Outils pour utilisateurs

Outils du site


darknet_letters

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
darknet_letters [2020/06/20 09:04]
serge [Quels matériels pour un apprentissage rapide ?]
darknet_letters [2020/06/20 09:05] (Version actuelle)
serge [Quels matériels pour un apprentissage rapide ?]
Ligne 339: Ligne 339:
  
     * RTX 2060 (6 GB): if you want to explore deep learning in your spare time. 360€     * RTX 2060 (6 GB): if you want to explore deep learning in your spare time. 360€
-    * RTX 2070 or 2080 (8 GB): if you are serious about deep learning, but your GPU budget is $600-800. Eight GB of VRAM can fit the majority of models. ​700€ +    * RTX 2070 or 2080 (8 GB): if you are serious about deep learning, but your GPU budget is $600-800. Eight GB of VRAM can fit the majority of models. 
-    * RTX 2080 Ti (11 GB): if you are serious about deep learning and your GPU budget is ~$1,200. The RTX 2080 Ti is ~40% faster than the RTX 2080. 1200€+    * RTX 2080 Ti (11 GB): if you are serious about deep learning and your GPU budget is ~$1,200. The RTX 2080 Ti is ~40% faster than the RTX 2080.
     * Titan RTX and Quadro RTX 6000 (24 GB): if you are working on SOTA models extensively,​ but don't have budget for the future-proofing available with the RTX 8000. 4000€     * Titan RTX and Quadro RTX 6000 (24 GB): if you are working on SOTA models extensively,​ but don't have budget for the future-proofing available with the RTX 8000. 4000€
     * Quadro RTX 8000 (48 GB): you are investing in the future and might even be lucky enough to research SOTA deep learning in 2020. 5500€     * Quadro RTX 8000 (48 GB): you are investing in the future and might even be lucky enough to research SOTA deep learning in 2020. 5500€
darknet_letters.txt · Dernière modification: 2020/06/20 09:05 par serge