionally eliminates a pixel according to the results of a 
comparison between the value stored in the stencil buffer and a reference value. 
Applications can specify the action taken when the stencil test fails, the action taken when 
the stencil test passes and the depth test fails, and the action to be taken when both the 
stencil test and the depth test pass. 

 
 

SUPERSAMPLING  

A rendering technique that involves taking two or more point samples per pixel and then 
filtering these values to determine the value to be used for the pixel. Supersampling does 
not eliminate aliasing but can reduce it to the point at which it is no longer objectionable. 

 
 

SURFACE-LOCAL COORDINATE SPACE  

A coordinate system that assumes that each point on a surface is at (0,0,0) and that the 
unperturbed surface normal at each point is (0,0,1). 

 
 

SWIZZLE  

To duplicate or switch around the order of the components of a vector (e.g, to create a 
value that contains alpha, green, blue, red from one that contains red, green, blue, 
alpha). 

 
 

SYNTACTIC ANALYSIS  

The process of determining whether the structure of an input text is valid according to the 
grammar that defines the language. Syntax errors in the input text can be identified 
during this phase of compilation. Sometimes referred to as parsing. 

 
 

TANGENT SPACE  

A particular surface-local coordinate system that is defined with a tangent vector as one 
of the basis vectors. 

 
 

T&L  



See TRANSFORMATION AND LIGHTING. 

 
 

TEMPORAL ALIASING  

Aliasing artifacts that are caused by insufficient sampling in the time domain or 
inadequate representation of objects that are in motion. 

 
 

TEXEL  

A single pixel in a texture map. 

 
 

TEXTURE ACCESS  

The process of reading from a texture map in texture memory, including the filtering that 
occurs, the level-of-detail calculation for mipmap textures, and so on. 

 
 

TEXTURE APPLICATION  

The process of using the value read from texture memory to compute the color of a 
fragment. OpenGL's fixed functionality has fixed formulas for this process, but with 
programmability, this operation has become much more general. 

 
 

TEXTURE BOMBING  

The process of applying irregularly spaced decorative elements (stars, polka dots, 
character glyphs, etc.) to an object's surface. Decorative elements can be computed 
procedurally or obtained from a texture map. They can also be randomly scaled and 
rotated to add further interest. 

 
 

TEXTURE MAPPING  

The combination of texture access and texture application. Traditionally, this mapping 
involves reading image data from a texture map stored in texture memory and using it as 
the color for the primitive being rendered. With programmability, this operation has 
become much more general. 

 
 

TEXTURE MEMORY  

A region of memory on the graphics accelerator that is used for storing textures. 

 
 



TEXTURE OBJECT  

The OpenGL-managed data structure that contains information that describes a texture 
map, including the texels that define the texture, the wrapping behavior, the filtering 
method, and so on. 

 
 

TEXTURE UNIT  

An OpenGL abstraction for the graphics hardware that performs texture access and 
texture application. Since version 1.2, OpenGL has allowed the possibility of more than 
one texture unit, thus allowing access to more than one texture at a time. 

 
 

TRANSFORMATION AND LIGHTING (T&L)  

The process of converting vertex positions from object coordinates into window 
coordinates, and for converting vertex colors into colors that are displayable on the 
screen, taking into account the effects of simulated light sources. 

 
 

TURBULENCE  

A variation of Perlin noise that sums noise functions of different frequencies. These 
frequencies include an absolute value function to introduce discontinuities to the function 
in order to give the appearance of turbulent flow. 

 
 

UNIFORM VARIABLE  

An OpenGL Shading Language variable that is qualified with the uniform keyword. The 
values for these variables are provided by the application or through OpenGL state. They 
are read-only from within a shader and may be accessed from either vertex shaders or 
fragment shaders. They pass data that changes relatively infrequently. 

 
 

UNSHARP MASKING  

A method of sharpening an image by subtracting a blurred version of the image from 
itself. 

 
 

USER CLIPPING  

An OpenGL operation that compares graphics primitives to user-specified clipping planes 
in eye space and discards everything that is deemed to be outside the intersection of 
those clipping planes. 

 
 



VALUE NOISE  

A noise function that is defined as follows: Assign pseudorandom values in a defined 
range (e.g., [0,1] or [1,1]) to each integer input value and then smoothly interpolate 
between those values. 

 
 

VARYING VARIABLE  

An OpenGL Shading Language variable that is qualified with the varying keyword. These 
variables are defined at each vertex and interpolated across a graphics primitive to 
produce a perspective-correct value at each fragment. They must be declared in both the 
vertex shader and the fragment shader with the same type. They are the output values 
from vertex shaders and the input values for fragment shaders. 

 
 

VERTEX  

A point in three-dimensional space. 

 
 

VERTEX ATTRIBUTES  

Values that are associated with a vertex. OpenGL defines both standard and generic 
vertex attributes. Standard attributes include vertex position, color, normal, and texture 
coordinates. Generic vertex attributes can be defined to be arbitrary data values that are 
passed to OpenGL for each vertex. 

 
 

VERTEX PROCESSING  

An OpenGL pipeline stage that defines the operations that occur to each vertex from the 
time the vertex is provided to OpenGL until the primitive assembly stage. For OpenGL 
fixed functionality, this processing includes transformation, lighting, texture coordinate 
generation, and other operations. For the OpenGL programmable vertex processor, any 
type of per-vertex processing may be performed. 

 
 

VERTEX PROCESSOR  

A programmable unit that replaces the traditional fixed functionality vertex processing 
stage of OpenGL. Vertex shaders are executed on the vertex processor. 

 
 

VERTEX SHADER  

A program written in the OpenGL Shading Language that executes on the vertex 
processor. The vertex shader's main function is executed once for each vertex provided 
to OpenGL and can be programmed to perform both traditional operations 
(transformation, lighting) and nontraditional operations. 



 
 

VIEW FRUSTUM  

The view volume after it has been warped by the perspective division calculation. 

 
 

VIEW VOLUME  

The volume in the clipping coordinate system whose coordinates x, y, z, and w all satisfy 
the conditions that w  x  w, w  y  w, and w  z  w. Any portion of a geometric 
primitive that extends beyond this volume will be clipped. 

 
 

VIEWING MATRIX  

The matrix that transforms coordinates from the world coordinate system into the eye 
coordinate system. In OpenGL, this matrix is not available separately; it is always part of 
the modelview matrix. 

 
 

VIEWING TRANSFORMATION  

The transformation that takes coordinates from the world coordinate system into the eye 
coordinate system. 

 
 

VIEWPORT TRANSFORMATION  

The transformation that takes coordinates from the normalized device coordinate system 
into the window coordinate system. 

 
 

WINDOW COORDINATE SYSTEM  

The coordinate system used to identify pixels within a window on the display device. In 
this coordinate system, x values range from 0 to the width of the window minus 1, and y 
values range from 0 to the height of the window minus 1. OpenGL defines the pixel with 
window coordinates (0,0) to be the pixel at the lower-left corner of the window. 

 
 

WORLD COORDINATE SYSTEM  

A coordinate system that is defined in a way that is convenient for the placement and 
orientation of all of the objects in a scene. 

 
 

WORLD SPACE  

 

See WORLD COORDINATE SYSTEM. 
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