Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
yolo_darknet_sur_un_portable_optimus [2019/08/08 18:58]
serge ↷ Page déplacée de y:yolo_darknet_sur_un_portable_optimus à yolo_darknet_sur_un_portable_optimus
yolo_darknet_sur_un_portable_optimus [2019/12/01 08:53] (Version actuelle)
serge [Installation de YOLO Darknet]
Ligne 44: Ligne 44:
 sudo apt-get install --no-install-recommends libcudnn7=7.4.1.5-1+cuda10.0 ​ libcudnn7-dev=7.4.1.5-1+cuda10.0 sudo apt-get install --no-install-recommends libcudnn7=7.4.1.5-1+cuda10.0 ​ libcudnn7-dev=7.4.1.5-1+cuda10.0
 sudo apt-get install cmake clang python3-pip libopencv-dev libopencv-core-dev libopencv-highgui-dev libopencv-flann-dev libopencv-photo-dev libopencv-video-dev sudo apt-get install cmake clang python3-pip libopencv-dev libopencv-core-dev libopencv-highgui-dev libopencv-flann-dev libopencv-photo-dev libopencv-video-dev
-sudo pip3 install opencv-python==3.4.5.20+sudo pip3 install opencv-python==3.4.5.20 ​scikit-image
 </​code>​ </​code>​
  
Ligne 51: Ligne 51:
 Pour faire les mises à jour, il faudrait d'​abord bloquer les versions de cuda et cudnn, y compris les dev. Pour faire les mises à jour, il faudrait d'​abord bloquer les versions de cuda et cudnn, y compris les dev.
  
-====Installation complémentaire==== +====Installation complémentaire ​pour mes projets====
-  sudo apt install python3-pip +
-  sudo pip3 install numpy scikit-image +
 Installation de mon module personnel: [[:​pymultilame|Python:​ pymultilame]] Installation de mon module personnel: [[:​pymultilame|Python:​ pymultilame]]
  
Ligne 61: Ligne 58:
 =====Installation de YOLO Darknet===== =====Installation de YOLO Darknet=====
 Dans les [[https://​github.com/​AlexeyAB/​darknet|sources]] décompressée de darknet: Dans les [[https://​github.com/​AlexeyAB/​darknet|sources]] décompressée de darknet:
 +
 +Pour ajouter la libération de la RAM GPU entre 2 détections dans un script python,
 +[[Darknet Letters unload GPU RAM in python script|Darknet Letters unload GPU RAM in python script]]
 ====Options de Makefile avec GPU avec CUDA avec OPENCV==== ====Options de Makefile avec GPU avec CUDA avec OPENCV====
 <​code>​ <​code>​
Ligne 85: Ligne 85:
 Le fichier libdarknet.so de 1060GTX: {{ :​2019_05:​libdarknet.so.zip |}} Le fichier libdarknet.so de 1060GTX: {{ :​2019_05:​libdarknet.so.zip |}}
 =====Préparation===== =====Préparation=====
-Voir la page **[[y:yolo_avec_mes_propres_images|Yolo avec mes propres images]]** pour la construction de **60 000 images 640x640** et des fichiers *.txt correspondants.+Voir la page **[[yolo_avec_mes_propres_images|Yolo avec mes propres images]]** pour la construction de **60 000 images 640x640** et des fichiers *.txt correspondants.
  
 Ici nous utilisons **[[https://​github.com/​sergeLabo/​semaphore_cv_yolo|Création d'​images pour utiliser Yolo Darknet avec OpenCV]]**. Ici nous utilisons **[[https://​github.com/​sergeLabo/​semaphore_cv_yolo|Création d'​images pour utiliser Yolo Darknet avec OpenCV]]**.
Ligne 96: Ligne 96:
 {{:​2019_04:​shot_1916_z.jpg?​200|}} {{:​2019_04:​shot_1916_z.jpg?​200|}}
 {{:​2019_04:​shot_59248_j.jpg?​200|}} {{:​2019_04:​shot_59248_j.jpg?​200|}}
- 
-Les commandes pour exécuter .darknet ont comme argument: 
-  axe/​obj.data axe/​yolov3-obj_3l_labo_axe.cfg darknet53.conv.74 
   ​   ​
 **darknet53.conv.74** **darknet53.conv.74**
Ligne 149: Ligne 146:
  
 =====Training===== =====Training=====
-  export PATH=/​usr/​local/​cuda-10.0/​bin${PATH:​+:​${PATH}} 
   ./darknet detector train axe/​obj.data axe/​yolov3-obj_3l_labo_axe.cfg darknet53.conv.74 -map   ./darknet detector train axe/​obj.data axe/​yolov3-obj_3l_labo_axe.cfg darknet53.conv.74 -map
  
Ligne 189: Ligne 185:
  for thresh = 0.25, precision = 0.97, recall = 0.95, F1-score = 0.96   for thresh = 0.25, precision = 0.97, recall = 0.95, F1-score = 0.96 
  for thresh = 0.25, TP = 5699, FP = 188, FN = 301, average IoU = 87.69 %   for thresh = 0.25, TP = 5699, FP = 188, FN = 301, average IoU = 87.69 % 
- 
  IoU threshold = 50 %, used Area-Under-Curve for each unique Recall ​  IoU threshold = 50 %, used Area-Under-Curve for each unique Recall ​
  mean average precision (mAP@0.50) = 0.982366, or 98.24 %   mean average precision (mAP@0.50) = 0.982366, or 98.24 % 
-Total Detection Time: 78.000000 Seconds 
- 
-Set -points flag: 
- ​`-points 101` for MS COCO  
- ​`-points 11` for PascalVOC 2007 (uncomment `difficult` in voc.data) ​ 
- ​`-points 0` (AUC) for ImageNet, PascalVOC 2010-2012, your custom dataset 
- 
  ​mean_average_precision (mAP@0.5) = 0.982366 ​  ​mean_average_precision (mAP@0.5) = 0.982366 ​
-Saving weights to axe/​backup/​yolov3-obj_3l_labo_axe_54000.weights 
-Saving weights to axe/​backup/​yolov3-obj_3l_labo_axe_last.weights 
-Saving weights to axe/​backup/​yolov3-obj_3l_labo_axe_final.weights 
 </​code>​ </​code>​
- 
-===Le fichier final obtenu=== 
-  * **{{ :​2019_04:​yolov3-labo_axe_final.weights.tar.gz |}}** 
  
 =====Testing===== =====Testing=====
 ====Test sur une image==== ====Test sur une image====
-  export PATH=/​usr/​local/​cuda-10.0/​bin${PATH:​+:​${PATH}} 
   ./darknet detector test axe/​obj.data ​ axe/​yolov3-obj_3l_labo_axe.cfg axe/​backup/​yolov3-obj_3l_labo_axe_final.weights axe/​shot_36_space.jpg   ./darknet detector test axe/​obj.data ​ axe/​yolov3-obj_3l_labo_axe.cfg axe/​backup/​yolov3-obj_3l_labo_axe_final.weights axe/​shot_36_space.jpg
  
Ligne 235: Ligne 216:
  
 =====Avec un vrai sémaphore===== =====Avec un vrai sémaphore=====
-  * **[[y:yolo_darknet_avec_un_vrai_semaphore|Yolo Darknet avec un vrai sémaphore]]**+  * **[[yolo_darknet_avec_un_vrai_semaphore|Yolo Darknet avec un vrai sémaphore]]**
   * **[[https://​github.com/​sergeLabo/​semaphore_blend_yolo|et les sources correspondantes sur GitHub]]**   * **[[https://​github.com/​sergeLabo/​semaphore_blend_yolo|et les sources correspondantes sur GitHub]]**
  
-{{tag> ia sb semaphore}}+{{tag> ia sb semaphore ​ ​yolo_darknet deap_learning}}
  
  
  • yolo_darknet_sur_un_portable_optimus.1565283530.txt.gz
  • Dernière modification: 2019/08/08 18:58
  • par serge