Outils pour utilisateurs

Outils du site


yolo_darknet_sur_un_portable_optimus

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
yolo_darknet_sur_un_portable_optimus [2019/04/09 16:22]
serge [Préparation]
yolo_darknet_sur_un_portable_optimus [2020/12/27 16:09]
serge
Ligne 1: Ligne 1:
 ======Yolo Darknet sur un portable Optimus====== ======Yolo Darknet sur un portable Optimus======
-<WRAP center round box 80% centeralign> +<WRAP center round box 60% centeralign> 
-**{{tagpage>semaphore|Sémaphores}}**  ....  **{{tagpage>bge|Blender Game Engine}}** ....  **{{tagpage>ia|Intelligence Artificielle}}**+**{{tagpage>ia|Intelligence Artificielle}}**     **[[http://translate.google.com/translate?hl=&sl=auto&tl=en&u=https%3A%2F%2Fressources.labomedia.org%2Fyolo_darknet_sur_un_portable_optimus|English Version]]**
 </WRAP> </WRAP>
-<WRAP center round box 80% centeralign>+<WRAP center round box 60% centeralign> 
 +**[[les_pages_intelligence_artificielle_en_details|Les Pages Intelligence Artificielle en détails]]** 
 +</WRAP> 
 + 
 +<WRAP center round box 60% centeralign> 
 +**{{tagpage>semaphore|Sémaphores}}**  ....  **{{tagpage>bge|Blender Game Engine}}** 
 +</WRAP> 
 +<WRAP center round box 60% centeralign> 
 +C'est quoi un sémaphore ? 
 +{{ youtube>F3sY6_fOx2I?medium }} 
 +{{ media_05:chappe.jpeg?400 }} 
 +</WRAP> 
 +\\ \\  
 +<WRAP center round box 60% centeralign>
 //**Installation de YOLO Darknet sur un portable avec Optimus**//\\ //**Installation de YOLO Darknet sur un portable avec Optimus**//\\
 //**Test avec des images du sémaphore**//\\ //**Test avec des images du sémaphore**//\\
 //**Valable aussi pour un Desktop avec une carte graphique Nvidia**//\\ //**Valable aussi pour un Desktop avec une carte graphique Nvidia**//\\
 </WRAP> </WRAP>
-{{ chappe.jpeg?400 }}+ 
 + 
  
 =====Considération générales===== =====Considération générales=====
-  * **Xubuntu 18.04 CUDA 10.0 CUDNN 7.4.1.5 ** Ne pas utiliser Ubuntu Mate, il y a un conflit de dépendances entre CUDA et Mate Desktop +  * **Xubuntu 18.04 CUDA 10.0 CUDNN 7.4.1.5 **  
-  * **Sur Ubuntu, il est possible d'avoir le driver Nvidia en permanence.** Sur Debian, bbswitch permet d'utiliser la carte Intel à Nvidia en lançant un programme avec optirun.  +  * **Ne pas utiliser le bureau Mate**, il y a un conflit de dépendances entre CUDA et Mate Desktop 
 +  * **Sur Ubuntu, l'installation du driver propriétaire est facile, et il est possible d'avoir le driver Nvidia en permanence.** Sur Debian, bbswitch permet d'utiliser la carte Nvidia en lançant un programme avec optirun. Ce serait bien d'essayer cette installation sur Debian !  
 +  * **Ce tuto a été écrit avec des tests réalisés sur un portable avec une carte 765GTX et sur une tour avec une carte 1060GTX**
 =====Ressources et documentation de YOLO Darknet===== =====Ressources et documentation de YOLO Darknet=====
 ===Darknet=== ===Darknet===
-  * **[[https://github.com/AlexeyAB/darknet|darknet de AlexeyAB sur GitHub]] Nous allons suivre à la lettre ce README**+  * **[[https://github.com/AlexeyAB/darknet|darknet de AlexeyAB sur GitHub]] Nous allons suivre ce README à la lettre.**
  
 =====Installation de CUDA 10.0 sur Xubuntu 18.04===== =====Installation de CUDA 10.0 sur Xubuntu 18.04=====
-  * https://www.tensorflow.org/install/gpu#ubuntu_1804_cuda_10+  * [[https://www.tensorflow.org/install/gpu#ubuntu_1804_cuda_10| CUDA 10 sur Ubuntu 18.04 @ tensorflow.org]]
 ====Installation du driver Nvidia==== ====Installation du driver Nvidia====
 Avec le Gestionnaire de pilotes supplémentaires Avec le Gestionnaire de pilotes supplémentaires
-====Installation====+====Installation de cuda,cudnn, opencv-python====
 Le tout va télécharger 3 à 4 Go ! Le tout va télécharger 3 à 4 Go !
 <code> <code>
Ligne 33: Ligne 50:
 sudo apt-get install --no-install-recommends cuda-10-0 sudo apt-get install --no-install-recommends cuda-10-0
 sudo apt-get install --no-install-recommends libcudnn7=7.4.1.5-1+cuda10.0  libcudnn7-dev=7.4.1.5-1+cuda10.0 sudo apt-get install --no-install-recommends libcudnn7=7.4.1.5-1+cuda10.0  libcudnn7-dev=7.4.1.5-1+cuda10.0
-sudo apt-get install cmake clang python3-pip libopencv-dev libopencv-core-dev libopencv-highgui-dev libopencv-flann-dev libopencv-photo-dev libopencv-video-dev libopencv-dev +sudo apt-get install cmake clang python3-pip libopencv-dev libopencv-core-dev libopencv-highgui-dev libopencv-flann-dev libopencv-photo-dev libopencv-video-dev 
-sudo pip3 install opencv-python==3.4.5.20+sudo pip3 install opencv-python==3.4.5.20 scikit-image
 </code> </code>
 +
 +Après installation, ne pas faire de mises à jour système: ça casserai libcudnn7=7.4.1.5-1+cuda10.0
 +
 +Pour faire les mises à jour, il faudrait d'abord bloquer les versions de cuda et cudnn, y compris les dev.
 +
 +====Installation complémentaire pour mes projets====
 +Installation de mon module personnel: [[:pymultilame|Python: pymultilame]]
 +
 +
 +
 =====Installation de YOLO Darknet===== =====Installation de YOLO Darknet=====
-Dans les sources décompressée de darknet: +Dans les [[https://github.com/AlexeyAB/darknet|sources]] décompressée de darknet: 
-====Avec GPU avec CUDA avec OPENCV==== + 
-Recommencer avec une copie des sources originale de darknet +Pour ajouter la libération de la RAM GPU entre 2 détections dans un script python, 
-===Options de Makefile===+[[Darknet Letters unload GPU RAM in python script|Darknet Letters unload GPU RAM in python script]] 
 +====Options de Makefile avec GPU avec CUDA avec OPENCV====
 <code> <code>
 GPU=1 GPU=1
Ligne 48: Ligne 76:
 AVX=0 AVX=0
 OPENMP=0 OPENMP=0
-LIBSO=0+LIBSO=1
 ZED_CAMERA=0 ZED_CAMERA=0
 </code> </code>
-===Compil===+====Compil====
 <code> <code>
 export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
Ligne 61: Ligne 89:
 </code> </code>
 L'excécutable est dans le dossier root de darknet. L'excécutable est dans le dossier root de darknet.
 +
 +Le fichier libdarknet.so de 1060GTX: {{ media_07:libdarknet.so.zip |}}
 =====Préparation===== =====Préparation=====
-Voir la page **[[yolo_sans_carte_graphique|YOLO sans carte graphique]]** pour la construction des images et des fichiers train.txt et test.txt+Voir la page **[[yolo_avec_mes_propres_images|Yolo avec mes propres images]]** pour la construction de **60 000 images 640x640** et des fichiers *.txt correspondants.
  
 +Ici nous utilisons **[[https://github.com/sergeLabo/semaphore_cv_yolo|Création d'images pour utiliser Yolo Darknet avec OpenCV]]**.
 +
 +Les axes blanc sont probablement important pour la reconnaissance.
 +
 +{{media_01:shot_53_z.jpg?200|}}
 +{{media_01:shot_455_w.jpg?200|}}
 +{{media_01:shot_894_c.jpg?200|}}
 +{{media_01:shot_1916_z.jpg?200|}}
 +{{media_01:shot_59248_j.jpg?200|}}
 +  
 **darknet53.conv.74** **darknet53.conv.74**
   wget https://pjreddie.com/media/files/darknet53.conv.74   wget https://pjreddie.com/media/files/darknet53.conv.74
 +Coller le fichier dans le dossier darknet
  
 +Créer un dossier axe où nous allons ranger les éléments de notre projet. Pourquoi "axe" ? parce que mon sémaphore à des axes !
 <WRAP group> <WRAP group>
 <WRAP half column> <WRAP half column>
-**cfg/obj.data**\\ +**axe/obj.data**\\ 
-Ce fichier définit les chemins vers les fichiers de configuration. Par exemple, tout mettre dans un dossiers, ici "axe"+Ce fichier définit les chemins vers les fichiers de configuration.
 <code> <code>
 classes= 27 classes= 27
Ligne 81: Ligne 123:
  
 <WRAP half column> <WRAP half column>
-**Créer un fichier obj.names:**+**Créer un fichier axe/obj.names:**
 <code> <code>
 a a
Ligne 98: Ligne 140:
 ===train.txt et test.txt=== ===train.txt et test.txt===
 Les créer en collant le script **[[https://github.com/sergeLabo/semaphore_cv_yolo/blob/master/get_opencv_shot/create_train_test_txt.py|create_train_test_txt.py]]** dans le dossier axe. Puis: Les créer en collant le script **[[https://github.com/sergeLabo/semaphore_cv_yolo/blob/master/get_opencv_shot/create_train_test_txt.py|create_train_test_txt.py]]** dans le dossier axe. Puis:
-  * installer [[pymultilame|pymultilame]]+  * installer [[:pymultilame|pymultilame]]
   * adapter le chemin vers le dossier root des images dans le script   * adapter le chemin vers le dossier root des images dans le script
   python3 create_train_test_txt.py   python3 create_train_test_txt.py
 +Les fichiers train.txt et test.txt sont dans le dossier axe.
  
 ===Le fichier *cfg=== ===Le fichier *cfg===
   * **[[https://github.com/sergeLabo/semaphore_cv_yolo/blob/master/axe/yolov3-obj_3l_labo_axe.cfg|yolov3-obj_3l_labo_axe.cfg]]**   * **[[https://github.com/sergeLabo/semaphore_cv_yolo/blob/master/axe/yolov3-obj_3l_labo_axe.cfg|yolov3-obj_3l_labo_axe.cfg]]**
-Nous utilisons Yolo v3 avec:+Pour avoir Yolo v3 avec:
   * Des objets main droite différent des objets main gauche   * Des objets main droite différent des objets main gauche
   * Des petits et des grands objets   * Des petits et des grands objets
-  * à revoir+  * vérifier avec le readme de Alexei
  
 =====Training===== =====Training=====
-  export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} +  ./darknet detector train axe/obj.data axe/yolov3-obj_3l_labo_axe.cfg darknet53.conv.74 -map
-  ./darknet detector train cfg/obj.data cfg/tiny-yolo.cfg darknet53.conv.74 -map+
  
-{{ :2019_04:chart.png?800 |}}+{{ media_01:chart.png?300 |}}
  
-Le calcul crée des fichiers de poids dans le dossier darknet/backup:\\ +===Message final=== 
-**yolov3-tiny_1000.weights ... yolov3-tiny_2000.weights ... yolov3-tiny_3000.weights** +<code> 
-====Test==== + calculation mAP (mean average precision)... 
-  export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} +6000 
-  ./darknet detector test cfg/obj.data cfg/yolov3-tiny.cfg backup/yolov3-tiny_15000.weights predictions_space.jpg+ detections_count = 9091, unique_truth_count = 6000   
 +class_id = 0, name = a, ap = 100.00%    (TP = 216, FP = 1)  
 +class_id = 1, name = space, ap = 98.59%    (TP = 218, FP = 6)  
 +class_id = 2, name = b, ap = 100.00%    (TP = 203, FP = 0)  
 +class_id = 3, name = c, ap = 99.99%    (TP = 227, FP = 0)  
 +class_id = 4, name = d, ap = 100.00%    (TP = 223, FP = 0)  
 +class_id = 5, name = e, ap = 86.90%    (TP = 129, FP = 26)  
 +class_id 6, name f, ap 100.00%    (TP 225, FP 1)  
 +class_id 7, name g, ap 100.00%    (TP = 218, FP = 0)  
 +class_id = 8, name = h, ap = 100.00%    (TP = 252, FP = 1)  
 +class_id = 9, name = i, ap = 98.82%    (TP = 196, FP = 2)  
 +class_id = 10, name = j, ap = 100.00%    (TP = 217, FP = 0)  
 +class_id = 11, name = k, ap = 100.00%    (TP = 243, FP = 0)  
 +class_id = 12, name = l, ap = 100.00%    (TP = 222, FP = 1)  
 +class_id = 13, name = m, ap = 100.00%    (TP = 229, FP = 0)  
 +class_id = 14, name = n, ap = 93.93%    (TP = 200, FP = 88)  
 +class_id = 15, name = o, ap = 100.00%    (TP = 217, FP = 4)  
 +class_id = 16, name = p, ap = 100.00%    (TP = 241, FP = 16)  
 +class_id = 17, name = q, ap = 100.00%    (TP = 235, FP = 15)  
 +class_id = 18, name = r, ap = 99.52%    (TP = 184, FP = 0)  
 +class_id = 19, name = s, ap = 100.00%    (TP = 222, FP = 2)  
 +class_id = 20, name = t, ap = 99.98%    (TP = 212, FP = 24)  
 +class_id = 21, name = u, ap = 100.00%    (TP = 198, FP = 1)  
 +class_id = 22, name = v, ap = 74.66%    (TP = 76, FP = 0)  
 +class_id = 23, name = w, ap = 100.00%    (TP = 205, FP = 0)  
 +class_id = 24, name = x, ap = 100.00%    (TP = 245, FP = 0)  
 +class_id = 25, name = y, ap = 100.00%    (TP = 223, FP = 0)  
 +class_id = 26, name = z, ap = 100.00%    (TP = 223, FP = 0)  
 + 
 + for thresh = 0.25, precision = 0.97, recall = 0.95, F1-score = 0.96  
 + for thresh = 0.25, TP = 5699, FP = 188, FN = 301, average IoU = 87.69 %  
 + IoU threshold = 50 %, used Area-Under-Curve for each unique Recall  
 + mean average precision (mAP@0.50) = 0.982366, or 98.24 %  
 + mean_average_precision (mAP@0.5) = 0.982366  
 +</code> 
 + 
 +=====Testing===== 
 +====Test sur une image==== 
 +  ./darknet detector test axe/obj.data  axe/yolov3-obj_3l_labo_axe.cfg axe/backup/yolov3-obj_3l_labo_axe_final.weights axe/shot_36_space.jpg
  
-Le résultat est dans l'image predictions.jpg du dossier darknet+Le résultat est dans l'image predictions.jpg du dossier axe
 <WRAP group> <WRAP group>
 <WRAP half column> <WRAP half column>
-{{:2019_03:predictions_b_h.jpg?400|}}+{{media_01:predictions_b_h.jpg?400|}}
 </WRAP> </WRAP>
 <WRAP half column> <WRAP half column>
-{{:2019_03:predictions_space.jpg?400|}}\\+{{media_01:predictions_space.jpg?400|}}\\
 shot_36_space.jpg: Predicted in 58.519000 milli-seconds:\\ shot_36_space.jpg: Predicted in 58.519000 milli-seconds:\\
 space: 40% space: 40%
 </WRAP> </WRAP>
 </WRAP> </WRAP>
-=====64 000 images 704x704===== 
-====Essai 1==== 
-===Apprentissage=== 
-3 jours entiers de calcul ! 15 fichiers de poids 
-  export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} 
-  ./darknet detector train cfg/obj.data cfg/tiny-yolo.cfg darknet53.conv.74 
-===Test sur une image=== 
-  export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} 
-  ./darknet detector test cfg/obj.data cfg/tiny-yolo.cfg backup/tiny-yolo_15000.weights /media/data/projets/64k_704/shot/shot_50004_n.jpg 
      
-  i: 64% +====Test sur une video et enregistrement du résultat==== 
-  n: 34% +  ./darknet detector demo axe/obj.data axe/yolov3-obj_3l_labo_axe.cfg axe/backup/yolov3-obj_3l_labo_axe_final.weights axe/semaphore.avi -i 0 -thresh 0.10 -out_filename axe/res_semaphore.avi
-Très décevant, c'est un **n**! +
-{{ :2019_04:predictions_n.jpg?400 |}}+
  
-===Test sur des videos=== +{{ vimeo>330471526?medium }} 
-  ./darknet detector demo ./cfg/obj.data ./cfg/tiny-yolo.cfg ./backup/tiny-yolo_15000.weights /media/data/projets/video/semaphore.avi -i 0 -thresh 0.25 +====Test avec webcam et enregistrement du résultat====
-{{ :2019_04:video_1_single.png?400 |}} +
-Détection à 15 FPS, mais trop d'erreurs !! +
- +
-===Test avec webcam===+
 Pour webcam=0 Pour webcam=0
-  ./darknet detector demo ./cfg/obj.data ./cfg/tiny-yolo.cfg ./backup/tiny-yolo_15000.weights -c 0+  ./darknet detector demo axe/obj.data axe/yolov3-obj_3l_labo_axe.cfg axe/backup/yolov3-obj_3l_labo_axe_final.weights -thresh 0.25 -c 0  
 +{{ vimeo>330723924?medium }}
  
 +=====Avec un vrai sémaphore=====
 +  * **[[yolo_darknet_avec_un_vrai_semaphore|Yolo Darknet avec un vrai sémaphore]]**
 +  * **[[https://github.com/sergeLabo/semaphore_blend_yolo|et les sources correspondantes sur GitHub]]**
  
-=====Plus grand, plus gros, plus puissant===== +{{tag> ia sb semaphore yolo_darknet }}
-**Avec une carte graphique 1060GTX et 6 Go de RAM.**+
  
- 60000 images 640x640 
-{{ :2019_04:shot_2382_f.jpg?400 |}} 
-====Yolo v3 tiny==== 
-  * [[https://github.com/AlexeyAB/darknet#how-to-train-tiny-yolo-to-detect-your-custom-objects|How to train tiny-yolo (to detect your custom objects) ]] 
-{{ :2019_04:yolo_labo_v3_tiny.png?400 |}} 
- 
-  export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}} 
-  ./darknet partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15 
-  ./darknet detector train cfg/obj.data cfg/yolov3-tiny_obj_labo.cfg yolov3-tiny.conv.15 -map 
-===== Le portable Optimus utilisé ===== 
-Les calculs vont en gros 6 fois mois vite que sur une carte 1060GTX 
-<WRAP group> 
-<WRAP half column> 
-  * Intel® Core™ i7-Intel® Core™ i7-4702MQ CPU @ 2.20GHz × 84702MQ CPU @ 2.20GHz × 8 
-  * Memory Device 
-    * Total Width: 64 bits 
-    * Size: 8192 MB 
-    * Type: DDR3 
-    * Speed: 1600 MHz 
-    * Configured Clock Speed: 1600 MHz 
-  * Vitesse maximale du processeur en MHz : 3200,0000 
-  * Vitesse minimale du processeur en MHz : 800,0000 
-  * Ram 7,7 Gio 
-</WRAP> 
- 
-<WRAP half column> 
-  * NVIDIA Corporation GK106M [[https://www.notebookcheck.biz/NVIDIA-GeForce-GTX-765M.94344.0.html|GeForce GTX 765M]] 
-    * Core 
-      * Architecture: Kepler 
-      * CUDA Cores 768 
-      * Clock Freq (MHz) 850 + Boost 
-    * Memory 
-      * Memory Clock (MHz) 2000 
-      * Standard Memory Configuration GDDR5 
-      * Memory Interface Width 128 bit 
-    * Memory Bandwidth (GB/sec)64.0 
-    * Date de présentation: 30.05.2013 
-</WRAP> 
-</WRAP> 
  
-{{tag> ia sb semaphore yolo_darknet}} 
yolo_darknet_sur_un_portable_optimus.txt · Dernière modification: 2020/12/27 16:09 de serge